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Abstract: Biometric based recognition systems are now effectively used in industries, educational institutions and banks for reliable personal 
identification. Among various biometric characteristics hand based biometrics has received greater attention among researchers because of its 
stability, feature richness, reliability and high user acceptability. In this paper, the finger knuckle print which refers to the inherent skin patterns 
that are formed at the joints in the finger back surface is used to extract the features. Speeded Up Robust features (SURF) and Empirical mode 
decomposition (EMD) are used to extract features from finger knuckle print. Score level fusion is used to combine the matching scores using the 
sum rule.The performance of the proposed algorithm is evaluated on the PolyU database. The proposed system is combined with the previous 
work using palmprint for personal identification. A multimodal system is thus developed based on score level fusion of palmprint and finger 
knuckle print. It provides a low value of false acceptance rate, false rejection rate and a high genuine acceptance rate in comparison to the 
unimodal system using palmprint or finger knuckle print. 
 
Keywords: Finger knuckle print, score level fusion, Speeded up Robust Features, Empirical mode decomposition, Euclidean distance. 

 
I. INTRODUCTION  

Biometrics is the art of identifying a person based on the physical 
or behavioral characteristics possessed by the person [1]. Different 
physical or behavioral characteristics like fingerprint, face, iris, 
palmprint, hand geometry, voice, gait, signature etc., have been 
widely used in biometric systems. Among these traits hand based 
biometrics such as palmprint, fingerprint and hand geometry are 
very popular because of their high user acceptance. Recently it has 
been found that image patterns of skin folds and creases, the outer 
finger knuckle surface is highly unique and this can serve as 
distinctive biometric identifier [2]. It has got more advantages 
when compared to finger prints. First it is not easily damaged since 
only the inner surface of the hand is used widely in holding of 
objects. Secondly it is not associated with any criminal activities 
and hence it has higher user acceptance. Third it cannot be forged 
easily since people do not leave the traces of the knuckle surface 
on the objects touched/ handled. Also the finger knuckle print 
(FKP) is rich in texture and has a potential as a biometric identifier.  

II. EXISTING WORK 

Woodard and Flynn [3] are the first scholars who made use of the 
finger knuckle surface in their work. They set up a 3D finger back 
surface database with the Minolta 900/910 sensor. This sensor 
captures both a 640x 480 range image and a registered 640x480 24 
bit color intensity image nearly simultaneously. They used the 3D 
range image of the hand to calculate the curvature and shape based 
index surface representation of the index, middle and ring fingers. 
Normalized correlation coefficient was used for similarity 
comparison. The disadvantage in their system is that the size and 
cost of the sensor used in data acquisition is large and costly and 
the time consuming data acquisition limits its use in practical 
applications. Next Kumar and Ravikanth [2] developed a system 
for acquiring the finger back surface images. This imaging system 
uses a digital camera focused against a white background under 
uniform illumination. The back area of the whole hand was 
captured and then preprocessing steps was used to extract the 
finger back surface. Appearance based techniques like PCA, LDA 
and ICA was used for feature extraction and matching. Next Zhang 
and his team [4] in their work development a system for FKP 

