
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 242

ISSN No. 0976-5697

Software Quality Improvement using Design Patterns

Ms. Renu Bala

Department of Computer Science and Application

Chaudhary Devi Lal University

Sirsa, Haryana, India

Mr. Kapil Kumar Kaswan

Department of Computer Science and Application

Chaudhary Devi Lal University

Sirsa, Haryana, India

Abstract— Design patterns usually describe abstract systems of interaction between classes, objects, and communication flows. So, a description
of a set of interacting classes that provide a generalized solution framework to a generalized/specific design problem in a specific context can be

said as a design pattern. There are many design patterns that can be used to solve real-life problems, but it remains very difficult to design,
implement and reuse software for complex applications. Examples of these include enterprise system, real-time market data monitoring and
analysis system. Design patterns provide an efficient way to create more flexible, elegant and ultimately reusable object-oriented software. Each
pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever doing it the same way twice”. The solutions of the given problems
are expressed in terms of objects and interfaces. Among 23 design patterns, Strategy pattern defines an interface common to all supported
algorithms. Context uses this interface to call the algorithm defined by a Concrete Strategy. In accounting framework one thing is mostly needed
that is tax calculation. To solve this problem author in the current study has chosen the strategy pattern.

Keywords: Design Pattern, Context, Abstract Factory,Object.

I. INTRODUCTION

A design pattern is a generic solution that has been

observed in multiple instances to help resolve a particular

problem within a known context. Design patterns provide an

efficient way to create more flexible, elegant and ultimately

reusable object-oriented software. Design methods are

supposed to promote good design, to teach new designers

how to design well and to standardize the way designs are

developed. Typically, a design method comprises a set of

syntactic notations usually graphical and a set of rules that

govern how and when to use each notation. It will also
describe problems that occur in a design, how to fix them,

and how to evaluate a design. Each pattern describes a

problem which occurs over and over again in our

environment, and then describes the core of the solution to

that problem, in such a way that you can use this solution a

million times over, without ever doing it the same way twice

[1]. The solutions of the given problems are expressed in

terms of objects and interfaces. Design patterns are being

increasingly used in software design. Design patterns are a

good means for recording design experience as they

systematically name, explain and evaluate important and
recurrent designs in software systems. They describe

problems that occur repeatedly, and describe the core of the

solution to that problem, in such a way that this solution can

be used many times in different contexts and applications. A

good design is a good solution regardless of the technology.

And no matter how good the technology may be, it is only

as good as its design, and specifically the implementation of

that design. In fact, a great design with older technology

may still be good, but a bad design with new technology is

usually just bad. A design pattern is a form of design

information and the design that worked well in past will be

used in future in any application similar to existing
application which uses these designs. These design

information can help both the experienced and the novice

designer to recognize situations in which these designs can

be reused. There are three categories of design patterns:

Creational, structural and Behavioral.

II. NET FRAMEWORK

A .net is a new software platform for the desktop and

the Web. The .NET Framework is an integral Windows

component that supports building and running the next

generation of applications. The .NET Framework has two

main components: the common language runtime and the

.NET Framework class library. The common language

runtime is the foundation of the .NET Framework [2]. The
.NET Framework is designed to fulfill the following

objectives:

a. To provide a consistent object-oriented programming

environment whether object code is stored and

executed locally, executed locally but Internet-

distributed, or executed remotely.

b. To provide a code-execution environment that

minimizes software deployment and versioning

conflicts.

c. To provide a code-execution environment that

promotes safe execution of code, including code
created by an unknown or semi-trusted third party.

d. To provide a code-execution environment that

eliminates the performance problems of scripted or

interpreted environments.

e. To make the developer experience consistent across

widely varying types of applications, such as

Windows-based applications and Web-based

applications.

f. To build all communication on industry standards to

ensure that code based on the .NET Framework can

integrate with any other code [2].

Renu Bala et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,242-246

© 2010-14, IJARCS All Rights Reserved 243

III. ABSTRACT FACTORY PATTERN

The abstract factory pattern is a design pattern that
provides a way to encapsulate a group of individual factories

that have a common theme. This pattern provides interfaces

for creating families of related or dependent objects without

specifying their concrete classes. Modularization is a big

issue in today's programming. Programmers all over the

world are trying to avoid the idea of adding code to existing

classes in order to make them support encapsulating more

general information. Take the case of an information

manager which manages phone number. Phone numbers

have a particular rule on which they get generated

depending on areas and countries. If at some point the

application should be changed in order to support adding
numbers form a new country, the code of the application

would have to be changed and it would become more and

more complicated. In order to prevent it, the Abstract

Factory design pattern is used. Using this pattern a

framework is defined, which produces objects that follow a

general pattern and at runtime this factory is paired with any

concrete factory to produce objects that follow the pattern of

a certain country. In other words, the Abstract Factory is a

super-factory which creates other factories (Factory of

factories) the classes that participate to the Abstract Factory

pattern are:
a. AbstractFactory - declares an interface for

operations that create abstract products.

b. ConcreteFactory - implements operations to create

concrete products.

c. AbstractProduct - declares an interface for a type of

product objects.

d. Product - defines a product to be created by the

corresponding ConcreteFactory; it implements the

AbstractProduct interface.

e. Client - uses the interfaces declared by the

AbstractFactory and AbstractProduct classes.

