
Volume 5, No. 5, May-June 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 24

ISSN No. 0976-5697

Safety-Critical System and Testing the Integrity Software

Mina zaminkar
Department of Computer Science

College of engineering, Yazd Science and Research Branch,
Islamic Azad University, Yazd, Iran

Mohammad R. Reshadinezhad
Department of Computer engineering

University of Isfahan
Isfahan, Iran

Sima Emadi
Department of Computer

College of engineering, Yazd Science and Research Branch,
Islamic Azad University,

Yazd, Iran

Abstract: Safety is a characteristic of a system that guarantees the human life, environment and organizational entities against hazards; in a
system designed with the objective of approaching a level of coherent safety with executing all of its necessary functions. This software testing
is concerned with assessing the analysis results, programs’ behavior and the conformity of the program with the safety requirements. Here the
safety system, reducing the hazards to a minimum and conducting different tests necessary for making the software coherent will be described.

Keywords: Safety-critical systems; Hazard analysis; Software testing; Hazard reduction; Software risk.

I. INTRODUCTION

Having a safe system is a team effort and safety is
everyone’s responsibility in industrial companies today.
Software is a vital part of most systems and it controls
hardware and provides mission-critical data. Software must
be safe in order to be profitable for any company [1]. But
how can one say that a software is “safe” or “unsafe”? What
are the hazards that software may contribute to, or that
software may control? Why should one care about software
safety?

When a device or system can cause injury, death, loss of
vital equipment, or damage to the environment, system safety
is paramount. The system safety discipline focuses on
“hazards” and the prevention of hazardous situations.
Hardware or software that can lead to a hazard, or is used to
control or mitigate a hazard, comes under that category.
Software has become a vital and integral part of most
systems. Software can respond quickly to potential problems,
provide more functionality than equivalent hardware [2]. The
software safety discipline spread out beyond the immediate
software used in hazard control or avoidance to include all
software that can impact hazardous software or hardware. All
such software is “safety-critical” [1]. Systems engineers,
Project managers, software engineers, software assurance
personnel, and system safety personnel all play a part in
creating a safe system. A software is safety-critical if it
performs any of the following:
a. Controls hazardous or safety-critical hardware or

software.
b. Monitors safety-critical hardware or software as part

of a hazard control.
c. Provides information upon which a safety-related

decision is made.
d. Performs analysis that impacts automatic or manual

hazardous operations.
e. Verifies hardware or software hazard controls.

f. Can prevent safety-critical hardware or software from
functioning properly.

Safety-critical software includes hazardous software
(which can directly contribute to, or control a hazard). It
also includes all software that can influence that hazardous
software [2].

In the past, hardware controls were the primary method

used to control/prevent hardware hazards. Today, because of
the complexity of systems, it may not be feasible to have
only hardware controls, or to have any hardware controls at
all. Now, many hardware hazard causes are addressed with
software hazard controls. Often this is because of the quick
reaction time needed to respond to a failure or the
complexity of detecting possible faults and errors before
they become failures.

A fault is any change in the state of an item which is
considered anomalous and may warrant some type of
corrective action. A failure is the inability of a system or
component to perform its required functions within specified
performance requirements.
a) A fault may or may not lead to a failure.
b) One or more faults can become a failure.
c) All failures are the result of one or more faults.

Fault tolerance is the ability of the system to withstand
an unwanted event and maintain a safe and operational
condition. It is determined by the number of faults that can
occur in a system or subsystem without the occurrence of a
failure. Fault and failure tolerance are often used
synonymously, though they are different.

A System Safety Program Plan is a prerequisite to
performing development or analysis of safety-critical
software. The System Safety Program Plan outlines the
organizational structure, interfaces, and the required criteria
for analysis, reporting, evaluation, and data retention to
provide a safe product. This safety plan describes forms of
analysis and provides a schedule for performing a series of
these system and subsystem level analyses throughout the

Mina zaminkar et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,24-28

© 2010-14, IJARCS All Rights Reserved 25

development cycle. It also addresses how the results of
safety analyses will be communicated and the sign-
off/approval process for all activities. A Safety Program
Plan is usually created and maintained at an organizational
or “programmatic” level. Within NASA, a program may
have one or many projects [3]. At the project level, there
should also exist a safety plan which describes for that

project how it will incorporate the programmatic plan
requirements as well as those specific to the project [4].

