
 Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 26

ISSN No. 0976-5697

Validation Tools in Software Testing Process: A Comparative Study

Alireza Jomeiri

Department of Engineering

Marand Branch, Islamic Azad University

Marand, Iran

Abstract: Software testing provides a means to reduce errors, cut maintenance and overall software costs. Testing has become most important

parameter in the case of software development lifecycle (SDLC). Software testing tools enables developers and testers to easily validate the

entire process of testing in software development. It is to examine & modify source code. Effective Testing produces high quality software. In

this paper, we evaluate popular validation tools in software testing process. We compare these tools with respect to the variety of testing types

such as unit testing, integration testing, functional testing, system testing, performance testing, stress testing and acceptance testing. In order to

facilitate testing tools description and provide a support for test engineers in selecting correct set of instruments according to their tasks, one can

use a tools classifier. This means that by providing necessary information regarding the system under test (SUT), required testing type to

perform and other details, a test engineer can get an output of possible testing tools that match concrete criteria. At present time some classifiers

are available. The classifier used in this paper can be employed in appropriate choice of testing tool or set of tools for a software project. On the

one hand it can be helpful for orientation in the wide subject field of software testing, reducing the amount of time required for specialists to find

a proper solution. On the other hand it can be used as a quick introduction to a fast-developing area of testing and currently available testing

tools for non-experts in this field.

Keywords: SDLC ; Software Testing ; Validation Tools ; Classifier.

I. INTRODUCTION

The current section provides a presentation of validation
activities and classification of supportive software tools, as
the justification for the second part of software testing
definition.

Software testing tools, as a part of software engineering
tools (Figure 1), are computer-based tools for assisting
software lifecycle processes. Software testing tools allow
periodic and defined actions to be automated, reducing the
repeated load on the software engineer and allowing
concentrating on creative aspects of the process. Both testing
tools and methods make software testing more systematic.

Tools are often designed to support one or more software
testing methods and are varying in scope from supporting
individual tasks to covering the complete testing cycle. As it
has been mentioned above, validation checks conformance of
any artifacts, which have been created or used during
development or maintenance, with user or customer needs
and requirements. These requirements can be documented,
and correspondingly testing tools can be used for automation
of testing activities. These tools are summarized in Table 1.

Table I. Test automation tools classification according to [1]

Tool type Description

Test generators Assist in test cases development.

Test execution
frameworks

Provide execution of test cases in a controlled
environment where the behavior of tested artifact can

be observed.

Test evaluation Support the evaluation of test execution results and
determine whether or not it conforms to the expected

results.

Test management Support for all of the testing process’s aspects.

Performance
analysis

Quantitative measuring and analyzing of software
performance in order to assess performance behavior

rather than correctness.

Figure 1. Software Engineering Tools and Methods [1]

The last item of tool classification – performance

analysis, illustrates to some extent the insufficiency of the
classification available in SWEBOK. It fails taking into
consideration, for example, functional testing tools, security
testing tools, user interface testing tools, stress testing tools
and others, which correspond to the objectives of testing as
described in SWEBOK IEEE Guide to Software Engineering

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 27

Body of Knowledge section 2.2 of Chapter 5 “Software
Testing”. Each of the mentioned tool type can be a subtype
of possible particularized or special testing tools.

In this paper, the classification is adopted from [2], where
the validation activity is divided into unit testing, integration
testing, functional testing, system testing, and acceptance
testing.

II. TESTING TOOLS CLASSIFIER

In order to facilitate testing tools description and provide
a support for test engineers in selecting correct set of
instruments according to their tasks, one can use a tools
classifier. This means that by providing necessary
information regarding the system under test (SUT), required
testing type to perform and other details, a test engineer can
get an output of possible testing tools that match concrete
criteria.

Automated test model

At present time some classifiers are available. A classifier
derived from [3] is based on a model of automated test
(Figure 2). This classifier is supposed for test automation
tools. Test automation can be defined as an activity when
software tester just executes a test and analyses the results
[4].

The automated test model used in this classifier is general
enough, so a test engineer can utilize it for modelling various
tests, which require automation. This classifier is convenient,
as the belonging of some tool to a particular group is easy to
evaluate, and it provides an unambiguous classification
results. By using the classifier, software tester can obtain a
tool or a list of tools that is most suitable for concrete tasks.