acquisition. The figure 1(a) shows the FKP recognition system, 
Figure 1(b) shows the captured image and figure 1(c) the extracted 
ROI (Region of Interest) which is now publicly available in the 
PolyU database. Gabor filtering is used from which the orientation 
information is extracted and represented as Competitive Code. 
Angular distance is used for matching and an EER of 1.09% was 
achieved. Next the author [5] developed an Improved Competitive 
and Magnitude code by extracting the orientation and magnitude 
information using Gabor filters.These features are used to set up a 
code map based on the competitive code. Angular distance and 
magnitude distance is computed for the code maps during 
matching. The two distances are fused and the minimum of the 
resulting distance is considered to be the final distance for 
matching and an EER of 1.475% was achieved. Next he developed 
the Riesz Compcode [6] which integrates the advantages of Riesz 
transform and Compcode. Normalized Hamming distance is 
employed for matching and EER1.912%. Le-quing [7] proposed a 
robust FKP feature presentation and matching method based on 
Speeded-Up Robust Features (SURF). In matching the distance of 
the closest neighbor that of the second closest neighbor is 
compared and all matches in which the distance ratio is less than 
0.6 is retained. Thus the initial tentative correspondence between 
two key point set of training image and template are got. Then 
RANdom SAmple Consensus (RANSAC) is employed to establish 
a geometric constraint for removing the false matching. The 
amount of final matched point pairs is referred to decide the 
consistency of the palm images. This method is invariant to 
rotation, scale and view point changes which proves its robustcity. 
The method provides an accuracy of 90.63% for verification and 
96.91% for identification. 
Zhang in his work [8] proposed Local Global Information 
Combination (LGIC) technique where the competitive coding 
scheme was used to represent local information and Fourier 
coefficients was taken as global feature. For matching two 
competitive code maps, angular distance based on normalized 
Hamming distance is used. Band Limited Phase Only Correlation 
(BLPOC) is used to measure the similarity between Fourier 
transforms of the images. The final distances were fused and an 
EER of 0.402% is achieved. The author in his work [9] )used a 
bank of Gabor filters to extract the orientation information with 
five different scales and eight different orientations and a 
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2) Interpolate using cubic spline interpolation among the 
local maxima and local minima to get the upper envelope 
ܺ௨௣ሺݐሻ and the lower envelope ௟ܺ௢ሺݐሻ. 

3) The mean of the upper and lower envelope is computed 
using the relation  

݉ሺݐሻ ൌ
௑ೠ೛ሺ௧ሻା௑೗೚ሺ௧ሻ

ଶ
                  (2) 

    Then subtract m(t) from ܺሺݐሻ )to get the signal    ଵܺሺݐሻ  
where 

 ଵܺሺݐሻ ൌ ܺሺݐሻ െ ݉ሺݐሻ                         (3) 
                                                                        Next check if 
   ଵܺሺݐሻ obeys the criteria for an IMF, otherwise replace ܺሺݐሻ 
by    ଵܺሺݐሻ and repeat the above steps to get the IMF. 

 
 The first IMF is given by ܥଵሺݐሻ ൌ    ଵܺሺݐሻ.To compute the next 
IMF ܥଵሺݐሻ is subtracted from the original signal ܺሺݐሻ to get the 
residue ݎሺݐሻ ൌ  ܺሺݐሻ െ  ሻ.The sifting process is then continuedݐଵሺܥ
until the final residue is a function that satisfies the condition, of 
extrema is less than three. Once the the total number 
decomposition process is complete the original signal can be 
reconstructed from 
 

ܺሺݐሻ ൌ ∑ ሻݐ௜ ሺܥ ൅ ௡ݎ
௡
௜ୀଵ ሺݐሻ                     (4)                                                       

 
where n is the total number of IMF’s and ݎ௡ሺݐሻ represents the final 
residue. In this work, six IMF’s are computed including the 
residue. The figure below shows the extracted IMF and the residue. 
The first IMF contains the highest frequency component and the 
highest IMF the lowest frequency component. In this work only the 
residue is used to represent the feature vector. 

IV. MULTIMODAL RECOGNITION 

In our previous work [19] a biometric system for personal 
identification based on palmprint is developed. Features are 
extracted using Gabor filter called Multiple Orientation Local 
Gabor XOR (MOLGXP) feature and Principal Component 
Analysis (PCA) and the performance is evaluated on the PolyU 
database [20]. In this paper a unimodal system based on finger 
knuckle print is developed. Next a multimodal system using 
palmprint and FKP is developed. The block diagram of the 
multimodal system is shown in figure 3 below.  