Table I. Hazard Prioritization-System Risk Index

Probability Intensity Levels
Impossible Unlikely Possible Probable Likely
4 3 2 1 1 Catastrophic
5 4 3 2 1 Critical
6 5 4 3 2 Average
7 6 5 4 3 Trivial

Hence, a safety-critical software system could be

defined as any system whose failure or malfunction can
severely harm people's lives, environment or equipment.
These kinds of risks are managed using techniques of safety
engineering.

The aim of this paper is to provide a brief overview of
safety-critical software systems and describe the main
techniques or approaches used to design and test these kinds
of systems.

This paper first introduces standards used and applied in
different fields when developing safety systems. The next
section focuses on the level of risk for safety-critical
software systems. The paper then will go on to describe
different approaches on Testing and integration of the
software. Then, in the next section, it is illustrated that what
kind of tests are of concerned. Finally, the last section
contains the conclusion remarks.

II. THE SAFTY SYSTEM

The sensitive safety system is a system designed with
the objective of reaching to a point of coherent safety where
all the necessary functions of safety are designed in a
manner where it would not become defective during
implementation [5]. This system needs to have reliability
and resistance against defect, error and damage [3].

Whenever software deals with the control and
supervision of the hazards and or controls software,
hardware, of sensitive-safety it is considered as sensitive-
safety software. This software is usually installed in systems
with remote-control and very high-speed capabilities: air
pressure control of the chamber of the aircraft and strong
laser control, the hazardous aspects. The fire alarm software
is another type of sensitive-safety software [2] .The software
which provides the data regarding decisions made on safety
is in this category as well. In simple words, sensitive-safety
system is the one if not processed properly it would be the
cause for irreparable damages but if processed properly it
can make the system run even if something happens. Hence,
this is a highly functioning continuous accurate system
which acts whether there is a default or not [1].

The major feature of this system is its reliable and
resistant nature in withstanding defect and error. In order to
have a reliable and resistant system a specific order should
prevail in designing process, that is: hidden system
engineering, protocol and network engineering, safety
engineering, assurance engineering rapid response
engineering and systems engineering [6].

Any part of a software controlled through hardware,
software or human operator is considered as the potential
factor in hazard that is the sensitive-safety software and is
tested against quality control and analysis; assessed through
the software safety analysis until their final approval. The
necessities of sensitive safety must be designed to guarantee
the changes which may occur in the future [7].

Implementation of a PHA system is the prerequisite in
applying a system in hazardous environments through the
analysis of software [2] with the initial outcome of the PHA
system at hand, the safety requirements are obtained and the
hardware and software requirements are determined. When
the specifications of the system’s design are known as the
hazard analysis of the sub-systems and the system
components can begin to operate. The PHA is the first
source of specific safety system requirements and possibly
can advance up to the specific safety software requirements
(unique to specific systems’ architecture). This issue,
accompanied with the general hazard defined for the system
is considered as a prerequisite in implementing any type of
safety software analysis [8].

When implementing the PHA the manner in which the
software interacts with other parts of the system is a vital
point. The software is the heart and the brain of many
complicated systems of today, controlling and supervising
almost all the functions. When the system is analyzed
through marginal elements the manner in which the software
interacts with other sections must be considered [8].

The PHA should be aware of the systems sections
supervision manner with respect to the software (a defeated
sensor would be subject to inappropriate response of the
software).

III. LEVEL OF RISK

Hazard analysis, like the PHA is not involved whether
there are the potential of hazard occurrence. All hazards are
considered bad even with the least of occurrence chance.
Though, usually there is not enough money and time to
evaluate all potential hazards, the hazard should somehow
be prioritized. This prioritization would lead to the
conceptualization of hazard [2]. The System Risk Index,
based on the above severity levels and likelihood of
occurrence, is shown in Table I. In this table, 1 is the
highest and 7 is the lowest priority. Each program, project,
or organization should create a similar risk index, using their
definitions of severity and likelihood [9], [10].

Hazard is a combination of the following two issues:

Mina zaminkar et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,24-28

© 2010-14, IJARCS All Rights Reserved 26

a. The probability (quantitative/qualitative) of whether a
plan or project may be subject to an unwanted event:
safety incident, safety agreement and or system
component failure

b. The consequences, effects or the intensity of the
unwanted event that may cause the hazardous event to
take place
Every project or plan, by referring to the regulated

definitions in the procedures, standards and policies of the
Agency is in need of a collection of definitions with respect
to “Hazard intensity” level. The selected definition should
fit the organizations scope of activities.

When the team members of different disciplines discuss
about the causes and the control of hazards involving
software, a common language is essential to assist the
mutual understanding [10].