Figure 2. Automated test model schema [3].

In this model testing software is divided into testing
scenario and test data. Scenario can be treated like a
program, which includes usage of an object under test,
response correctness checking and other activities, required
for evaluating an object. Test data is used in the scenario for
running specific test cases. Test data can be divided into
input data, expected output data and auxiliary data.

An object can be a code fragment, a unit or a complete
system. Scenario is interacting with an object via object’s
interface. For example, calling object’s operations or
checking output correctness. Scenario is obtaining data from
some source, but cannot modify it, since the data is defined
separately or is generated during a test case.

Classifier’s criteria

The resulting classifier uses four criteria:
1. scenario’s data acquiring method (marked D);
2. scenario construction type (S);
3. interaction with an object method (M);
4. object’s interface type (I).
Each criterion’s possible values are depicted at Figure 3.

Figure 3. test automation tools classifier [3].

Scenario’s data acquiring method can be:
- data as scenario part (D1) – scenario contains constant

values and runs with the same data set each time;
- external data (D2) – data can be changed without

modifying scenario;
- data tables (D3) – data obtained externally, there is a

possibility of executing the scenario with a different data set;
- data generators (D4) – tool can automatically generate

testing data using a template.
Scenario construction type can be:
- using a programming language (S1) – these can be

either general purpose (S1a) or specific tool languages (S1b),
S1a can be further classified by languages (for example Java,
Python or Multiple in case of using different languages);

- using a declarative language (S2) – unlike the first class,
declarative language simplifies writing primitive scenarios,
but makes impossible creating complex scenarios;

- using visual tools (S3) – scenario is constructed with
visual interface, no text description available.

Interaction with an object method can be:
- serial execution (M1) – tool executes scenario step by

step in a single copy;
- parallel execution (M2) – tool can execute several

copies of a scenario in parallel, imitating object’s multiple
clients.

This criterion can be used for segregating testing tools
into two wide categories: functional testing tools and stress
testing tools.

Object’s interface type can be:
- user interface level (I1) – tool imitates real user

behavior, interacting with visible objects (windows, buttons,
fields);

- API level (I2) – tool imitates system’s unit, which uses
an object on functions call level, this is applicable to unit
testing tools;

- network protocol level (I3) – in this case tool is
imitating a client part of a system, interacting with an object
via network protocols

In the appendix there is a table with classification results
for test automation tools mentioned in the paper (Appendix I)
according to this classifier.

III. UNIT TESTING

Unit testing is fundamental to the way that people
develop software [5]. It refers to testing of separate system’s
units. In object-oriented systems, units typically are classes
and methods. These may also be a collection of procedures
or functions.

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 28

Unit testing tools are represented with a set of xUnit tools
which are programming language dependent (JUnit for Java
programming language, NUnit supposed for .NET, CppUnit
and CUnit for C/C++ correspondingly, and others). These
tools imitate one of the system’s modules, which use an
object under test on the level of functions calling [6]. It
corresponds to an API level (I2), previously mentioned in the
classifier description. Unit testing is usually performed by
developers and can be easily automated, providing the base
for further application regression testing – checking whether
applying small changes and errors correction does not violate
system stability. This is how unit testing during development
phase is connected with a regression testing, which is

performed at maintenance phase after applying changes with
new version release.

Classification of approaches

In order to classify unit testing software, several types of
tools have been reported in the literature. These are test
drivers and test stubs, dynamic testing tools and automatic
test cases generators [7]. They are categorized in Table 2.

Test driver is a piece of software that controls the unit
under test. Drivers usually invoke or contain the tested unit.
Therefore units under test subordinate to their respective
drivers. A stub is a piece of software that imitates the
characteristics and behavior of a necessary piece of software
that subordinates to the unit and is required for unit to
operate.

Table II. Unit testing tools classification

Unit

testing

approach

Data

acquiring

method

Interface

type

Description Tools

Manual

program
execution

Test case

contains constant
values and runs

with the same

data set each
time

API

level

The whole program is being run. Proper parameter values are derived by manual calculation in order

to invoke the required unit. The main disadvantage of this approach is that it is very time consuming,
considering that a unit is tested several times with different test data, requires writing client code.

