
Volume 5, No. 5, May-June 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 265

ISSN No. 0976-5697

Advantages of Object Synchronization over Resource Synchronization in Java

Mr. Chetan Singh Khinchi Mr. Vaibhav Sharma
 Department of Computer Applications Department of Computer Applications

Acropolis Institute of Technology and Research Acropolis Institute of Technology and Research

Indore, India Indore, India.

Mr. Ronak Jain
Department of Information Technology

Acropolis Institute of Technology and Research,

Indore, India.

Abstract: In java synchronization is basically of two types – First is , Method(Resource) synchronization and Second one is Block(Object)
synchronization . Both of them adds to the security of code while multiple threads are in action and have very minute differences over one
another. People often get confused with both of the ways and do not understand the usage and applicability of this ways by themselves[1].

Here I suggest that rather than using Method(Resource) synchronization for security of code in multithreading in java one must give preference
to the Block(Object) synchronization .This paper is an Analytical as well as a Suggestive paper which actually describes both the ways with all
minute differences covered with a proper analysis of usage and applicability, and then suggests that why one must use Block(Object)
synchronization over Method(Resource) synchronization in java while multiple threads are in action.

Keywords: Synchronization , block , resource , object , method , Monitor , thread, sleep , join

I. INTRODUCTION

Synchronization is the way of preventing threads to share

the same resources at the same time thus preventing

unwanted results due to concurrency issues in a java

program. With synchronization we synchronize the action of

multiple threads so that only one thread uses a resource in

one time which belongs to a specific Object. This complete

logic depends upon one thing called as : Object Monitor -
which is a lock contained by default by every object in java.

It is said and happens to be that only one thread in one time

can hold objects monitor and can use the resources

pertaining to that object . Other threads can only enter

objects monitor if and only if the first thread has come out

of the objects monitor and have unlocked it after coming

out. Beside this point, there are several issues which will be

discussed that affects the resource sharing by multiple

threads in java.

There are “two-ways” in java through which multiple

threads may run at one time but can be managed so that they

do not disturb each others execution and uses the resources

in a synchronized way. The first way is to synchronize the

resources of a specific object which is to be shared by

multiple threads. The second way is to synchronize the point

from where multiple threads may enter and reach the

resource to be utilized[1][6].

II. SYNCHRONIZING METHODS(RESOURCES) IN

JAVA

A variable , constructor or methods are called as the

resources of an object. Out of these resources , particularly

methods can be shared by threads , but it may happen that

while a thread is utilizing a resource , another thread comes

in and starts utilizing the same resource based on some

functionality and results in a result which might be far more

different then expected. So in such a case it is very much

required that the resource must be synchronized , so that it

can only be used by one thread at a time. It still can be

shared but avoids the mix up of threads and thus makes a

thread wait outside the resource until a first thread primarily

saves the state and come out of the resource. In this fashion

we can make multiple threads work together and share the
same resource on “one-by-one” basis. First I will quote an

example[Program A] where multithreading is used but no

synchronization is used and thus threads interrupt each other

and hence results in unexpected outcome[2].

class Result_Producer

{

public void show_int(int i)

{

System.out.print(“[” + i);

try

{

Thread.sleep(1000);

}

Chetan Singh Khinchi et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June, 2014,265-270

© 2010-14, IJARCS All Rights Reserved 266

Catch(InterruptedException e)

{

e.printStackTrace();

}

System.out.print(“]”);

} }

class Controller_of_Result_Producer implements Runnable

{

Thread t;

int j;

Result_Producer rp;

public Controller_of_Result_Producer(Result_Producer

rpro , int a)

{

rp=rpro;

j=a;

t=new thread(this);

t.start()

}

public void run()

{

rp.show_int(j);

} }

class main_Class

{

public static void main(String args[])

{

Result_Producer rp1=new Result_Producer();

Controller_of_Result_Producer crp1=new

Controller_of_Result_Producer(rp1,10);

Controller_of_Result_Producer crp2=new

Controller_of_Result_Producer(rp1,20);

Controller_of_Result_Producer crp3=new

Controller_of_Result_Producer(rp1,30);

try

{

crp1.t.join();

crp2.t.join();

crp3.t.join();

}

Catch(InterruptedException e)

{

e.printStackTrace();

} } }

Output is :

[10[20[30]]]

Expected Output :

[10][20][30]

In the above example we have three classes – First is ,

Result_Producer which is given a task to take an integer as

input and produce result as [integer], and we want to

perform this task for three times.The class Result_Producer
is controlled by Controller_of_Result_Producer , which

actually provides the object of Result_Producer inorder to

give a call to the show_int method of Result_Producer. The

object through which call will be given to Result_Producer

is named as “rp”.The third class is main_Class which

actually controls whole program.The integers passed are 10,

20 , 30.As you can see the output expected was [10][20][30]

, but what has been received is [10[20[30]]]. This is because

of the following reasons:

1.Thread corresponding to object cp1 actually finds the

object “rp” vacant so it enters the object monitor and starts

performing the given task that is to print [10] , but when it

prints [10 we have given a call to sleep(1000) which forces

this thread to save the state and leave the monitor for 1

second(1000 milliseconds).