Prioritization of hazards is essential in order to
determine the source which is ranked at level 1, which is not
allowed in systems design. Any system which faces the “1”
the hazard index must be reviewed completely for
elimination or at least reduction of the potential in hazard
occurrence. The lowest index is “5” though there exist “6”
and “7” as well. For levels 2, 3 and 4, the safety analysis
level requirement and hazard level is high and is shown in
Table II.

Table II. Prioritization of hazards

Class safety practices recommended Risk index system
Inapplicable(forbidden) 1
Full 2
Average 3
At least 4,5
Optional 6,7

A. Hazard elimination:
The hazards are eliminated as far as possible and it’s

best to do this in a designed manner just like eliminating an
energy source. For instance, software can influence the
pressure control while there is no need to for the software to
have access to the control; therefore, an error in software
function could lead to hazard occurrence. Thus, prevention
of software access to the control would nullify the possible
involvement of the software in hazard occurrence. With
respect to system, hazard elimination is conducted in a
manner where a solution is found in design where there is no
need for high hazard pressure.

B. Hazard reduction design:
The hazards cannot be eliminated completely, but they

can be controlled. The PHS can assess what might be the
cause of a hazard and provide the manners by which that
hazard can be controlled, of course through a design.
Hazards can be minimized through providence of resistance
to failure (increment in series or parallel in an appropriate
manner), major safety differences or automated safety. For
example, the software confirms all the assessments on the
conditions prior to the commencing the rocket engine.

IV. TESTING AND INTEGRATION OF THE
SOFTWARE

The different tests that can be conducted are:
a. Immerging Test
a) Integrated and unit test
b) Integration of the software through hardware

b. System test
a) Practical
b) Functional
c) Loading
d) Stress
e) Incidents
f) Consistency
g) Acceptance
h) “red team”

It should be noted that the “system test” is not a single
test, but a collection of possible executable tests. These
resets are conducted by applying the whole system
(hardware and software) although it is possible to use a
simulator under specific circumstances. The system testing
occurs when all the capabilities are tested, restrictions are
identified and the strengths for resisting against errors and
failures are realized well.

One of the most essential tools for the examiners,
developers, and project managers is having a high
perspective on all testing activities of system (including the
sub-systems). It is possible to list these data with the
following at the top (who is the responsible person when the
incident takes place, what is the objective of the test, what
are the features of the data involved in the test, the
environment where the tests are conducted, what are the
product and which are the input and output criterion) in a
Table (as a wall chart) where all different levels of the test
are illustrated.

A. Testing:
Testing the operational implementation is a portion of a

software test in a real or simulated or environ. Testing
involves the assessment of the results obtained from the
analysis, assessing the programs’ behavior and assessing the
conformity of programs’ safety requirements. Testing the
software and the unit level (the integration and the system)
is usually conducted by someone other than the producer
(with exception of smaller drums) [2], [9].

Usually, testing the software confirms that this software
has performed its functions accurately and is able to expose
the praised behaviors to the interested. Safety test
concentrate on the tests made on the weak points of the
program and identification of the extreme or unexpected
states which may cause S/W failure. This is a
complementary test not a repeated expanding test. One
sample of the techniques applied in specific safety test is
injection of S/W error. This program is for the sensitive-
safety software test as in Bart in San Francisco or the
security and verification test of COTS tools. The errors are
entered as codes before the test begins and then the answers
are observed. Moreover, all of the practical restrictions and
requirements must be subject to test at the bottom and the
top of the announced restrictions.

B. Testing the unit level:
This test is programmed in the course of designing the

details, that is, when the operations within a unit are already
defined. These tests are conducted after the codes are
compiled. Since it is possible that a code might have a
defect, by repeating each section anew, the tests would be
implemented once more. This test is conducted by the
producer with the possibility that another producer in this
test group may conduct the unit test. The major entry criteria
for testing this unit is: each unit be compiled with no error.

Mina zaminkar et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,24-28

© 2010-14, IJARCS All Rights Reserved 27

The unit surface test is essential, since it can have
access to levels of the software that possibly were
inaccessible when the units become integrated. When the
unit becomes integrated with the system, testing the input
data of a unit might not become possible. The unit surface
test can identify the difficulties in the lay-out and problems
related to the function that would implement changes in
their S/W. The faster the identification of the issues, lower
the change costs. In case this surface is necessary for
assessing the code, for each sensitive-safety unit the specific
safety tests must be designed. These tests must illustrate the
areas that are covered by the test requirements. Every safety
test must have the defect and intact criteria. In the test
design or software design the management should explain
the assessment manner and the reports regarding the details
of the sensitive-safety and the relevant problems thereof.
This test report must be available for sections of the
sensitive-safety units [2], [9].