Automated

Testing
Framework

Automated

test driver

Test case

contains constant
values and runs

with the same

data set each
time

API

level

Sometimes also called test harness. An advantage of the driver is providing a way of saving test cases

for regression testing. The unit is required to be taken out of its operational environment. As a result
certain values and procedures that are called in the unit become undefined. A test driver automatically

constructs the declaration for the undeclared variables.

But this approach requires software stubs (or mock objects), which are procedures for replacing
undefined procedures called in a unit during a test. Constructing stubs becomes main time-consuming

activity during the testing.

CUnit,

CppUnit,
JUnit.

Direct test
access

Tool can
automatically

generate testing

data using a
template

API
level

The tools can provide the same functionality as automated test drivers but without the need of
constructing stubs. It allows the direct control of the unit under test without taking the unit out of its

operational environment.

API
Sanity

Autotest

Unit testing frameworks are now available for many

languages. Some but not all of these are based on xUnit, free

and open-source software, which was originally

implemented for Smalltalk as SUnit.

TTCN-3

One of the new possibilities in unit testing was
introduced with a Testing and Test Control Notation version
3. TTCN-3 new test domains have emerged – it can be
applied at an earlier stages (during unit testing), but it
requires a mapping of the language under test into TTCN-3
to exist [8].

Furthermore, mapping must provide the same operational
semantics as mapped language. In [8], a sample C/C++ to
TTCN-3 mapping is proposed (Figure 4).

Primarily TTCN was used for conformance testing in
communicating systems sphere. With the new version
TTCN-3, usage can be expanded to new testing types and
new testing domains (Figure 5). Tools supporting TTCN-3
are provided from various software companies: OpenTTCN,
Telelogic, Testing Technologies, IBM/Rational and others.
The programming language is also used internally in such
corporations as Nokia, Motorola and Ericsson.

Advantages of TTCN-3 usage are:
- TTCN-3 procedure-based communication allows direct

interfacing to software modules.
- One testing language is used for testing systems under

test (SUTs) in different programming languages. No need to
write new test suites and test cases. Test artifacts re-usage
allows reducing testing time and costs.

- TTCN-3 techniques can be combined with traditional
approaches in unit testing.

- TTCN-3 can be edited and represented in multiple
formats (core text format, tabular format, graphical format).

 Inheritance

in C++

class Base {};

class Derived :

public Base {};

class Derived2 :

public Base {};

class SubClass :

public Derived,

Derived2 {};

 Using TTCN-3 import

module CppBase {

type record CppBase_t

{} }

module CppDerived {

import from CppBase all;

type record CppDerived_t {

CppPtr m_this optional,

CppBase_t m_base

}

}

module CppDerived2 { /* as above */ }

module SubClass {

import from CppDerived all;

import from CppDerived2 all;

type record CppDerived2_t {

CppPtr m_this optional,

CppDerived_t m_derived,

CppDerived2_t m_derived2,

}

}

Figure 4. Mapping C++ to TTCN-3 – Inheritance

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 29

Figure 5. TTCN Usage (ETSI Official TTCN-3 Web Site)

IV. INTEGRATION TESTING

Integration testing is vital to ensure the correctness of
integrated system. It is often the most expensive and time
consuming part of testing. This testing activity can be
divided into two categories:

- incremental: expanding the set of integrated modules
progressively;

- non-incremental: software modules are randomly tested
and combined.

Integration testing tools are designed for assisting in
verification of components interaction. It is important to
notice that only a result of the interaction matters, not the
details or sequence of interaction. That is the reason why
code refactoring process does not affect integration test
cases. At the same time, with introducing new modules and
functionality it is very easy to add interaction errors to a
software product. That is the reason why regression testing is
an essential part of integration testing [9].

There is a lack of studied and defined techniques or tools,
which are specifically designed for integration testing. Test
engineers are often forced to performing integration testing
in ad-hoc (without planning and documenting) and
ineffective ways that often leads to less reliable test results
and errors left in interfacing between components [10].

Top-down integration

Top-down integration is an incremental approach to
integration testing. Referring to [9] it is performed in five
steps:
1. The main control module is selected as a test driver and all
components, which are directly depending on the main
module, are substituted with stubs.
2. Subordinate stubs are replaced one by one with actual
components. The order of substitution is determined by the
selected approach (in depth or in width).
3. Tests are executed after the each component is integrated.
At this step testing tools, including automatic input data
generation tools, test drivers and results recording tools are
used. In [11] it is shown how Rational Rose is used for test
generation.
4. After each set of tests is completed, the following stub is
replaced by the real component.
5. Regression testing is conducted, in order to ensure that no
new errors were produced by the integration.