The Abstract Factory pattern has both benefits and
flaws. On one hand it isolates the creation of objects from

the client that needs them, giving the client only the

possibility of accessing them through an interface, which

makes the manipulation easier. The exchanging of product

families is easier, as the class of a concrete factory appears

in the code only where it is instantiated. Also if the products

of a family are meant to work together, the Abstract Factory

makes it easy to use the objects from only one family at a

time. On the other hand, adding new products to the existing

factories is difficult, because the Abstract Factory interface

uses a fixed set of products that can be created. That is why
adding a new product would mean extending the factory

interface, which involves changes in the AbstractFactory

class and all its subclasses. This section will discuss ways of

implementing the pattern in order to avoid the problems that

may appear.

A. Factories as singletons:

An application usually needs only one instance of the

ConcreteFactory class per family product. This means that it

is best to implement it as a Singleton.

B. Creating the products:

The AbstractFactory class only declares the interface

for creating the products. It is the task of the
ConcreteProduct class to actually create the products. For

each family the best idea is applying the Factory Method

design pattern. A concrete factory will specify its products

by overriding the factory method for each of them. Even if

the implementation might seem simple, using this idea will

mean defining a new concrete factory subclass for each

product family, even if the classes are similar in most
aspects.

For simplifying the code and increase the performance the

Prototype design pattern can be used instead of Factory

Method, especially when there are many product families. In

this case the concrete factory is initiated with a prototypical

instance of each product in the family and when a new one

is needed instead of creating it, the existing prototype is

cloned. This approach eliminates the need for a new

concrete factory for each new family of products.

C. Extending the factories:

The operation of changing a factory in order for it to

support the creation of new products is not easy. What can

be done to solve this problem is, instead of a CreateProduct

method for each product, to use a single Create method that

takes a parameter that identifies the type of product needed.

This approach is more flexible, but less secure. The problem

is that all the objects returned by the Create method will
have the same interface, that is the one corresponding to the

type returned by the Create method and the client will not

always be able to correctly detect to which class the instance

actually belongs[3].

IV. RELATED WORK

There are various design patterns that can be used to

solve any of the industrial application. Here in this paper

work, Singleton pattern, Abstract factory pattern is used to

build a framework. Using these patterns, design solution of

the industrial problem will be described. The father of the

pattern concept, proposed a description template stating nine

essential pattern elements. These patterns element describes

the design patterns effectively; also describe how these

patterns are useful to solve the problem. Industrial

applications typically require different kinds of interfaces to

the data they store and the logic they implement are data
loaders, user interface and integration gateways and others.

Instead of using for different purpose, these interfaces often

need common interactions with the application to access and

manipulate its data and invoke its business logic. These

interactions may be complex, involving transaction across

multiple resources and the coordination of several responses

to an action. These interfaces decide the interaction between

different layers of the application; how user interacts with

middleware layer and the database layer. The framework is

implemented in .Net. As we are using the design patterns to

build this framework hence the developer can use this
framework to build any kind of industrial application and

can implement it in any other programming language using

object-oriented concepts. Using the concept of design

patterns, now we are proposing a class diagram of an

industrial application. There are various classes with their

methods and properties [5].

Renu Bala et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,242-246

© 2010-14, IJARCS All Rights Reserved 244

V. ANALYZE ABSTRACT FACTORY PATTERN BY

REFLECTION

Reflection is simply a mechanism that allows

components or classes to interrogate each other at run time

and discover information that goes beyond the information

gleaned from the publicly available interfaces the objects

expose. In essence, reflection enables objects to provide

information about themselves (metadata). The common

language runtime loader manages application domains. This

management includes loading each assembly into the

appropriate application domain and controlling the memory

layout of the type hierarchy within each assembly. The use

of reflection in current study is to create an instance of a

class once (Singleton pattern) and used that instance forever
in that application. The reflection methods works as a

singleton pattern in this framework.

Figure: 1

VI. SIMULATION OF ABSTRACT FACTORY DESIGN

PATTERN

The abstract factory pattern is a design pattern that

provides a way to encapsulate a group of

individual factories that have a common theme. This pattern

provides interfaces for creating families of related or

dependent objects without specifying their concrete classes.

In this research paper, we are building a framework

using patterns that can be used to solve various industrial

designs problem. This framework can be used by various

programmers but its implementation may vary. There are

various form created under this framework.

Industrial Application Model describes main classes

and relationships which could be used during analysis phase

to better understand domain area for any kind of Industrial

Application.
ViewIfc interface is a user interface through which

users can interact to the application model. There is a state

class through which a user can decide in which state the

ViewIfc will open the application i.e. to edit or to delete the

entry in the application.

RequestHandler class is an intermediate class between

the ViewIfc and WorkerIfc that how a user can add a new

worker or can use existing workers. There are two interfaces

which implements the WorkerIfc that are MasterWorkerIfc

and TransactionWorkerIfc. Any action performed on these

two interfaces is stored in Action enumeration.

