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Abstract:  Privacy concerns over the ever-increasing gathering of personal information by various institutions led to the development of privacy 
preserving data. The approach protects the privacy of the data by perturbing the data through a method. The major challenge of data perturbation 
is to achieve the desired result between the level of data privacy and the level of data utility. Data privacy and data utili ty are commonly 

considered as a pair of conflicting requirements in privacy-preserving of data for applications and mining systems. Multiplicative perturbation 
algorithms aim at improving data privacy while maintaining the desired level of data utility by selectively preserving the mining task and model 
specific information during the data perturbation process. The multiplicative perturbation algorithm may find multiple data t ransformations that 
preserve the required data utility. Thus the next major challenge is to find a good transformation that provides a satisfactory level of privacy 
data. we are going to handle the problem of transforming a database to be shared into a new one that conceals private information while 
preserving the general patterns and trends from the original database. I am trying to get advantage of both the dimension like more protected data 
and relative fast. 
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I. INTRODUCTION 

A Statistical database (SDB) is a database system that 

allows its users to retrieve aggregate statistics (e.g., sample 

mean and variance) for a subset of the entities represented in 

the database and prevents the collection of information on 

specific individuals. In the statistics community, there has 

been extensive research on the problem of securing SDBs 

against disclosure of confidential information. This is 

generally referred to as statistical disclosure control. 
Statistical disclosure control approaches suggested in the 

literature are classified into four general groups: conceptual, 

query restriction, output perturbation and data perturbation 

[1]. Conceptual approach provides a framework for better 

understanding and investigating the security problem of 

statistical database at the conceptual data model level. It 

does not provide a specific implementation procedure. The 

Query Restriction approach offers protection by either 

restricting the size of query set or controlling the overlap 

among successive queries. The Output Perturbation 

approach perturbs the answer to user queries while leaving 

the data in the database unchanged. The Data Perturbation 
approach introduces noise into the database and transforms 

it into another version. This research paper primarily focuses 

on the data perturbation approaches. 

Adding random noise to the private database is one 

common data perturbation approach. In this case, a random 

noise term is generated from a prescribed distribution, and 

the perturbed value takes the form: yij = xij + rij , where xij is 

the ith attribute of the jth private data record, and rij is the 

corresponding random noise. In the statistics community, 

this approach was primarily used to provide summary 

statistical information (e.g., sum, mean, variance, etc.) 
without disclosing individual’s confidential data. In the 

privacy preserving data mining area, this approach was 

considered [2,3] in for building decision tree classifiers from 

private data. Recently, many researchers have pointed out 

that additive noise can be easily filtered out in many cases 

that may lead to compromising the privacy [4,5]. Given the 

large body of existing signal-processing literature on filtered 

random additive noise, the utility of random additive noise 

for privacy-preserving data mining is not quite clear. 

The Possible drawback of additive noise makes one 
wonder about the possibility of using multiplicative noise 

(i.e., yij = xij * rij ) for protecting the privacy of the data. Two 

basic forms of multiplicative noise have been well studied in 

the statistics community [6]. One multiplies each data 

element by a random number that has a truncated Gaussian 

distribution with mean one and small variance. The other 

takes a logarithmic transformation of the data first, adds 

multivariate Gaussian noise, then takes the exponential 

function exp (.) of the noise-added data. As noted in the 

former perturbation scheme was once used by the Energy 

Information Administration in the U.S. Department of 

Energy to mask the heating and cooling degree days, 
denoted by xij. A random noise rij is generated from a 

Gaussian distribution with mean 1 and variance 0.0225. The 

random noise is further truncated such that the resulting 

number rij satisfies 0.01≤│rij-1│≤ 0.6. The perturbed data 

xijrij were released. 

This research paper gives a brief review and Analysis of 

perturbation scheme II. 

A. Analysis of perturbation schemes with 

experimental result using matlab: 

a. Data to be used:- 

In this study we have Students result database of  

Vikram University, Ujjain. We have randomly selected 7 

rows of the data with only 7 attributes(Marks of Foundation, 

Marks of Mathematics, Marks of Physics, Marks of 

Computer Science, Marks of Physics Practical, Marks of 

Computer Science Practical and Marks of Job Oriented 

Project). 

b. Perturbation Scheme II: 

Let xij be the value for the i-th attribute of the j-th 

record in the database as before i=1... n,j=1…m. 
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Let We generate the random noise following the 

multivariate Gaussian Distribution N (0, c ∑ u), where 0 < c 

< 1 and ∑ u is the covariance matrix of variables u1, u2… 

un. We denote the noise as eij. Let 

zij = uij + eij, 

yij = exp(zij) 
 =exp(In xij+eij) 

 =xijexp(eij) 

 =  xij hij. 