The process is repeated from step 2 until the whole
program structure is constructed.

In this approach the stubs tools are used (the same as in
unit testing). This fact explains why software testing tools,
initially designed for unit testing, are also used in integration
testing. The examples of tools used in this approach are the

above mentioned Rational Rose, xUnit frameworks and
Cantata++. But in contrast to unit testing, the uncertainty of
top-level modules behavior occurs, when most of lower
levels are substituted with stubs. In order to resolve this
uncertainty, the tester may adopt bottom-up integration
approach.

Bottom-up Integration

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.

Bottom-up integration starts from construction and
testing components at the lowest level of program. In this
approach no stub tools are used, because all the required
processing information for a component is already available
from the previous steps.

Bottom-up strategy exposes the following structure [9]:

1. Components combined into clusters (or builds),

which are designated for a specific sub function.

2. A test driver is written to control test cases input and

output.

3. The cluster is tested.

4. Then the driver is removed and cluster is integrated

into the upper level.
From this perspective, tools that are used for integration

testing again correspond to those for unit testing activity (test
drivers). This could be almost considered an extension of
unit testing. With bottom-up integration approach such tools
as Cantata++ or VectorCAST/C++ can be used, which have
been designed for both unit and integration testing.

Regression testing

Each time after new module is implemented and added
into integration testing software behavior changes. With the
changed structure of the software, new side effects might
appear. In the context of integration testing, regression
testing means execution of some tests subset that has already
been conducted, after application’s code has been modified,
in order to verify that it still functions correctly [9].

This activity can be carried out manually by executing
some tests from all test cases or using automated
capture/playback tools, which allow testers record test cases
and repeat them for following results comparison. Regression
testing often starts when there is anything to integrate and
test at all. Test cases for regression should be conducted as
often as possible. For example, after the new software build
is produced, regression testing helps to identify and fix those
code modifications that damage application functioning,
stabilizing the build (so-called baseline).

Obviously, as it claimed in [1], the compromise should be
made, considering the assurance by regression testing every
time the change is submitted and the resources required to
perform testing. As the application’s development process
continues, the regression test suite grows in order to cover
new or rewritten code. It may contain thousands of test cases,
so that automation of regression testing becomes necessary.
Regression test software structure is depicted at Figure 6.

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 30

Figure 6. Architecture of regression testing software

Regression test tool consist of:
- Regression tests automation, which allows re-

running tests as developers add new functionality.

These can be composed of scripted or low-level

functional tests or load tests that have been used

earlier to verify desired application’s behavior.

- Checkpoints management for comparison of the

application characteristics and outputs against

defined baselines. Checkpoints are used to stabilize

application build.

- Regression test management for selecting test cases

to run and execution order, because execution of all

available test cases at every step is not effective.

- Regression test analyzing to detect which recent

code modifications have broken functionality and fix

them quickly.
Detected errors can be automatically reported to a bug

tracking system after the test run.
The examples of regression testing tools are Selenium,

SilkTest, Rational Functional Tester and QEngine.

V. FUNCTIONAL TESTING

Functional testing focuses on aspects surrounding the
correct implementation of functional requirements. This is
commonly referred to as black-box testing, meaning that it
does not require knowledge of the underlying
implementation.

Functional testing ensures that every function produces
expected outcome, as it described in [12] for functionality
quality characteristic.

Functional architecture

According to [13] a functional testing tool must provide
resources, which are summarized in Table 3.

Table III. Functional testing tools resources

Resource type Description

Tests definition Constructed by recording an interaction with the SUT.
The record produces a test script, which can be written

in a common programming language or in a specific

language.
For handling data-driven test a tool must provide data

access functionality, which selects data sources for the

test. For managing test result analysis, control points are
defined.

Tests execution Test cases are automatically reproducing recorded user

interaction. Data-driven tests are performed using data
access that was set at tests definition phase.

Results

reporting

On test completion, the results are compared with the

reference state, which is based on the control points that

were set at tests definition phase.