2. Now since it’s a case of multithreading , thread

corresponding to object cp2 find the object “rp” vacant and

enters the objects monitor , and starts performing the given

task while thread of cp1 is sleeping.We wanted it to print

[20], but when it prints [20 it also encounters a call to sleep

method , thus it saves the state and leaves the monitor of the

object.

3. Now since it’s a case of multithreading , thread
corresponding to object cp3 find the object “rp” vacant and

enters the objects monitor , and starts performing the given

task while thread of cp1 and cp2 are sleeping. We wanted it

to print [30], but when it prints [30 it also encounters a call

to sleep method , thus it saves the state and leaves the

monitor of the object.

Chetan Singh Khinchi et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June, 2014,265-270

© 2010-14, IJARCS All Rights Reserved 267

4. Since we have applied join on all of the above three

methods , so it means thread of cp1 will complete first , cp2

second and cp3 third.

5. Now after executing sleep(1000) all the threads come

back one by one and executes the remaining statements , i.e.

“System.out.println(“]”)”. Which actually makes the output
as “[10[20[30]]]”.

So the point is , that this all happened because the resource

(actually the method – show_int()) is not synchronized .So ,

this time “in-order to synchronize the Resource(Method)”we

will rewrite the Result_Producer class as :

class Result_Producer

{

synchronized public void show_int(int i)

{

System.out.print(“[” + i);

try

{

Thread.sleep(1000);

}

Catch(InterruptedException e)

{

e.printStackTrace();

}

System.out.print(“]”);

} }

This time everything will remain same , only a keyword

synchronized has been prefixed before the method name .

Which makes the outcome to be [10][20][30] (The desired

outcome). Why ?

III. DISCUSSION ON PROS AND CONS OF THE

METHOD

Looking at the above program we can very finely discuss

the pros of this method: Pros can only be discussed by

explaining it through an example (Pros):

1.This time when thread corresponding to object cp1 enters

the monitor of object “rp”, it starts exceuting the show_int()

and prints [10 and finds a call to sleep() method , saves its

state and goes out of the monitor of “rp”[3][4][5].

2.Now the thread corresponding to object cp2 enters the
monitor of object “rp”, it will try to enter the method

show_int(), but this time it will not be allowed to enter the

method , due to availability of “synchronized” keyword ,

which actually stops other threads to enter the same method

until and unless the first thread already in the method

performs its task completely. Do not forget that we have

also applied join().So thread of cp2 has to wait outside of

the object “rp”[3][4][5].

3.Similarly , thread corresponding to object cp3 also enters

the monitor of object “rp”, it will try to enter the method
show_int(), but this time it will not be allowed to enter the

method , due to availability of “synchronized” keyword ,

which actually stops other threads to enter the same method

until and unless the first thread already in the method

performs its task completely. Do not forget that we have

also applied join().So thread of cp3 has to wait outside of

the object “rp”.

4.Finally , First thread returns to the object’s monitor and

completes the task by executing statement

“System.out.println(“]”)” . Thus in this way First thread

gives output as [10].

5.The same logic is repeated for all the threads available,

and a result(Expected Result) [10][20][30] is produced.

Cons :

In the above example , when First thread executed the call to

sleep() , it saved its state and went on to sleep for some time

, due to availability of synchronized keyword meanwhile no

thread was allowed to enter the method(Resource) of the

object “rs”. This event actually raises two questions:

Q1: If second and third thread is not allowed to execute

a method which is marked synchronized if already one

thread is in, then why they are allowed to enter the

objects monitor , and this process actually wastes cpu

cycle since , threads two and three have to march in and

out of the objects monitor[7].

Q2: In this scenario , suppose if there is a non

synchronized method which actually receives input from

the synchronized method and if thread two starts

executing the non synchronized method which yet hasn’t

received input from thread one , may produce unwanted

results. So it actually also posess a problem of resource

de-optimization[7][8].

