
Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 235

ISSN No. 0976-5697

A Review on Distributed File System and Its Applications

ShikhaVashist, Ayush Gupta

Student, Dronacharya College of Engineering,

Gurgaon, Hr., India-123506

Abstract: Need of storing a huge amount of data has grown over the past years. Whether data are of multimedia types (e.g. images, audio, or

video) or are produced by scientific computation, they should be stored for future reuse. Users also need their data quickly. [2,5]Data files can be

stored on a local file system or on a distributed file system. Local file system provides the data quickly but does not have enough capacity for

storing a huge amount of the data. On the other side, a distributed file system provides many advantages such as [7]scalability, security, capacity,

etc. In the report, we will provide the state of the art in DFS oriented on reliability and performance in thesetype of systems. First of all,

traditional DFS like AFS, NFS and SMB will be explored. These DFS were chosen because of their regular usage. Next, new trends in these

systems with a focus on reliability and increasing performance will be discussed. This includes the organization of data and metadata storage,

usage of caching, and design of replication algorithms and algorithms for achieving more reliability.

I. INTRODUCTION

File system is a subsystem of an operating system

whose purpose is to organize, retrieve, store and allow

sharing of data files. A Distributed File System is a

distributed implementation of the classical time-sharing

model of a file system, where multiple users who are

geographically dispersed share files and storage resources.

Accordingly, the file service activity in a distributed system

has to be carried out across the whole network, and instead

of a single centralized data repository there are multiple and

independent storage devices. The [1]DFS can also be

defined in terms of the abstract notation of a file. Permanent

storage is a fundamental abstraction in computing. It consist

of a named set of objects that come into existence by

explicit creation, and are immune to temporary failures of

the system. A file system is the refinement of such an

abstraction. A DFS is a file system that supports the sharing

of files in the form of persistent storage over a set of

network connected nodes. The DFS has to satisfy three

important requirements: [3]Transparency, Fault Tolerance

and Scalability.

II. DISTRIBUTED FILE SYSTEM AND

METHOD

A distributed file system and method distributes file

system objects across multiple self-contained volumes,

where each of the volume is owned by a unique file system

node. Logical links are to be used to reference a file system

object between volumes. Each system node includes a

Figure 1.

move directory in which is maintained hard links to

locally-stored file systemobjects that are referenced from

another[4]system node using logical links.Various file

system operations that involve multiple volumes are

performed without having to place a write lock on more than

one volume at a time.Various caching schemes allow the

various file system nodes to cache file system object data

and metadata.

III. ON-DISK FILE FORMAT FOR A

SERVERLESS DISTRIBUTED FILE SYSTEM

A file format for a serverless distributed file system is

composed of two parts: a primary data stream and a

metadata stream. The data stream contains a file that is

divided into multiple blocks. The metadata stream has a

header, a structure for indexing the encrypted blocks in the

Shikha Vashist et al, International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014, 235-237

© 2010-14, IJARCS All Rights Reserved 236

primary data stream, and some user information. The

indexing structure defines leaf nodes for every block. Each

leaf node consists of an access value used for decryption of

the associated block and a verification value used to verify

the encrypted block independently of the other blocks. In

one implementation, the access is formed by hashing the file

block and encrypting the resultant hash value using a

randomly generated key. The key is then encrypted using

the user's key as the encryption key. The verification value

is formed by considering the associated encrypted block

using a one-way hash function. The file format supports

verification of individual file blocks without knowledge of

the randomly generated key or any user keys. To verify a

block of the file, the file system traverses the tree to the

appropriate leaf node associated with a target block to be

verified. The file system hashes the target block and if the

hash matches the access value contained in the leaf node, the

block is authentic.

IV. NOTIFICATION SYSTEM FOR

DISTRIBUTED FILE SYSTEM

A method for notifying an application coupled to a

distributed file system is described. A command for a file

for a distributed file system is received. The distributed file

system stores portions of files across a plurality of distinct

physical storage locations. The command for the file is

compared with a notification table of the distributed file

system of the distributed file system. At least one

application communicates with the distributed file system.

The notification system notifies the corresponding

application associated with the command with the

notification system.

V. DISTRIBUTED FILE SYSTEM INCLUDING

MULTICAST RETRIEVAL

A distributed file system intelligently allocates portions

of a file system from a server to one or more clients on a

network. File system data used during power-on of a client

may be stored on the client. A retrieval of the file system

may subsequently be made to the extent the client has

capacity to store the file system. A multicast operation,

performed as a background operation on the client, may be

used to retrieve the file system. For portions of the file

system not allocated to the client, the client may still access

the file system from the server. Network bandwidth may

thus be reduced and client access to the file system may

generally be more efficient.