Facilitating previously mentioned capabilities, functional
test tool relies on a repository, which stores the following
elements:

- Function library. It is the list of all available

application functions for defining test scripts.

- Object library. The list of recognized objects, which

depends on the development environment and the

platform where application is installed.

- Test scripts. These are records output, which can be

further edited. Used for reproducing tests.

- Test results, which can be further analyzed with

functional or other tools
The common structure of such application is depicted at

Figure 7 [13].

Figure 7. Functional test automation tool

Tools segmentation

Functional test tools should not be confused with test
management tools, test evaluation tools and stress testing
tools. In contrast to test management tools, functional tools
provide the recording of tests. While test management tools
are providing the capabilities for integration with other
testing types tool (including functional tools), in order to
manage test plans.

Functional test tools are focused on “black box” tests,
while test evaluation tools are designed for “white box”
technique. In contrast to test evaluation, functional test tools
do not inspect the application source code. Finally, functional
test tools can be distinguished from stress tools in
perspective that they are not measuring the response time and
the ability of the application to work under the various
workloads.

One of the most used examples of functional test
software includes Rational Robot (IBM Corporation) and
SilkTest (Borland). Rational Robot is designed for
ecommerce, ERP and client/server applications testing. It
uses SQABasic for scripts recording. SilkTest uses Java and
special purposed 4Test language for scripting. It is optimized
both for traditional and Agile development environment,
supporting faster iterative system delivery through a code-
and-test cycles.

Most of analyzed in the study application testing tools are
designed especially for functional testing. This can be
explained with ISO 9126 Standard (2001), which considers
functional quality characteristic as one of the most valuable.

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 31

VI. SYSTEM TESTING

System testing tools performs end-to-end functional tests
across software units, ensuring that all functions combine for
the desired business result. The main problem in this testing
is “finger-pointing”: when an error is uncovered, it is hard to
localize the responsible system element [9]. System testing is
a series of various tests with the main purpose of fully
exercising the system.

System testing is actually a series of different tests whose
primary purpose is to fully exercise the computer-based
system in [14] this activity is split into recovery, security,
stress and performance testing.

Security testing

Security testing relies on human expertise much more
than an ordinary testing, so full automation of the security
test process is less achievable than with other testing types
[15]. Nevertheless, there is a significant number of black box
test tools designed for testing application security issues.
According to [15], these tools are aimed at testing:

- input checking and validation;

- session management;

- buffer overflow vulnerabilities;

- injection flaws.
Among the existing tools, there are subsets focused on

specific security areas: database security, network security
and web application security.

Database security test tools designed for identifying
vulnerabilities, which can be results of an incorrect database
configuration or poor implementation of the business logic
accessing the database (SQL injection attacks). Database
scanning tools are usually embedded into network security or
web application security.

Network security tools generally allow network scanning
and identifying vulnerabilities that give access to insecure
services. These tools can also be referred to as penetration
testing tools.

Web application security tools detect security issues for
applications, which can be accessed via Internet. These tools
are identifying abnormal behavior within applications
available over specific ports, and can be used for Web
Services based application technologies.

The technologies used in security testing tools can be
divided, based on its functionality. The results are
summarized in Table 4.

One of the most used examples of security testing tools
include HP WebInspect, IBM Rational AppScan and Nikto,
which were designed for automating Web application
security testing.

Table IV. Security testing tools functionality

Functionality type Description

Fuzzy injection Injection of random data at various software

interfaces.

Exploratory testing Testing which is conducted without any specific
expectation about the results.

Syntax testing Generating a range of both legal and illegal inputs,

usually considering some knowledge of underlying

protocols and data formats used by the software.

Monitoring program

behavior

Check how program responds to test inputs.

Performance and stress testing

Performance tests are often coupled with stress testing
[9]. Stress testing is conducted to evaluate a system at the
maximum design load or beyond the specified limits, while

performance testing aimed at verifying that the software
meets the specified performance requirements [1].

This testing activity is difficult, if possible at all, to
perform manually due to a need of imitating a certain
workload. The main principle of operation of performance
and stress testing tools is simulation of real user with
“virtual” users. The tool then gathers the statistics on virtual
users’ experience. These types of software are often
distributive in nature. In general performance testing tools
can be divided into load generators, monitors and
frameworks (such as LoadRunner, Jmeter, soapUI), and
profilers (such as JProbe, Eclipse TPTP), which are used for
finding performance bottlenecks, memory leaks and
excessive memory consumption.