All the workers stored in the DBInteraction
enumeration. All the actions that are performed on

DBInteraction are stored in DbActions enumeration.

The form ViewIfc interface form. Item form is Graphic

user Interface (GUI) for interacting with user. Every GUI

implements viewIfc Interface. Method GetWorker provides

the workers by using singleton class object RequestHandler.

The state enumeration describes the state in which it is

open. There are various methods available in the state

enumerations that are Add, Edit, Delete, and Query. That

defines whether to add new records or edit or delete existing

records.
The ViewIfc interface is a user interface form from

which user can interact with application. There are three

methods in the ViewIfc interface that are FillBag,

GetWorker, and SetFilter. The FillBag method is used to fill

the entries in the database. We can use the GetWorker

method of ViewIfc interface to call the RequestHandler

class. RequestHandler is a singleton class. It contains static

reference variable minstance of type RequestHandler.

AddEventHandler method uses reflection to make

object of worker classes and add them into _eventhandler

collection using Actions enum as parameter and return the

worker.
The framework is inspired from MVC model (Model,

View, and Controller). The model consists of application

data and business rules, and the controller mediates input,

converting it to commands for the model or view.

A view can be any output representation of data, such as a

chart or a diagram. With the responsibilities of each

component thus defined, MVC allows different views and

controllers to be developed for the same model. It also

allows the creation of general-purpose software

frameworks to manage the interactions.

Renu Bala et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,242-246

© 2010-14, IJARCS All Rights Reserved 245

Figure:2 Framework of industrial application

The ViewIfc interface is a user interface form from

which user can interact with application. There are three

methods in the ViewIfc interface that are FillBag,

GetWorker, and SetFilter. The FillBag method is used to fill

the entries in the database. We can use the GetWorker

method of ViewIfc interface to call the RequestHandler

class. RequestHandler is a singleton class. It contains static

reference variable minstance of type RequestHandler.

Figure 3 The tendencies of pattern line density and maintainability.

Table 1. The tendency of the quality attributes in case of design pattern changes

Revision (r) pattern Pattern line

density(PDensr)

maintainablity(Mr) testability analyzability stability Change

ability

531 +3 ↑ ↑ ↑ ↑ ↑ ↑

574 +1 ↑ ↑ ↑ ↑ ↑ ↑

609 -1 ↓ - - - - -

716 +1 ↓ ↑ ↑ ↑ ↑ ↑

758 +1 ↑ ↑ ↑ ↑ ↑ ↑

Renu Bala et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,242-246

© 2010-14, IJARCS All Rights Reserved 246

VII. CONCLUSION

Although the belief of utilizing design patterns to create

better quality software is fairly widespread, there is

relatively little research objectively indicating that their

usage is indeed beneficial. In this paper we try to reveal the

connection between design patterns and software

maintainability. It is very hard to understand better what the

patterns are and how they relate to each other. At this point

there is a fundamental picture as reacting to an event to
produce accounting entries. We used our probabilistic

quality model for estimating the maintainability. We found

that every introduced pattern instance caused an

improvement in the different quality attributes. Moreover,

the average design pattern line density showed a very high,

0.89 Pearson correlations with the estimated maintainability

values. Design patterns are outstanding communication tool

and help to make the design process faster. This allows

solution providers to take the time to concentrate on the

business implementation. Patterns help the design to make it

reusable. Reusability not just applies to the component, but
also the stages of the design that must go from a problem to

final solution. The ability to apply a pattern that provides a

repeatable solution is worth the little time spent learning

formal patterns. There are some promising results showing

that applying design patterns improve the different quality

attributes according to our maintainability model. In

addition, the ratio of the source code lines taking part in

some design patterns in the system has a very high

correlation with the maintainability. However, these results

are only a small step towards the empirical analysis of

design patterns and software quality [4].Design patterns

shall support reuse of a software architecture in different
application domains as well as reuse of flexible

components[6].

VIII. REFERENCES

[1] http://blogs.infragistics.com/blogs/ux/archive/2009/02/03/

what-is-a-design-pattern-and-why-use-them-for-

quince.aspx

[2] Bertrand Meyer, Karine Arnout, Componentization: The

Visitor Example, to appear in Computer (IEEE), 2006.

[3] http://www.oodesign.com/abstract-factory-pattern.html

[4] P´eter Heged˝us, D´enes B´an, Rudolf Ferenc, and Tibor

Gyim´othy University of Szeged, Department of Software

Engineering ´Arp´ad t´er 2. H-6720 Szeged, Hungary

{hpeter,zealot,ferenc,gyimothy}@inf.u-szeged.hu

[5] Meyer, Bertrand "Componentization: The Visitor

Example". IEEE computer (IEEE) 39 (7): 23–30.

[6] Jurgen Dorn and Tabbasum Naz,Institute of Information

Sysytems 184/2 Technicla University Vienna

,Favoritenstrabe 9-11, Vienna A-1040, Austria

{dorn/naz}@dbai.tuwien.ac.at

http://en.wikipedia.org/wiki/Bertrand_Meyer
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