This perturbed data yij is released then. Note scheme 

assumes that all xij are positive. 

c. Statistical Properties of the Perturbed Data: 

It has been proved [6] that the mean, variance and 

covariance of the original data attributes can be estimated 

from the perturbed data. 

d. Mean of xi:  

Let σi2 = c Var(In xi). We have 

E(xi) = E(yi) / exp(σi2/2) 

e. Variance of xi: 

Var(xi) = E(xi2) – (E(xi)) 2 

=(Var(ui)/exp(2σi2)) – (E(xi) 2/ exp(σi2)) - (E(xi)) 2 

f. Covariance of xi and xj: 

 
Where ρ is the correlation coefficient of xi and xj, and it 

can be obtained from the perturbed data. Because the noise 

was generated to maintain the same correlation structure, the 

correlation between the perturbed data will be on average 

the same as that between the original data in log-scale. 

Table1: Original dataset before perturbation. 

Foundati

on Maths Physics 

Com. 

Sc. 

Phy. 

Prac. 

Com. 

Sc. Prac Project 

56 73 38 42 39 42 42 

49 47 22 36 37 42 39 

55 57 40 33 39 42 40 

60 50 34 53 37 41 38 

50 37 11 25 38 41 38 

48 61 31 36 40 43 41 

61 64 40 40 39 42 39 

Table 2: Natural logarithm of original data 

4.02 4.29 3.63 3.73 3.66 3.73 3.73 

3.89 3.85 3.09 3.58 3.61 3.73 3.66 

4.00 4.04 3.68 3.49 3.66 3.73 3.68 

4.09 3.91 3.52 3.97 3.61 3.71 3.63 

3.91 3.61 2.39 3.21 3.63 3.71 3.63 

3.87 4.11 3.43 3.58 3.68 3.76 3.71 

4.11 4.15 3.68 3.68 3.66 3.73 3.66 

 

 

 

Table 3: Covariance of logarithmic data 

0.009 0.008 0.027 0.014 -0.0002 -0.0005 -0.000 

0.008 0.050 0.092 0.027 0.0041 0.0023 0.0068 

0.027 0.092 0.220 0.077 0.0052 0.0034 0.0090 

0.014 0.027 0.077 0.053 -0.0013 2.54 0.0009 

-0.000 0.004 0.005 -0.001 0.0008 0.0003 0.0007 

-0.000 0.002 0.003 2.54 0.0003 0.0002 0.0004 

-0.000 0.006 0.009 0.000 0.0007 0.0004 0.0014 

Table 4: Shows the random noise matrix after multivariate Gaussian 

distribution(c=.01) 

1.055 1.062 1.089 1.045 1.053 1.053 1.054 

1.202 1.294 1.344 1.243 1.205 1.203 1.213 

0.796 0.844 0.863 0.830 0.808 0.808 0.811 

1.090 1.060 1.089 1.102 1.065 1.07 1.065 

1.032 1.099 1.182 1.083 1.020 1.017 1.024 

0.876 0.890 0.930 9.01E-01 0.865 0.865 0.867 

0.957 0.956 0.972 0.958 0.934 0.932 0.935 

Table 5:  Shows the perturbed data(c=.01) 

59.108 77.596 41.383 43.929 41.078 44.262 44.279 

58.913 60.840 29.568 44.783 44.606 50.545 47.345 

43.832 48.110 34.552 27.395 31.542 33.950 32.467 

65.429 53.020 37.045 58.457 39.415 4.38 40.488 

51.627 40.676 13.003 27.091 38.795 41.718 38.927 

42.090 54.302 28.841 3.24 34.604 37.214 35.568 

58.399 61.193 38.891 38.320 36.436 39.168 36.494 

Table 6: Shows the random noise matrix after multivariate Gaussian 

distribution(c=.10) 

1.186 1.213 1.309 1.152 1.178 1.180 1.181 

1.790 2.261 2.547 1.994 1.806 1.796 1.846 

0.487 0.584 0.629 0.555 0.511 0.510 0.516 

1.315 1.203 1.311 1.363 1.221 1.23 1.222 

1.106 1.349 1.697 1.289 1.067 1.056 1.079 

0.660 0.692 0.795 7.20 0.632 0.633 0.637 

0.871 0.867 0.914 0.873 0.806 0.801 0.810 

Table 7: Shows the perturbed data(c=.10) 

66.43 88.55 49.76 48.40 45.95 49.58 49.64 

87.74 106.30 56.03 71.80 66.82 75.43 72.00 

26.83 33.34 25.17 18.31 19.93 21.43 20.67 

78.90 60.19 44.59 72.25 45.19 5.06 46.43 

55.32 49.92 18.67 32.23 40.57 43.31 41.01 

31.68 42.22 24.67 2.59 25.29 27.22 26.15 

53.14 55.53 36.59 34.92 31.45 33.68 31.61 
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Table: 8 Mean of original and perturbed data 

original 

data 54.14 55.57 30.85 37.85 38.42 41.85 39.57 

Perturbed 

data(c=.01) 53.20 55.53 30.89 37.91 37.06 40.52 38.36 

Perturbed 

data(c=.10) 56.15 61.29 35.50 42.40 38.31 42.04 40.07 

 

As seen in the table, the estimates of the means from the 
perturbed data are all close to those from original data. 