VII. ACCEPTANCE TESTING

Acceptance testing is aimed to explore how well users
interact with the system, whether customer is satisfied with
the results. It is final testing phase before deployment, but the
tests themselves need to be designed as early as possible in
the development life cycle. This makes sure that customer’s
expectations are appropriately defined so that the system will
be built in accordance with them. From this point of view
acceptance test cases are derived from user requirements and
the results of testing is acceptance or rejection of the product.

This testing activity differs from others in aspect that it
may or may not involve the developers of the system, and
can be performed by the customer [1]. If some errors are
identified during acceptance testing, after developers correct
them or after any change, the customer should go through
acceptance tests again. In this manner, acceptance testing can
be compared with regression testing [16]. It means that, as
the project grows the number of acceptance tests increases
(the same as with regression testing), because the customer
gets better understanding of the final product, so the
acceptance testing tools are required. Developers write unit
tests in order to determine if the code is doing things right.
Customers write acceptance tests in order to determine if the
system is doing the right things.

 Acceptance test driven development in Agile

One of the inventions in Agile methodology was the test-
driven development (TDD), when the tests are written before
writing the code. Then those tests are used for evaluating
development process. In [17, 18] it is argued the benefits of
the extension of TDD to the requirements/specification level,
when the requirements are written in form of executable
acceptance tests, so-called executable acceptance test driven
development (EATDD).

It imposes that a feature is not specified until its
acceptance test is written, and the feature is not done until all
its acceptance tests pass [19]. EATDD also involves creating
tests before actual code. Acceptance tests specify the
behavior the software should have.

In [20], the inventor of Framework for Integrated Test (or
“Fit”) Ward Cunningham advocates usage of spreadsheets
for conducting acceptance tests. Spreadsheets provide the
customer with the ability to write acceptance tests and enter
data, which can be exported to text format. These data can be
used by a development team for creating test scripts.

There are several tools for acceptance testing supporting
EATDD. One of those is the above mentioned open source
framework Fit, which was developed as an extension for
xUnit environment, and supports most of modern
programming languages (.Net, Java, Python, Ruby, C++,

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 32

etc). FitNesse is Fit-based framework which was designed to
support acceptance test automation.

The customer can write tests in a form of editing HTML
tables, supporting it with an additional text. The developers
can write supporting code (code fixtures) as the
corresponding system feature has been implemented. Code
fixtures can be regarded as a bridge between these tables and
the SUT. Then the tool can parse the tables, execute tests and
provide outputs as a modified HTML document. When
requirements are captured in a format supported by a test
framework, the acceptance tests then become a form of
executable requirements [17].

The EATDD forces software stakeholders to come to an
agreement about the exact behavior of the resulting product.
It allows the development to be driven by the requirements,
rather than letting requirements perspective out of sign as the
development processes. Acceptance test driven development
directly links requirements and QA [18].

VIII. DISCUSSION

The software testing activities study was conducted
focusing on tools description and common features
concerning each of the activity. The software testing tools
were classified according to the model that was described in
section 3.1.

48 testing tools have been collected and classified. Tools
classification is summarized in the appendix (Appendix I).
The resulting distribution of the tools over testing types is
presented on Figure 8.

Figure 8. Testing tools for application testing by testing types

The above results showed that there is a large number of

testing tools intended for functional, unit and performance
testing. For functional testing there is a number of ways to
ensure that a SUT meets functional requirements. Unit
testing is a necessary for large systems and it can be
considered as the basic phase in testing. While unit testing
allows parallelism in testing process by presenting the
opportunity to test multiple modules simultaneously and

therefore can be easily automated. As for performance and
stress testing, these activities are almost impossible to
conduct manually and intended for an automatic execution
by its nature, so there is a wide area for such type of tools
usage.

At the same time, the smallest number of classified tools
is intended for integration testing. This is due to a fact that
unit testing frameworks often can be used for an integration
testing, if it is regarded as an incremental unit testing.

It was rather difficult to identify system testing tools,
because this activity is often split into many activities, and
system testing is called the most difficult and misunderstood
testing process [16]. This makes the right choice of system
testing tools vital, because of the severity of errors, which
can be detected at this phase.