The unit level tests are of two: the white box and the
black box. The white box test includes items that the inner
elements details of which are known. The black box test
merely controls the input/output elements with no concern
about what occurs inside the unit. The white box test is
involved with items like assessing the route and the areas
under the branches’ coverage, chain implementation and
implementation orders; while the black box is involved in
the areas related to inputs (volumes), output and error
elimination. The safety test must be concerned with proper
implementation of all the safety requirements.

The actual safety tests can be implemented in an
independent manner or as a section of the major testing
activities of production.

The integrated test is mostly conducted in simulating
environments. The system that usually is run on the real
hardware. It is suggested for the hazardous tests to be run
initially in simulating environments. No one likes to face
accidents during commencing the rocket engine or turning
of military apparatus. All defaults observed during tests
should be analyzed and the procedure should be recorded in
the differences reports and briefings regarding the tests. This
difference report must contain the advancing problems,
suggestive solutions and the final result of the problem.
These reports must be handed in after the hardware has
reached a specific level of growth (the basic levels or at Beta
version). The changes due to identified problems are usually
sent for assessment and approval or rejection through the
Control Page Change software. The reports on these
problems must be traced and their managements should run
a review on the old and new problems of the software [9].

V. WHICH TESTS ARE OF CONCERN?

The tests to be considered are as follow:
a. The white box test: based on the awareness of the

inner rationale of the program codes, including the
codes coverage status, braches, routs and
circumstance.

b. The black box test: based on the requirements and
capabilities and not involved with any awareness
regarding the internal design or codes

c. Unit test: is the smallest scale of testing run on specific
operations or parts of codes. This test is conducted
through the programmers not the testers; since it needs
accurate knowledge on the internal design and codes.

This is not an easy task, unless the software has a very
good architecture and design requiring high expertise.

d. Integrated incremental test: is the continuous test of a
software when new capabilities are added to it. It is
necessary that the different aspects of the software
capabilities be adequately independent and operate
separately by with respect to other sections of the
program or the test be developed up to a needed point.
This test is run by the programmers or the testers.

e. The integrating test: is involved in the combined
sections of a program in order to determine their
interactive accuracy in operations. The “sections”
constitute portions of the codes’ elements, a personal
user’s program, service receiver or provider of applied
programs or the network and or other issues. This type
of test is specific to service receiver or provider and
distributive systems.

f. The function test: is of the black box test type
equipped with the requirements of program function,
this test is run by the tester, and this does not mean
that the programmers do not need to check whether
their codes work properly (something applicable at
every stage of the test).

g. System test: is of the black box test type based on the
general requirements’ specifications. This test covers
all combined areas of a system.

h. End to End test: is similar to the system test. It has the
biggest test scale which includes testing the whole
environ of the S/W by imitating the real world
conditions such as interacting with a database, using
the networks connections, interacting with hardware,
applied programs and or other systems if necessary.

i. Soundness of mind test: is usually the initial objective
f the test to determine whether the new software
version can be applied for bigger objectives or
operations. For example if the new software stops the
system every 5 minutes, then the system speed drops,
or the database is destroyed; therefore, the software is
not in a desired condition and it cannot guarantee
further tests.

j. Regression test: is a repeated test run after the
corrections or for making changes in the software or
its environs. Determining the number of the required
tests is difficult especially at the ending phases of
production process. Automated test apparatus can be
applied for such tests in a specific manner.

k. Reception test: is the final test based on the
customer/user’s final specifications, and or based on
the application through the end user during some
limited time periods.

l. Loading test: is the heavy loading program testing like
testing a website subject to a vast spectrum of loads
for determining that at which points in time the system
would response to contraction and or failure.

m. Stress test: this term is synonymous with the “load”
and “stress”, and is used in describing test like
system’s function under unusable and heavy loading,
many reiterations of measures and specific entities,
high volume of digital entries, complicated and
expanded search in a database system etc.

n. Function test: this term is synonymous with the “load”
and “stress”. The “Function test” in its ideal form (and
any other kind of test) is defined in the records and

Mina zaminkar et al, International Journal of Advanced Research in Computer Science, 5 (5), May–June, 2014,24-28

© 2010-14, IJARCS All Rights Reserved 28

documents or requirements and or quality assurance
documents and or test programs.