Euclidean distance of original data 

32.09 18.60 26.51 48.66 17.20 11.09 21.77 

23.76 18.60 17.08 27.87 22.78 36.55 12.56 

11.61 39.78 24.18 20.19 33.43 43.80 16.76 

 

Euclidean distance of perturbed data(c=.01) 

21.96 41.94 29.85 50.48 35.90 20.38 37.20 

21.57 35.06 29.91 21.04 41.05 27.11 11.36 

24.26 43.72 37.16 23.90 24.60 35.79 21.37 

 

Euclidean distance of perturbed data(c=.10) 

54.41 91.83 39.58 54.64 77.24 49.08 143.51 

63.82 99.36 128.41 100.69 94.19 51.39 15.89 

44.65 55.13 80.32 53.27 37.51 25.08 31.16 

       

 

Figure 3.3 

 

Figure 3.4 

We have taken natural logarithm of original data and 

then the covariance is computed of this logarithm data. We 

have used the mvnrnd() function of matlab on the above 

obtained data to get new datasets through multivariate 

Gaussian distribution with c=.01 and c=.10. Exponential of 

the resultant matrix is the noise datasets. These resultant 
noise data sets are multiplied with the original data set to 

form the perturb datasets. we have evaluated mean of 

original and perturbed datasets with mean() fuction of 

Matlab. In graph 3.3 the blue line shows the mean of 

original data ,green line shows the mean of perturbed data 

with c=.01 and red line shows the perturbed data with c=.10. 

As seen in the graph, the estimates of the means from the 

perturbed datasets are all close to those from original data.  

We use pdist() function of Matlab to compute the Euclidian 

distance of original data set and the perturbed  datasets. 

We have plotted the graph 3.4 which shows the 

comparison between Euclidean Distances of original data 
and perturbed data after applying Perturbation Scheme II. In 

graph 3.4 the blue line shows the Euclidean distance of 

original data ,green line shows the mean of perturbed data 

with c=.01 and red line shows the perturbed data with c=.10. 

The above graph shows that although the original 

attribute mean can be estimated from the perturbed data, but 

the Euclidean Distance among the data records are not 

necessarily preserved after perturbation. 

II. CONCLUSION 

This research paper reviews Second traditional 

multiplicative data perturbation technique that have been 

studied in statistics community. The effectiveness of 

multiplicative data perturbation techniques for privacy 

preserving data mining have been analyzed and also the 

security of multiplicative data perturbation scheme after 
applying logarithmic transformation have been examined.  

These perturbations are primarily used to mask the private 

data while allowing summary statistics (e.g., sum, mean, 

variance and covariance) of the original data to be 

estimated. 

This approach is to take a logarithmic transformation,  

compute a covariance matrix of the transformed data, 

generate random number which follows mean 0 and 

variance/covariance c times the variance/covariance 

computed in the previous step, add the noise to the 

transformed data and take antilog of the noise added data. 
Both schemes were tried on students result data. 

On the surface, multiplicative perturbation seems to 

change the data more than additive perturbation. However, 

by taking logarithms on the perturbed data, the 

multiplicative perturbation turns into an additive 

perturbation. 

For perturbation scheme II, after logarithmic 

transformation, we have ln xij+eij . The noise term is chosen 

from N(0, c_lnX), where _lnX is the covariance of the 

original data in log scale. 

The objective of these perturbation schemes is to mask 

the private data while allowing summary statistics to be 
estimated. However, problems in data mining are somewhat 

different. Data mining techniques, such as clustering, 

classification, prediction and association rule mining, are 

essentially relying on more sophisticated relationships 

among data records or data attributes, but not simple 

summary statistics. The traditional multiplicative 
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perturbations distort each data element independently, 

therefore Euclidean distance and inner product among data 

records are usually not preserved, and the perturbed data 

cannot be used for many data mining applications.  

These perturbation schemes are equivalent to additive 

perturbation after the logarithmic transformation. Due to the 
large volume of research in deriving private information 

from the additive noise perturbed data, the security of these 

perturbation schemes is questionable. 
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