Furthermore, it is worth noticing that an acceptance
testing activity is not well yet automated. Obviously there is
a lack of tools for this type of testing. So the tool usage for
both system and acceptance testing is quite restricted. These
comments can be taken into account when building a set of
tools that overpass the borders in current software testing
automation.

IX. CONCLUSION

The study illustrated that there is a lack of studies
directed to overview and classify software testing tools. Even
though there is an understanding between researchers that the
correct selection of tools for software testing is one of the
vital elements in assuring the quality of the whole project.
Most of papers in the field of software testing are
concentrated on testing methods description with no direct
connection to tools, which are based on those methods.

The practitioner’s approach to software testing requires
more information about currently available testing tools.
With the growing software complexity and shorter
development cycles, it is becoming evident that manual
testing cannot provide quality level required for the market.
As well as wrong testing tools choice for the project results
in inadequate quality measurements or replacement of the
tools during the project. Both wrong selection and change of
testing tools during a development process affect software
quality and as a result the project’s success.

The classifier used in this paper can be employed in
appropriate choice of testing tool or set of tools for a
software project. On the one hand it can be helpful for
orientation in the wide subject field of software testing,
reducing the amount of time required for specialists to find a
proper solution. On the other hand it can be used as a quick
introduction to a fast-developing area of testing and currently
available testing tools for non-experts in this field.

As the conclusion more classification of tools may be
needed. These classifications can be applied to testing a
various set of projects depending on software type and
development methodology.

X. REFERENCES

[1] SWEBOK (2004), IEEE Guide to Software Engineering
Body of Knowledge.

[2] Taipale, O. (2007), Observations on software Testing
Practice; Doctor of science thesis; Lappeenranta
University of Technology.

[3] Suhorukov, A. (2010), Targeted training for the model
and classifier for automate testing tools, Educational

Technology and Society, January 2010, vol. 13, no. 1, pp.
370-377, in Russian.

[4] Fewster, M., Graham, D. (1999) Software Test
Automation: Effective use of test execution tools, ACM
Press, New York.

[5] Sen, A. (2010), Get to know CppTest, IBM Corporation.

[6] Beck, K. (2003), Test-Driven Development By Example.
Addison-Wesley, Boston.

Alireza Jomeiri, International Journal of Advanced Research in Computer Science, 5 (7), September–October, 2014,26-33

© 2010-14, IJARCS All Rights Reserved 33

[7] DeMillo, R.A., McCracken, W.M., Martin, R.J. (1987),
Software testing and evaluation, Banjamin/Kummings
Publishing Company, Inc., California.

[8] Nyberg, A. & Kärki, M. (2005), Introduction to the
C/C++ to TTCN-3 mapping, Nokia.

[9] Pressman, R. S. (2000), Software engineering: a
practitioner's approach, McGraw-Hill, NY.

[10] Offutt, A., Abdurazik, A. and Alexander R. (2000), An
Analysis Tool for Coupling-based Integration Testing,
The Sixth IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS ’00), pp. 172–
178

[11] Hartmann, J., Imoberdorf, C. and Meisinger, M. (2000),
UML-Based Integration Testing, Proceedings of the 2000
ACM SIGSOFT international symposium on Software
testing and analysis, pp. 60-70.

[12] ISO/IEC (2001), ISO/IEC 9126-1, Software engineering -
Product quality -Part 1: Quality model.

[13] Yphise (2002), Functional test automation tools. Software
Assessment Report, Technology Transfer.

[14] Beizer, B. (1984), Software System Testing and Quality
Assurance, Van Nostrand Reinhold.

[15] Michael, C., Radosevich, W. (2009), Black Box Security
Testing Tools, Cigital Inc.

[16] Myers, G. J. (2004), The Art of Software Testing, Second
Edition, John Wiley & Sons, NY.

[17] Hendrickson, E. (2008), Driving Development with Tests:
ATDD and TDD, Quality Tree Software, Inc.

[18] Park, S., Maurer, F. (2008), The Benefits and Challenges
of Executable Acceptance Testing, University of Calgary.

[19] Steindl, C. (2007), Test-Driven Development at the
Acceptance Testing Level, Catalyst.

[20] Mugridge, R., Cunningham, W. (2005), Fit for
Developing Software: Framework for Integrated Tests.
Addison-Wesley.