VI. DISTRIBUTED FILE MANAGEMENT

CACHE MANAGEMENT

One or more cache management technique(s) are

implemented in a distributed file system of a computer

network to enforce equitable use of the cache among the file

data in the cache. One of thetechnique is a timestamp

handicapping routine that functions to keep small-to-

medium files in the cache. Another technique implements a

"cache quota", which is used for decreasing the percentage

of the cache a single file may consume when there are other

data in the cache. When caching of a single file approaches

the cache quota, the file data is looks older than it really is

so that upon a subsequent file [6]I/O operation, portions of

such datas are recycled from the cache earlier than they

would have been otherwise. When caching of a single file

reaches the cache quota, the file must begin to reuse cache

from itself. The cache quota technique has the effect of

causing cached data towards the end of large files to get

recycled from cache first. A third technique helps to detect

the file I/O that is not conducive for caching, such as

sequential I/O on a file that is larger than the entire cache. A

cache policy prevents a large file from stealing cache space

by establishing a small, but specific area of cache in which

portions of such a large file may be stored and recycled

without requiring least recently used (LRU) evaluation

process.

VII. MAP REDUCE READY DISTRIBUTED FILE

MANAGEMENT SYSTEM

A map-reduce compatible distributed file system

consists of successive component layers that provide the

basis on which the next layer is built provides transactional

read-write-update semantics with file chunk replication and

huge file-create rate. A primitive storage layer (storage

pools) knits together raw block of stores and provides a

storage mechanism for the containers and transaction logs.

Storage pools are manipulated by each file servers. A

container location database allows the containers to be

found among every file servers, as well as defining

precedence among the replicas of the containers to organize

transactional updates of container contents. The Volume

facilitates control of data placement, and retention of a

variety of control and policy information. Key-value stores

related keys to data for such purposes as directories, and

container location maps in compressed files.

VIII. WEB SERVER USER AUTHENTICATION

WITH COOKIES

A method of authenticating a Web client to the Web

server connectable to a distributed file system of distributed

computing environment. The distributed computing

environments have a security service for returning of a

credential to a user authenticated to access the file system.

In response to receipt by the server of a user id and

password from the Web client, a login protocol is then

executed with the security service. In particular, when Web

client desires to make a subsequest request to the distributed

file system, the persistent client state object along with the

identifier is used in lieu of the user's id and password, which

makes the session much more safe. In this operation, the

cookie identifier is used as pointer into the credential

storage table, and the credential is then retrieved back and

used to facilitate the multiple file accesses from the

distributed file system. On the same time, the Web client

may obtain access to the Web server (as opposed to

distributed file system) documents via conventional user id

and password in an HTTP request.

IX. CONCLUSION

The purpose of a distributed file system (DFS) is to

allow many users of physically distributed computers to

share data and storage resources by using a common file

system. A typical arrangement for a DFS is a collection of

workstations and mainframes connected by a local area

Shikha Vashist et al, International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014, 235-237

© 2010-14, IJARCS All Rights Reserved 237

network. A distributed file system is a client/server-based

application that allows clients to access and process data

stored on server as if it were on their own computer.

Ideally, a distributed file system organizes file and directory

services of anindividual server into a [8]global directory in

such a way that remote data access is not location-specific

but it is identical from any client. All files are available to

all users of the global file system and organization is

anhierarchical and directory-based.

X. REFERENCES

[1]. Howard J. “An Overview of the Andrew File System”.

[2]. Sandberg R., Goldberg D., Kleiman S., Walsh D., Lyon B.,

“Design and Implementation of the Sun Network

Filesystem”.

[3]. Giacomo Cabri, Antonio Corradi, Giacomo Cabri, Antonio

Corradi, Franco Zambonelli“Experience of Adaptive

Replication in Distributed File Systems”- Copyright IEEE.

Published inthe Proceedings of EUROMICRO '96,

September 1996 at Praha, Chzech Republic.

[4]. Gerald Popek, Richard Guy, Thomas Page, John Heidemann

“Replication in Ficus Distributed File Systems”- Proceedings

of the Workshop on Management of Replicated Data,

November 1990.

[5]. ABOUZIED, A., BAJDA-PAWLIKOWSKI, K., ABADI, D.

J., SILBERSCHATZ, A., AND RASIN, A. HadoopDB: An

architectural hybrid of MapReduce and DBMS technologies

for analytical workloads. In Proceedings of the 35th

Conference on Very Large Data Bases (VLDB) (Lyon,

France, 2009).

[6]. ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY,

K, HELLERSTEIN, J. M., AND SEARS, R. BOOM

analytics: Exploring data-centric, declarative programming

for the cloud. In Proceedings of the 5th European

Conference on Computer Systems (EuroSys) (Paris, France,

2010).

[7]. A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak,

J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and

R.Wattenhofer. FARSITE: Federated, available, and reliable

storage for an incompletely trusted environment. In

Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI), Boston, MA, Dec.

2002.USENIX.

[8]. P. A. Alsberg and J. D. Day. A principle for resilient sharing

of distributed resources. In Proceedings of the 2nd

International Conference on Software Engineering, pages

562–570. IEEE Computer Society Press, 1976.