IV. SYNCHRONIZED BLOCK(OBJECT) IN JAVA

Here we can define our [Program A] again with some

minute changes , inorder to perform Block(Object)

synchronization in java.

 class Result_Producer

{

public void show_int(int i)

{

System.out.print(“[” + i);

try

{

Chetan Singh Khinchi et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June, 2014,265-270

© 2010-14, IJARCS All Rights Reserved 268

Thread.sleep(1000);

}

Catch(InterruptedException e)

{

e.printStackTrace();

}

System.out.print(“]”);

} }

class Controller_of_Result_Producer implements Runnable

{

Thread t;

int j;

Result_Producer rp;

public Controller_of_Result_Producer(Result_Producer

rpro , int a)

{

rp=rpro;

j=a;

t=new thread(this);

t.start()

}

public void run()

{

synchronized(rp)

 {

 rp.show_int(j);

 } } }

class main_Class

{

public static void main(String args[])

{

Result_Producer rp1=new Result_Producer();

Controller_of_Result_Producer crp1=new

Controller_of_Result_Producer(rp1,10);

Controller_of_Result_Producer crp2=new

Controller_of_Result_Producer(rp1,20);

Controller_of_Result_Producer crp3=new

Controller_of_Result_Producer(rp1,30);

try

{

crp1.t.join();

crp2.t.join();

crp3.t.join();

}

Catch(InterruptedException e)

{

e.printStackTrace(); } } }

Output is :

[10][20][30]

1. The first change in [Program A] is that ,this time no

method has been marked as synchronized in the program.

2. In public void run() , we have written “synchronized(rp) {

rp.show_int(j)} ” which actually synchronizes the point of

entry of multiple threads i.e. the “Object rp” .

3. In the above example When thread corresponding to
object cp1 finds the monitor of object rp vacant , it enters

the monitor and starts executing the method show_int(int) ,

after printing [10 it finds a call to sleep(1000) method , it

first saves its state and along with it keeps the lock to the

monitor and finally goes to the sleeping state(Blocked) . So

thread corresponding to object cp2 is not at all allowed to

enter the objects monitor since thread of cp1 hasn’t released

it yet . Until and unless thread of cp1 comes back and

executes the remaining code i.e. “System.out.println(“]”)”

and leaves the monitor producing output as : [10] no other

will be allowed to enter the same object’s monitor and use
public void show_int(int).

V. DISCUSSION ON PROS AND CONS OF THE

METHOD(BLOCK (OBJECT)

SYNCHRONIZATION)

Pros:

1. If the programmer do not have access to the methods of a

program , he can still synchronize the actions of threads by

just making the entry point of threads “synchronized”, i.e he

can atleast synchronize the object through which threads

enter and utilize the resources[1][9] .

2. Complexity reduces and wastage of cpu cycles is stopped

since other threads are not allowed to enter object’s monitor

until and unless first thread wakes up from sleep() , enters

the objects monitor , performs its task completely and then

Chetan Singh Khinchi et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June, 2014,265-270

© 2010-14, IJARCS All Rights Reserved 269

comes out of the object’s monitor and releases the

lock[1][9].

3. Higher level security is provided, which increases code

reliability.

Cons:

1. If an object has references to more then one methods ,

then those methods cannot be utilized by other threads even

if the first thread is not executing them and sleeping , since

they cannot even enter the objects monitor until and unless
first thread releases the lock. This way the problem of

resource de-optimization remains the same.

VI. COMPARISON AND DETAILED ANALYSIS OF

BOTH THE METHODS IN JAVA[10]

Table 1 : Comparison of Both the Methods

S.No. Method(Resource)

Synchronization

Block(Object)

Synchronization

1 Synchronizes the action

of multiple threads

Synchronizes the

action of multiple

threads

2 Uses synchronized

keyword

Uses synchronized

keyword

3 Other threads cannot

utilize the same resource

which is utilized by one

thread

Here also , Other

threads cannot utilize

the same resource

which is utilized by

one thread.

4 Allows sleep , wait etc.

methods to be applied.

It also allows sleep ,

wait etc. methods to be

applied

Table 2 : Differential cum Advantage Analysis of Bothe the Methods

S.No. Method(Resource)

Synchronization

Block(Object)

Synchronization

1 Synchronized is written

before a method

Synchronized is written

before an object

2 An object which

contains a synchronized

method allows other

threads to enter its

monitor when the first

thread is sleeping , but

other threads cannot
enter the synchronized

method until and unless

the first thread

completes and releases

the lock on the same

object

An object which is

synchronized does not

allow any other threads

to even enter the

objects monitor until

and unless the first

thread wakes up from
the sleep , comes back

and executes and thus

releases the lock on the

object . After this only ,

other threads will be

allowed to enter the

objects monitor

3 Point 2 actually causes

complexity to raise ,

since other threads can

enter objects monitor but

can’t utilize a
synchronized method

Point 2 does not causes

any complexity to

occur since threads are

stopped outside the

object

4 Because of point 2 No non synchronized

threads can enter an

objects monitor and thus

can utilize synchronized

methods on the same

object while thread 1 is

sleeping

methods can be

invoked when the first

thread is sleeping.