 
Figure 3 Block diagram of the multimodal recognition system 

V. MATCHING AND FUSION 

For the FKP images the features are computed using SURF and 
EMD and stored in the database. During the recognition phase, the 
features are computed for the given test image and compared with 
the templates stored in the database. For SURF feature matching, 
the test image is compared with the master template in the database 
using nearest neighbor ratio. Let S and T represent the vector array 
of the keypoint descriptor for the images in the database and the 
teat image as given below 

ܵ ൌ ሺݏଵ, ,ଶݏ ଷݏ … …  ௠ሻ                                 (5)ݏ
          ܶ ൌ ሺݐଵ, ,ଶݐ ଶݐ … …  ௡ ሻ                                  (6)ݐ

                                                                                           

Where ݏ௜ and ݐ௝ are the descriptor for the keypoint in the database 
and the test image.  The nearest neighbor ratio is computed using 
the relation 

   ܴ ൌ
ฮ௦೔ି௧ೕฮ

ԡ௦೔ି௧ೖԡ
                                          (7) 

ฮݏ௜ െ ௜ݏ௝ฮ and ԡݐ െ  ௞ԡ represent the Euclidean distance betweenݐ
௜ݏ   and its first nearest neighbor ݐ௝  and that between ݏ௜  and its 
second nearest neighbor ݐ௞. A match is said to be found for ݏ௜  with 
 .௝ if the following condition is satisfiedݐ

௜ݏ ൌ ൜
ܴ ݂݅             ݄݀݁ܿݐܽ݉ ൏ ݈݀݋݄ݏ݁ݎ݄ݐ
ܴ ݂݅     ݄݀݁ܿݐܽ݉ ݐ݋݊ ൐  (8)              ݈݀݋݄ݏ݁ݎ݄ݐ

   Once a match is found for a keypoint in ܵ  and  ܶ  , then the 
matched keypoint is removed and the process is repeated till no 
more matches is found. The total number of matches thus found 
gives the matching score. Similarly Euclidean distance is used for 
EMD feature matching. The scores generated from the matchers lie 
in different range. Hence score normalization is necessary before 
fusing the scores. In this work Min-max normalization is used 
which transform the sores to a range [0, 1] [20]. Let ݏ represent the 
matching score from a set ܵ  of the matching scores from a 
particular matcher and let the normalized score be represented as ݊  
and is given by 

݊ ൌ
௦ି୫୧୬ ሺࡿሻ

୫ୟ୶ሺௌሻି୫୧୬ ሺௌሻ
                             (9) 

   where maxሺܵሻ  and  min ሺܵሻ  are the maximum and minimum 
scores from the given set S. 

VI. EXPERIMENTAL RESULTS 
 

The performance of the SURF, EMD and their fusion are evaluated 
on the publicly available PolyU FKP database [22].The database 
contains a total of 7920 FKP images collected from 165 individuals 
in two different sessions. In each session 6 images from left index 
finger, left middle finger, right index finger and right middle finger 
are collected from each user. Thus each user provided 6*4=48 
images. The average time difference between first and second 
session was 25 days. In the experiments conducted four images 
collected in the first session was used as training set and rest of the 
images as testing set. The figure shows the output obtained for 
SURF feature extraction. Figure 4(a) shows the SURF keypoints 
and figure 4(b) SURF keypoint matching. The output for EMD 
feature extraction is shown in figure. To extract the EMD feature 
the FKP image is first resized to 60×60 then EMD algorithm is 
applied. For each of the extracted ROI five IMF’s and the residue 
are obtained. Each of these IMF’s contains 3600 feature 
components. The Figure 5 shows the five IMF components and 
residue obtained after the application of the EMD algorithm on the 
original FKP signal. For each of these signals only the first 900 
components are shown. In this work only the 3600 components 
corresponding to the residue are stored in the database as the 
feature vector for each ROI. 

 

                     
              (a)                                 (b) 
Figure 4   (a) Detected SURF keypoints (b) SURF keypoint 
matching 
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Figure 5 Five IMF components and the residue 

The experimental results obtained for SURF, EMD and fusion of 
SURF and EMD using sum of minimum scores is shown in table I 
below. The SIFT features were also computed and the results 
obtained for SIFT feature matching is also shown in the table 
below. It is observed that the error rates are more for SIFT when 
compared with SURF and EMD feature. Hence in the proposed 
work only fusion of SURF and EMD feature is considered. 
 

