
 Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 258

ISSN No. 0976-5697

System and Method for Detecting Potential Places for Memoization in Recursive

Functions of a Computer Programming Code

Narasimha Sarma Sridhara Chimmapudi

Digital Engg.-RMI&O

HCL Technologies Limited

1st Phase, Electronic City, Bangalore - India

Abstract: A system and method for detecting potential places for memoization in recursive functions of a computer programming code, includes

a software tool to detect the suitable places for memoization in a source code of a program/software program. The tool automatically detects the

potential places for implementing memoization in a program, the need of memoization during run time, and suggests the code to be inserted for

memoization. The recursive functions of potential memoization are memoized either automatically or manually to facilitate efficient execution

of the program. By implementing memoization, the complexity of algorithm would be reduced from exponential order to polynomial order and

improves the speed of execution.

Keywords: Automatic detection, memoization, recursive function, software tool, runtime analysis

i. INTRODUCTION

In computer programming, dynamic programming

problems are complex in nature. The complexity occurs
because most of the programmers do not attempt to solve
dynamic problems with sound dynamic programming
techniques. Very few expert programmers can understand and
solve these problems in the structured way that is
recommended by dynamic programming. The major problem is
most of the programmers rely on recursion and forget the
memoization to solve these problems. Memoization is one of
the optimization techniques used for accelerating the speed of
the program execution.

Currently all commercially available run time code analysis
tools like Rational Purify, Bounds Checker, Para-soft code-
wizard etc. are not detecting memoization. Resultantly we need
to perform memoization manually on huge source code, which
is cumbersome and error prone. Code analysis tools like purify,
execute typical workflows to get a detailed report on the
number of times each function is run with the same inputs. If
we solve these problems with recursion and without using
memoization the respective algorithm's complexity will be in
the exponential order. These problems would generally occur in
dynamic programming and sometimes in general programming
too. To avoid this complexity, the method of detecting and
including memoization in recursive functions using suitable
tool has been developed. If we apply memoization, the
respective algorithm's complexity would be reduced from
exponential order to either polynomial order or linear order in
the ideal case.

We have developed a software tool for analyzing a computer
programming code for detecting potential places for
memoization; the analysis gives detailed report on the potential
places for memoization with line numbers in a huge
programming source code. After the analysis, automemoization
can be performed, thereby increasing the speed of a software
performance.

ii. METHOD AND MECHANISM

In this Paper, the overall method and mechanism of an

analysis of a software programming code followed by

automemoization is illustrated. The method of code analysis

and automemoization comprising following steps;

A. Program Input

The program input is fed to the code analysis tool to detect
potential places for memoization in recursive function to
facilitate efficient execution of the program [1].

B. Recursive Function

The tool analyzes the time taken for multiple iterations of
the direct and indirect recursive function i.e., the function with
loop, with same inputs during runtime [2, 3].

C. Detecting Potential Places

Based on the above analysis of time taken for multiple
iterations of recursive function, the tool will point out the list of
potential places for memoization in a given program.

D. Storing of Parameter Values

While calculating, the tool will store the values of
parameters in addition to the function name, number and type
of parameters of a function in a temporary storage medium
(cache memory) [4].

E. Injection of Memoization Code

After the analysis of recursive function, the tool will
illustrate where the memoization code can be injected. The
injection of memoization code in recursive function can be
done either automatically or manually by the programmer [5].

Narasimha Sarma Sridhara Chimmapudi, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,258-260

© 2010-14, IJARCS All Rights Reserved 259

Figure 1: Mechanism of Code Analysis Tool

Figure 1 describes the method and mechanism of an analysis of
a software programming code and automemoization.

iii. DESCRIPTION

System and over all method for analyzing a software

source code followed by automemoization is illustrated in

figure 1. In this System, a developed software tool is used for

analysis a source code of a software /computer program for

memoization.

A software source code is fed to the code analysis tool for

detecting and implementing memoization at potential places in

recursive functions to facilitate efficient execution of the

software/program [3].

The code analysis tool analyzes the time taken for multiple

iterations of the direct and indirect recursive function (function

with loop) with same inputs during run time [4]. Then based on

above analysis the tool will point out the potential places for

memoization in a given program.

A recursive function having more than one recursive call

may happen in two ways: a) Explicitly calling the function

more than once, or b) calling this recursive function in a loop,

where the memoization has not been implemented explicitly.

So, the tool to detect the possibility of implementing

memoization provides a scaffold/model implementation for

immediate performance benefits.

While calculating, the tool will store the values of

parameters in addition to function name, number and type of

parameters of a function in a temporary storage medium

(cache). After the analysis of recursive function, the tool will

illustrate where the memoization code can be injected to

facilitate efficient execution of a program.

