
��������	�
����	�
�����������

�� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 543

Overview of Application Performance on Multicore Environment

M.Narayana Moorthi.
*

 , P.Mohankumar and Dr.J.Vaideeswaran,

School of Computing Science and Engineering,

VIT University, Vellore-14., TN ,India,

Mnarayanamoorthy@Vit.Ac.In

Pmohankumar@Vit.Ac.In

j_vaideeswaran@vit.ac.in

Abstract: When Programming Multicore Applications we need to consider the method of making use of the existing powerful multicore

processors. The multicore processor provides a new challenge or issues to be taken into account for software developers to achieve higher

performance in computing applications. The applications requires high speed process need to migrate the software from single core to multicore

processor is the real challenge in front of us. Several factors determine whether the performance of an application improves on a multicore

system. Bottlenecks in parallelism may arise at several levels of software application stack, and avoiding this problem is a challenging task. This

proposed paper discusses the benchmarking metrics for applications on Multicore systems and to tune the performance of threaded applications

with balanced load for each core and a basic understanding of how to gather meaningful benchmark data and tune applications on multicore

systems. Before benchmarking our application on a multicore system, we need to understand the characteristics of the application being

measured. If the application is multithreaded then in theory the performance of the application will increase as the number of cores increases in a

system. How much the performance of the application actually increases will depend on what else is running on the system, how effectively the

application is threaded, and the nature of the hardware platform. Here are few issues we need to analyze. They are 1.How many threads are used

by our application. If our application is multithreaded, whether the application is designed to make use of all cores in a multicore system .2.

Knowing performance on a single core platform, what is the expected performance on a system with N-Cores? The Amdahl’s Law basically

predicts how the performance of a parallel application changes as the number of cores increases based on the amount of serial and parallel work

in that application. The mismatch between measured parallel application performance and predicted performance are to be investigated.

Keywords: Multicore, Parallel Program, Interprocessor Communication

I. INTRODUCTION

Building parallel versions of software can enable

applications to run a given data set in less time, run multiple

data sets in a fixed amount of time, or run large-scale data

sets that are prohibitive with unthreaded software [4]. The

success of parallelization is typically quantified by

measuring the speedup of the parallel version relative to the

serial version. In addition to that comparison, however, it is

also useful to compare that speedup relative to the upper

limit of the potential speedup. That issue can be addressed

using Amdahl's Law and Gustafson's Law. The faster an

application runs, the less time a user will need to wait for

results. Shorter execution time also enables users to run

larger data sets in an acceptable amount of time. One

computed number that offers a tangible comparison of serial

and parallel execution time is speedup.

Speedup is the ratio of serial execution time to parallel

execution time. For example, if the serial application

executes in 6720 seconds and a corresponding parallel

application runs in 126.7 seconds (using 64 threads and

cores), the speedup of the parallel application is 53X

(6720/126.7 = 53.038).

Related to speedup is the metric of efficiency. While

speedup is a metric to determine how much faster parallel

execution is versus serial execution, efficiency indicates

how well software utilizes the computational resources of

the system. To calculate the efficiency of parallel execution,

take the observed speedup and divide by the number of

cores used. This number is then expressed as a percentage.

For example, a 53X speedup on 64 cores equates to an

efficiency of 82.8% (53/64 = 0.828). This means that, on

average, over the course of the execution, each of the cores

is idle about 17% of the time.

II. NEED FOR PARALLELISM

Recent change in computing and communication with

Multicore processors [7] [8] [9] is developing an application

that use all of the cores to their full support is a challenge for

all. Writing concurrent programs for multicore is difficult

and is of increasing practical importance. If we want to run

our program faster, we need to learn parallel programs. The

Amdahl’s Law is often used in parallel computing to predict

the theoretical maximum speedup using multiple processors.

In case of parallelization , Amdahl’s Law [1][2][3][5] states

that if P is the proportion of a program that can be made

parallel and (1-P) is the proportion that can not be

parallelized, then the maximum speedup that can be

achieved by using N –Processors is 1/(1-P)+P/N. This

analysis is required to know the cause of poor application

scaling with increasing number of cores. We should always

benchmark our multithreaded application on systems with 2,

4, ---N cores in order to get an accurate picture of how our

application scales. The processor Affinity can also be tested

to ensure that data critical to the thread stays in a given

cores cache which can improve performance. When

benchmarking applications on multicore systems we need to

pay attention to not only the overall performance of the

application, but also to how the performance of the

application changes as the number of cores increases. We

B. Ramakrishnan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,543-547

© 2010, IJARCS All Rights Reserved 544

need to decide benchmark metrics that are important to us,

and then test our application using benchmark workloads

that provide meaningful benchmark [6] results to tune our

applications. The performance of our application changes as

the number of cores increases. One of the performance

inhibiting factors in threaded applications is load imbalance.