5 Provides security when

multiple threads are in

action , but does not stop

other threads to enter

objects monitor and
utilize non synchronized

methods while thread 1

is asleep , this causes a

potential threat to the

expected outcome.

It also provides security

when multiple threads

are in action , but

provides a higher level

of security by stopping
threads outside the

object , thus other

threads cannot enter

objects monitor when

first thread is asleep ,

thus it removes the

threat created by other

threads which may

execute the non

synchronized methods

as in the case of the

Method(Resource)
Synchronization

6 Cannot be applied when

the developer doesn’t

have accessibility to the

methods of the program

Can be applied even if

the developer doesn’t

have accessibility to the

methods of the

program. He just have

to synchronize the

Block(Object) from

where multiple threads

will enter the objects

monitor and uses its

methods

VII. SUGGESTION ? WHY TO PREFER

BLOCK(OBJECT) SYNCHRONIZATION TO

AVOID ANY TYPE OF COMPLEXITY.

As we have come across both the methods we can clearly

understand that synchronizing a block(object) is far more

better for providing security and eradicate concurrency

related issues as compared to synchronizing a

method(resource). I suggest to prefer synchronization of a

block(object) to be used over synchronization of

method(resource) over the following points:

1. Easy to use.

2. No need of method accessibility.

3. Reduces complexity by stopping threads out of an object,

thus saves cpu cycles.

4. Reduces potential threat of non synchronized methods on

same object since accept first thread other threads are not

given access to objects monitor until and unless the first

thread releases the lock.

5. No doubt resource de optimization occurs but to gain

complete security some thing has to be sacrificed. But you
can be sure that code will perform as you have designed it to

be.

6. Just have to write a synchronized keyword and make a

block.

Chetan Singh Khinchi et al, International Journal of Advanced Research In Computer Science, 5 (5), May–June, 2014,265-270

© 2010-14, IJARCS All Rights Reserved 270

7. Last but not the least performs all those things, which are

performed by a synchronized method.

VIII. SUMMARY

So here by I conclude stating that if an easy and non

complex way of carrying out something specially while
coding is present then why will one choose the complex way

of doing it. I suggest usage of Block(Object)

synchronization is far better way as compared to

Method(Resource) synchronization for achieving multiple

thread synchronization which is the key or one can say one

of the strong pillars to the success of java worldwide. People

can choose it another way also , but they must compare the

points I have stated in this paper. People may find different

solutions to this problem in different situations but what I

have suggested will definitely help people to come to a

decision or help understanding resolving complexity. I do
not say that out of the above two stated methods, any one

method is lesser as compared to the another, java has given

the world a language which will continue to exist for long ,

since it is the base for many of the languages in world, and

yes “may it will live long” .But what I suggest that choose

one of the any right methods depending upon a condition.

IX. REFERENCES

[1] Herbert Schildt ,The Complete Reference-Java 2 , V

Edition , Volume 1.4 , 2002, (Tata McGraw – Hill

Publishing Company Limited) , New Delhi

[2] Bruce Eckel , Thinking in JAVA, III Edition Revision

2.0 ,Volume 2 ,2002, (Prentice Hall Publication) , New

Jersey , USA

[3] Joshua Bloch , Neal Gafter , JAVA PUZZLERS:
TRAPS , PITFALLS AND CORNER CASES , II

Edition , Volume 2 , 2008 , (Addison-Wesley

Professional)

[4] Kathy Sierra , Bert Bates, Head First Java , II

Edition,2005 , (O'Reilly Media)

[5] Oracle , “Synchronized methods”

http://docs.oracle.com/javase/tutorial/essential/concurrency/

syncmeth.html

[6] TutorialsPoint , Java – Thread Synchronization

http://www.tutorialspoint.com/java/java_thread_synchroniza

tion.htm

[7] Joshua Bloch , Effective Java , II Edition , Volume 1 ,

2008 , (Prentice Hall)

 [8] Goetz and Tim Peierls, JAVA CONCURRENCY IN

PRACTICE , I Edition ,2006 , (Addison –Wesley)

 [9] Dr. R. Nageswara Rao , Core Java An Integrated

Approach , I Edition , Volume 1 ,2008 , (Dreamtech

Press)

 [10] Cay S. Horstmann and Gary Cornell , Core Java

Advanced Features , IX Edition , Volume 2, 2008,

(Prentice Hall)