The injection of memoization code in recursive function

can be done manually by the programmer. Thus the complexity

of algorithm will be reduced from exponential to either

polynomial order or linear order in ideal cases and improves

the performance by accelerating the speed of program

execution. It is even possible to add intelligent code

automatically to support memoization that enables improving

the performance of the algorithm from exponential to

polynomial [1].

The tool has to be applied on Static and global functions,

but not on member functions of a class. It can be applied also

on library functions as well. Unlike other run time analysis

tools, this tool will store the parameter values in addition with

function name, number of parameters and type of parameters

while calculating repeated sub-solutions.

iv. AN EXAMPLE

A sample C++ program is provided below to illustrate the

effect of implementing the Programming/software code

analysis tool.

TestMemorizationSample.cpp

#include <iostream>

using namespace std;

/*

Assumption: f(n) = 1 if n <= 2

= f(n-1) + f(n-2) if (n>2)

*/

__int64 getnthfebnum_slow(int n)

{

if (n > 2) return getnthfebnum_slow(n-1) +

getnthfebnum_slow(n-2);

return 1;

}

__int64 memo[200];

__int64 getnthfebnum_fast(int n)

{

if (memo[n]) return memo[n];

if (n>2) memo[n] = getnthfebnum_fast(n-1) +

getnthfebnum_fast(n-2);

else memo[n] = 1;

return memo[n];

}

void print(__int64 n)

{

if (n<0) { cout << '-'; print(-n); return;}

if (n==0) { cout << '0'; return; }

if (n>9) print(n/10);

cout << int(n%10);

}

void main()

{

//__int64 n1 = getnthfebnum_slow(50);

__int64 n1 = getnthfebnum_fast(50);

print(n1);

}

With n=50, without using memorization

(getnthfebnum_slow) the resultant value would be returned in

several hours, while with the same n=50, with memorization

(getnthfebnum_fast) the resultant value would be returned in

fraction of a second.

v. ANALYSIS RESULT

Table I. gives report of memoization after a sample run of our
code analysis tool on the target programming code:
In the sample table I. below, the recursive function “Add”
requires memoization, because the time taken for execution is
same for two iterations, where the function “Febo” does not

Narasimha Sarma Sridhara Chimmapudi, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,258-260

© 2010-14, IJARCS All Rights Reserved 260

require memoization. From this, the programmer implements
memoization in the respective function “Add” to improve code
performance. It is even possible to add intelligent code
automatically to support memoization that enables improving
the performance of the algorithm from exponential to
polynomial.

Table I. Output of Code Analysis Tool

Sr.No Recursive

Function Name

Input

values

Iteration Time taken for

execution

1 Add 10 20 1 30 micro sec

2 Add 10 20 2 30 micro sec
3 Febo 20 1 50 micro sec

4 Febo 20 2 1 micro sec

vi. CONCLUSION

The developed code analysis tool is for analyzing a computer

programming /software source code for potential places for

memoization during the runtime and gives the report about the

potential places with line number of the programming source

code, which gives a clear idea on the target programming code

/software source code. So, the recursive functions can be

memoized automatically or manually to facilitate efficient

execution of the program. Therefore, the complexity of

algorithm would be reduced from exponential order to

polynomial order and improves the speed of execution. The

Performance improvement in this case is in the order of 10^5 -

10^6. The underlying complexity of the algorithm would be

reduced from exponential to either polynomial or Linear.

vii. ACKNOWLEDGEMENT

I would like to take this opportunity to thank my colleagues

Mr. Venkatraman Rajagopalan, Mr. Inderjeet Singh and Mr.

Gokulanavaneethakannan for their consistent help and support.

Their valuable support and help made me to complete and

publish this journal successfully.

viii. REFERENCES

[1] Eric Snow, Eric Aubanel, and Patricia Evans, “Dynamic

parallelization for RNA structure comparison”, May 2009,
IEEE Parallel & Distributed Processing, IPDPS 2009, pp.
1–8, doi: 10.1109/IPDPS.2009.5160926.

[2] Joxan Jaffar, Andrew E. Santosa and Razvan Voicu,
“Efficient memoization for dynamic programming with
ad-hoc constraints”, 2008, Conference paper - Association
for the Advancement of Artificial Intelligence, Available
from: https://www.comp.nus.edu.sg/~joxan/papers/opt.pdf

[3] James Mayfield, Marty Hall and Tim Finin, “Using
Automatic Memoization as a Software Engineering Tool
in Real-World AI Systems”, 1995, Proceedings from 11

th

conference on IEEE Artificial Intelligence for
Applications, doi:10.1109/CAIA.1995.378786.

[4] TobinHarris, "Flyweight Pattern", July 2013, Available
from: http://c2.com/cgi/wiki?FlyweightPattern

[5] Marty Hall, and J. Paul McNamee, “Improving software
performance with automatic memoization”, vol. 18, issue
2, 1997, Johns Hopkins APL Technical Digest, pp. 254-
260.