Balancing the workload among threads is critical to

application performance. [6] The key objective for load

balancing is to minimize idle time on threads and share the

workload equally across all threads with minimal work

sharing overheads. Generally mapping or scheduling of

independent tasks to threads can happen in two ways: Static

and Dynamic. When all tasks are the same length, a simple

static division of tasks among available threads dividing the

total number of tasks into equal sized groups assigned to

each thread is the best solution. Alternatively when the

lengths of individual tasks differ, dynamic assignment of

tasks to threads yields better solution.

III. LITERATURE SURVEY

For the past 30 years CPU designers have achieved

performance gains in three main areas like clock speed ,

execution optimization and cache design [13] [14].

Increasing clock speed is about getting more cycles, running

the CPU faster more or less directly means doing the same

work faster. Optimizing execution flow is about doing more

work per cycle. Increasing the size of On-Chip Cache is

about staying away for RAM. A fundamentally important

thing to recognize about this list is that all of these are

concurrency agnostic. Speedups in any of these areas will

directly lead to speedups in sequential (Non-parallel, single

threaded) applications. For the near term future the

performance gains in new chips will be fueled by three main

approaches. They are Hyper Threading, Multicore and

Cache. Hyper threading is about running two or more

threads in parallel inside a single CPU.A limiting factor in

hyper threaded CPU is it has one cache, one integer math

unit and one Floating point unit. Hyper threading is

sometimes cited as offering a 5% to 15% performance boost

for reasonably well written multithreaded applications.

Multicore is about running two or more actual CPUs on one

chip. And the die cache sizes can be expected to continue to

grow. The following table 1, and 2 describes the existing

multicore processors and the different applications [12] and

their performance improvements.

Table I: Specifications Data for Top Performing Multicore

Processors

Capability Intel AMD

Processor

Nomenclature

Core 2 Duo

E6850

64 X 2 6000t

Processor

Speed

3GHZ 3GHZ

Instruction

Set

SSE,SSE2,SSE3 SSE,SSE2,SSE3

Power 65W 125W

Transistors 291 Million 227 Million

Cache L1-32KB / L2 -

4MB

L1-64KB / L2 –

1MB

Table II: Specifications of different applications

Application

Environment

Dual Core

Intel

Dual Core

AMD

3D Gaming 80 % increase

over top Intel

single core

80 % Increase

over top

single core

AMD

Anti Virus Scans 100%gains 30%gains

File

Archiving(Backups)

30% gains 30%gains

Floating Point

Calculations

20 % gains 50% gains

The following are the issues or challenges [9] the

application developers need to focus on.

1. Software Decomposition into instructions (or) sets of

tasks that need to execute simultaneously.

2. Communication between two or more tasks that are

executing in parallel

3. Concurrency accessing or updating data by two or more

instructions or tasks

4. Identifying the relationships between concurrently

executing pieces of tasks

5. Determining the optimum or acceptable number of units

that need to execute in parallel

6. Creating a test environment that simulates the parallel

processing requirements and conditions

IV. LOAD BALANCING TECHNIQUES

Load balancing an application workload among threads

is critical to performance. The key objective for load

balancing is to minimize idle time on threads. Sharing the

workload equally across all threads with minimal work

sharing overheads results in fewer cycles wasted with idle

threads not advancing the computation, and thereby leads to

improved performance. However, achieving perfect load

balance is non-trivial, and it depends on the parallelism

within the application, workload, the number of threads,

load balancing policy, and the threading implementation. An

idle core during computation is a wasted resource, and when

effective parallel execution could be running on that core, it

increases the overall execution time of a threaded

application. This idleness can result from many different

causes, such as fetching from memory or I/O. While it may

not be possible to completely avoid cores being idle at

times, there are measures that programmers can apply to

reduce idle time, such as overlapped I/O, memory

prefetching, and reordering data access patterns for better

cache utilization.

Similarly, idle threads are wasted resources in

multithreaded executions. An unequal amount of work being

assigned to threads results in a condition known as a "load

imbalance." The greater the imbalance, the more threads

will remain idle and the greater the time needed to complete

the computation. The more equitable the distribution of

computational tasks to available threads, the lower the

overall execution time will be.