Table I Error rates and Genuine Acceptance rate comparison for 
FKP based recognition system 

 
Method FRR% FAR% EER % GAR% 

SIFT 5.92 0.514 1.88 94.08 

SURF 4.35 0.0059 0.30 95.65 

EMD 3.98 0.0027 0.27 96.02 

SURF+ EMD 1.96 0.0013 0.18 98.04 
 
The Figure 6 below shows the Error Trade off Curves for the FKP 
recognition system. From the graph it is observed that the variation 
of false acceptance rate against false rejection rate is less for the 
system in which SURF and EMD scores are fused using score level 
fusion. 

 
Figure 6 Error Trade off Curves for FKP Recognition system 

  The Table II shows the results obtained for the 
multimodal recognition system using palmprint and finger knuckle 
print. As shown in the block diagram the features are extracted for 
a given test image and matching scores are obtained. The matching 
scores from the matchers are combined using  the following rules i) 
Min Rule ii) Max Rule  iii) Sum Rule and Weighted Sum Rule 
[23]. The weights are calculated based on the EER of the 
individual matchers as given in equation below. 

௠ݓ ൌ
ଵ

∑ భ
೐೘

ಾ
೘సభ

೐೘

                         (10)                

. 
where ݓ௠ is the weight associated with matcher ݉ and ݁௠ is the 
EER of matcher ݉ .In this experiment the weight assigned to 
matcher of palmprint recognition is ݓଵ ൌ 0.58 and that of finger 
knuckle print matcher is ݓଶ ൌ 0.42.The error trade off curves is 
shown in figure 7. 

Table II Error rates and Genuine Acceptance rate comparison for 
the multimodal system using different fusion rules 

 
Rule FRR% FAR% EER% GAR% 

Min Rule 0.58 6.25×10-4 0.0352 99.42 

Max Rule 
 

0.44 5.55×10-4 0.00987 99.56 

Sum Rule 
 

0.32 3.47×10-4 0.00744 99.68 

Weighted 
Sum Rule 

0.17 1.38×10-4 0.00647 99.83 

 

VII. COMPARATIVE ANALYSIS 

In this section the results obtained for the proposed method is 
compared with the existing method. The results are compared with 
the method proposed by Abdallah Meraoumia et al (2011).In their 
work the real and imaginary parts of 1D Log Gabor filter response 
of palmprint and finger knuckle print are stored as feature vectors. 
Min rule is used to combine the scores using score level fusion. 
Computing the false acceptance rate (FAR) and false  
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Figure 7 Error Trade off Curves for multimodal Recognition 

system 

rejection rate (FRR) is the common way to measure the biometric 
recognition accuracy.FAR is the percentage of incorrect 
acceptances i.e., percentage of distance measures of different 
people’s images that fall below the threshold. FRR is the 
percentage of incorrect rejections - i.e., percentage of distance 
measures of same people’s images that exceed the threshold. 
Genuine acceptance rate (GAR) gives the recognition rate and is 
given by GAR=1-FRR. The table III below shows the results for 
existing and proposed technique in terms of EER.  
 

Table III Error rates and Recognition rater of Existing and 
ProposedMultimodal Recognition systems 

 

Technique EER % 

Existing  Technique(Log Gabor Filter-real and 
imaginary- Min rule) 

0.066 

Proposed 
Technique(MOLGXP+PCA+SURF+EMD-Min 
rule) 

0.0352 

Proposed 
Technique(MOLGXP+PCA+SURF+EMD-
Weighted Sum rule) 

0.00647 

 

VIII.  CONCLUSION 

In this work, first a finger knuckle print recognition system is 
proposed where SURF and EMD features are extracted and score 
level fusion using sum rule is used before matching. Next a 
multimodal system is developed by combining palmprint and 
finger knuckle print. Different experiments have been conducted 
and it is found that the multimodal system using weighted sum rule 
provides better performance. The proposed system has low value 
of equal error rate and high recognition rate. 
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