As an example [4], consider a set of twelve independent

tasks with the following set of execution times: {10, 6, 4, 4,

2, 2, 2, 2, 1, 1, 1, 1}. Assuming that four threads are

available for computing this set of tasks, a simple method of

task assignment would be to schedule each thread with three

total tasks distributed in order. Thus, Thread 0 would be

B. Ramakrishnan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,543-547

© 2010, IJARCS All Rights Reserved 545

assigned work totaling 20 time units (10+6+4), Thread 1

would require 8 time units (4+2+2), Thread 2 would require

5 time units (2+2+1), and Thread 3 would be able to execute

the three tasks assigned in only 3 time units (1+1+1). Figure

1(a) illustrates this distribution of work and shows that the

overall execution time for these twelve tasks would be 20

time units (time runs from top to bottom).

Figure 1. Examples of task distribution among four threads.

A better distribution of work would have been Thread 0:

{10}, Thread 1: {4, 2, 1, 1}, Thread 2: {6, 1, 1}, and Thread

3: {4, 2, 2, 2}, as shown in Figure 1(b). This schedule would

take only 10 time units to complete and with only have two

of the four threads idle for 2 time units each.

The load balancing is the method or technique by which

the overall task is getting distributed or assigned to all the

cores evenly. The consideration here is that when the work

load is large we should ensure that all the cores are busy and

when the work load is small we should ensure that the

energy is saved by not utilizing many cores. So the

application developers for parallel programming should

have necessary tools and techniques for load balancing. We

should design the model for parallel programming which is

flexible enough for tomorrow’s processor evolution. The

issues or areas we need to focus includes the potential

parallel programming model, IO and File systems ,

Operating system issues and memory utilization, and the

compilers. We need to analyze the scalability of a number of

load balancing algorithms which can be applied to problems

that have the following characteristics: The processor can be

assigned a work which is the part of the overall work load.,

and the size of the work assigned is not constant ., ie it may

vary. These kind of problems can be assigned to the multiple

cores by proper load balancing techniques. The load

balancing assures good performance in the multicore

systems. The simple concept of dynamic load balancing is

as follows. The task or work load is given to sub task

generator which generates the mutually independent

subtasks and puts them in to the allocation unit which

distributes the sub tasks to the processing elements so as to

balance the work load. Here the processing elements can be

busy or idle. After finding the idle processing elements the

allocation unit assign the work to them. Here the

consideration or issue rises as follows. That is if the size of

the sub task is less more no of subtasks are generated or if

the size of the sub tasks are more the less no of sub tasks are

generated. So we need to look for the optimal distribution

policy which can balance the size of the task and the number

of sun b tasks. All the processing elements are grouped

together initially and one of the processor acts like master

which takes care of allocation of sub tasks to other elements.

If any processing element is busy it can not be assigned new

work. But after the processor completes the work it can

demand to the master processor for new work and it can be

assigned. But here the delay in the request and allotment

needs to be considered and it can be minimized by the

buffering scheme. Keeping all the above in mind we need to

find the dynamic scalable load balancing algorithm which

can improve the performance of our system.

The difference between the end time and start time of

the work load is known as the response time of a processor.

The mechanism for achieving the optimal response time

depends on how we distribute the work load equally among

the multiple cores. There is no way to measure the

processing time of a work load prior to actually executing it.

So, approximate estimations are to be made for workload by

the cores utilization or the cores wait queue length. The

following are to be considered to get the optimal response

time and good load balancing methods .They are size of the

overall work load, the time needed to process the subtasks ,

the size of sub tasks , number of subtasks, number of

processing elements or cores busy and idle, sequential

execution or parallel execution.

V. PERFORMANCE METRICS

When evaluating application performance memory

usage and execution time [1] [2] [6] are the main metrics to

consider. Execution time is the amount of time required to

process a group of instructions, usually measured in

seconds. Memory usage is the amount of memory space

required to process a group of instructions, usually measured

in bytes. Another performance improvement seen on

multicore systems is responsiveness. Multicore systems

exhibit improved responsiveness due to multitasking with

several cores available. Communication Overhead: -

Memory organization in multicore computing systems

affects communication overhead and program execution

speed, common memory architectures are shared memory,

distributed memory and hybrid shared distributed memory.

Shared memory systems use one large global memory space,

accessible by all processors, to provide fast communication.

However, as more processors are connected to the same

memory, a communication bottleneck between processors

and memory occurs. Distributed memory systems use local

memory space for each processor and communicate between

processors via communication Network. Interprocessor

Communication:-Physical distances between processors

and the quality of interprocessor connections affect the

program execution speed through communication

overheads. Code Organization: - The degree of program

parallelism has a large effect on program execution time, as

does granularity, the ratio of computation to communication

and load balancing.

VI. TOOLS FOR PERFORMANCE MEASUREMENTS

The VTune analyzer provides an integrated

performance analysis and tuning environment that helps us

to analyze our code's performance on systems with IA-32,

Intel(R) 64, and IA-64 architecture [4]. VTune analyzer can

plug in into Microsoft Visual Studio and Eclipse Integrated

Development Environments. We can work with the VTune

analyzer using the graphical interface and command line

interface. All commands to create and run Activities must be

B. Ramakrishnan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,543-547

© 2010, IJARCS All Rights Reserved 546

preceded by vtl at the command line. The general tuning

methodology begins at the system level and goes down to

the micro architecture level. Regardless of your specific

tuning goals, you should conduct the analysis level by level,

in the following order, that is, from a high to a low level:

System-level, Application-level and Micro architecture-

level. There are three main strategies for improving

application performance. Each strategy has an effect on

processor utilization. Balancing I/O and computation.

When processor utilization is low because processors are

waiting for I/O to complete, balancing I/O and computation

can speed up an application (since when balanced, I/O and

computation can be performed simultaneously - the I/O time

is masked by the computation time). Balancing I/O and

computation is usually done during system-level and

application-level tuning [4]. Improving the threading

model: Adding multithreading to a single-threaded

application, or improving the threading model of a

multithreaded application, is an application-level tuning

technique that can speed up your application by making

more effective use of all available processor resources - this

usually raises processor utilization [4]. Improving the

efficiency of computation: Using less or more efficient

computation can also speed your application. If the amount

of I/O remains the same and the I/O time is not masked by

computation time, then processor utilization will decrease

(since a higher fraction of the total workload run time will

be spent waiting for I/O) [4]. These types of changes are

made during application-level and micro architecture-level

tuning.

The Intel Thread Profiler collector of the Intel VTune

Performance Analyzer [4][1][2] helps us to identify and

locate bottlenecks that are limiting the parallel performance

of our multithreaded application. Thread Profiler graphically

displays the performance results of a parallel application

that has been instrumented with calls to the OpenMp

statistics gathering runtime engine. With the thread profiler

we can, 1.compare the performance impact of using

different configuration options when our program is run,

such as thread scheduling methods or the number of threads

used to run our application. 2. Locate areas that show large

amounts of parallelization overhead, indicating inefficient

parallelization.3.Compare alternative ways of parallelizing

our program to see which set of directives or what locations

for those directives work best. 4. Estimate the total run time

that we would get if more processors were available. The

time that our program spends executing is categorized by the

Intel(R) Thread Profiler according to several different

categories. The below table III showing the categories and

their descriptions:

Table III

1) Name

2) Description

Sequential The total amount of wall-clock time

spent outside of parallel regions.

Seq.

Overhead

Sequential Overhead is an estimate of

the time the application spent in

OpenMp* regions that were not

executed within an OpenMp* parallel

region.

Synchronized Time spent inside critical sections

and holding locks.

Lock Time spent waiting to enter critical

sections and to acquire locks.

Barrier Time spent waiting for other threads

to arrive at a barrier.

Imbalance Time spent waiting for other threads

to reach the end of a parallel region.

Par.

Overhead

Parallel overhead is the estimated

time spent inside of parallel regions

in the OpenMp* Runtime Engine,

which implements OpenMp.

Parallel Total wall-clock time spent running

code inside parallel regions. Well-

tuned code spends the majority of its

time in this category.

Total Total time, equivalent to the

summation from sequential time

through parallel time columns.

Sequential Time is the amount of wall-clock time spent

outside OpenMp* parallel regions. The goal of parallel

programming is to minimize the amount of serial time spent

in the execution of an application by parallelizing portions

of the source code.

Use a profiler to identify parts of the code that spend

the most serial execution time as the primary candidates for

additional sections of parallel code. Sequential Overhead is

an estimate of the time the application spent in OpenMp*

regions that were not executed within an OpenMp* parallel

region. These include serialized critical sections and

orphaned OpenMp* constructs. If a critical section, used to

protect code segments from being executed concurrently by

multiple threads, will never be executed within an OpenMp*

parallel region, that critical section will be adding

unnecessary overhead and could be eliminated. Reducing

Synchronization Time: Synchronization Time is the amount

of time threads spent inside critical sections and holding

locks. Large amounts of synchronization time indicate large

critical sections or locked code segments. The longer one

thread spends in a critical section or holding a lock, the

longer other threads will be forced to wait for the release of

these resources.

VII. EXPERIMENTAL ANALYSIS AND

CONCLUSION

The parallel computing with Multicore Environment

uses as many cores as possible. But here the speedup of an

application is limited by the number of cores and problem

size., Which is stated by Amdahl’s law if p is denoted as

parallel execution and (1-p) is denoted as serial execution

and a system consist of “N” Cores then speed up is

calculated by 1/(1-p)+p/N. Here if the value of N is

increased we have limitations. The following experiment is

made in the Multicore Machine with different thread

numbers to perform the same task. Like to print the numbers

from 1 to 50,000 different threads were created and the time

B. Ramakrishnan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,543-547

© 2010, IJARCS All Rights Reserved 547

is observed. The following table and the chart describe the

total number of threads and the time taken to complete the

task. It is observed that when the number of threads is more

the time is also increasing for small task, but if the task to be

performed is lengthy the larger number of threads is better.

 The sample code using C with OpenMp is as

follows,

#include<stdio.h>

#include<omp.h>

#include<conio.h>

Void main()

{ #pragma omp parallel {Printf (“hallo well done”); }}

The above code prints hallo well done which is equal to

the number of cores in the system. The above code is

modified to create as many threads as possible and print the

values from 1 to 50,000 with different threads. The

following is the result of it.

No of Thread and Time Analysis

Series1,

Number of

Threads, 10

Series1, Time,

17.046

Series2,

Number of

Threads, 4

Series2, Time,

5.24

0

5

10

15

20

Series1 Series2

Series1 10 17.046

Series2 4 5.24

 Number of Threads Time

Figure 2: Analysis of Thread Time

So, this is the time to look at the design of our

applications and determine what operations are sensitive to

processor now or future and identify how these places could

benefit from concurrency[13] [14]. Also this is the time to

learn the importance of concurrency programming and

techniques and their requirements.

VIII. ACKNOLEDGMENT

We like to thank our Research advisor

Dr.N.Ch.Sn.Iyengar., Senior Professor, School of

Computing Science and Engineering , VIT University ,

Vellore-14 for his continuous Motivation towards our

research. We would also like to thank Dr.J.Vaideeswaran,

our Research Guide for his continuous support to conduct

our research. We also extend our Gratefulness to the higher

officials of VIT University for giving us the Opportunity to

conduct this research.

IX. REFERENCES

[1] J. L. Hennessy, D. A. Patterson, Computer Architecture:

A Quantitative Approach, 2nd Edition, Morgan Kaufmann

Publishing Co. 1996.

[2] Frank Schirrmeister, “Multi-core Processors:

Fundamentals, Trends, and Challenges’, Embedded Systems

Conference 2007 ESC351, Imp eras, Inc.

[3] Muti-Core Processors—The Next Evolution in

Computing

http://multicore.amd.com/Resources/33211A_Multi-

Core_WP_en.pdf

[4] Intel@ Multi-core technology,

http://www.intel.com/multicore/

[5]http://multicore.amd.com/GLOBAL/WhitePapers/Multi-

Core_Processors_WhitePaper.pdf

[6] http://www.cs.virginia.edu/stream/

[7] http://www.sun.com/processors/UltraSPARC-T1

[8]http://www.amd.com/usen/Processors/ProductInformatio

n/0,,30_118_8825,00.html

[9] “Professional Multicore Programming: Design and

Implementation for C++ Developers”, chapter 3, page 36

[10]http://multicore.amd.com/en/[11]

http://www.embedded.com/showArticle.jhtml?articleID=18

3702075

[12] Blair Guy, ”An Analysis of Multicore Microprocessor

capabilities and their suitability for current day application

Requirements” , Bowie University , Maryland in Europe,

Nov 2007.

[13] Herb Sutter, “The free lunch is over: A fundamental

turn toward concurrency in software”, Dr.Dobb’s Journal,

30(3), March 2005

[14] Herb Sutter,”The concurrency revolution” in C /C++

users Journal, 23(2), February 2005.

AUTHORS

 M.Narayana Moorthi is working as Assistant

Professor., (senior) in School of Computing Sciences and

Engineering VIT University Vellore. His area of Research

Interest includes Parallel Computing, High Performance

Computing and Advanced Computer Architecture.

 P.Mohankumar is working as Assistant

Professor., (senior) in School of Information Technology

and Engineering VIT University, Vellore. His area of

Research includes Advanced Database Management

Systems and Data Mining Techniques.

 Dr.J.Vaideeswaran. is working as Senior

Professor in Architecture and Embedded systems division,

in School of Computing Sciences and Engineering, VIT

University, Vellore. His research includes High

Performance Computing, and Computer Architecture.