o. Usage ability test: is to make the users as friends. This
test is inert and relates to the objectives of the user or
the end customer. In this test the users’ interviews,
surveys of video recordings from their meetings and
other approaches are applied. The programmers and
testers usually do not conduct this test.

p. Installation/omission test: is the complete or partial
test on the promotion process of installation and or
omission.

q. Marketing test: is run on the recovery of the system
from the incident, the hardware failures or other
drastic problems.

r. Marketing test: is run on the recovery of the system
from the incident, the hardware failures or other
drastic problems.

s. Adaptability test: is to test the software operational
manner in specific hardware, software, agent systems
and networks.

t. User acceptance test: determines the customer and or
final satisfaction from the software

u. Comparison test: compares the strong and weak points
of the S/W with that of the competing products

v. Alfa test: is the software test at the end stages. Minor
changes in designs are due to this type of tests. The
end users conduct these tests.

w. The foundation test: is run when the development and
tests are completed and is to find the final problems
and defaults before publication. The end users conduct
these tests.

VI. CONCLUSION

Issues regarding safety are the essential prerequisite for
the development where lack of supervision on safety next to
lack of efficiency in systems management safety is the main
causes of incidents occurrence. Many of the S/W
engineering methods are interested to determine and prevent
errors. In very big systems the removal of all defaults cannot
be guaranteed. The reported problems must be traced and
the management should be aware of the existing and
previous problems regarding the software.

VII. REFERENCES

[1] I. I. P. Ltd., “An Introduction to Safety Critical Systems,”
1997.

[2] Nasa Software Safety Guidebook, “ Nasa Technical
Standard,” 31 March 2004.

[3] J. R. Pimentel, “Designing safety-critical systems: A
Convergence of Technologies,” Kettering University, Flint,
Michigan, 2008.

[4] M. Zaminkar, M. R. Reshadinezhad, “A comparison
between two software engineering process,RUP and
Waterfall models,” International Journal of Engineering
Research and Technology, Vol. 2, Issue 7, July 2013.

[5] R. Ahmed, Y. H. Jeong, G. Heo, “Design of safety-critical
systems using the complementarities of success and failure
domains with a case study,” www.elsevier.com, 2011.

[6] B. J. Krämer, N. Völker, “A highly dependable computing
architecture for safety-critical control applications,” Real-
Time Systems, vol. 13, pp. 237-251, 1997.

[7] E. G. Leaphart, B. J. Czerny, J. G. D’Ambrosio, C. L.
Denlinger, and D. Littlejohn, “Survey of software failsafe
techniques for safety-critical automotive applications,”
SAE World Congress, Detroit, pp. 1-16, 2005.

[8] D.S. Herrmann : Software Safety and Reliability -
Techniques, Approaches,and Standards of Key Industrial
Sectors, ISBN 0769502997.

[9] P. H. Yacov, Y. Haimes , “Software Risk Management,”
Technical Report CMU/SEI-96-TR-012 ESC-TR-96-012.

[10] R. King “Risk Management,” Business Sequence Diagram
Publishing system, ISBN 0948672722, 2005.

Short Bip Data for the Authors

Mohammad R. Reshadinezhad He was born in Isfahan,
Iran, in 1959. He received his B.S. and M.S. degree from the
Electrical Engineering Department of University of
Wisconsin, Milwaukee, USA in 1982 and 1985,
respectively. He has been in position of lecturer as faculty of
computer engineering in University of Isfahan since 1991.
He also received the PhD Degree in computer architecture
from Shahid Beheshti University, Tehran, Iran, in 2012. He
is currently Assistant Professor in Faculty of computer
Engineering of Isfahan University. His research interests are
digital arithmetic, Nanotechnology concerning CNFET,
VLSI implementation, logic circuits design, Cryptography
and software engineering.

Mina Zaminkar She received her B.S. in computer
engineering (software) from university of Dolat Abad, Iran
in 2010.She got her M.S. degree in computer engineering at
the department of computer and research branch, Islamic
Azad University, Yazd, Iran in 2013. Currently teaches
computer courses at Shahid Ashrafi Isfahani University,
Isfahan, Iran. Her research interests mainly focus on
computer software engineering, data mining, data bases and
biometric. She is currently engaged in research involving
railway interlocking and Quality Management.

http://www.elsevier.com/�

	INTRODUCTION
	THE SAFTY SYSTEM
	LEVEL OF RISK
	Hazard elimination:
	Hazard reduction design:

	TESTING AND INTEGRATION OF THE SOFTWARE
	Testing:
	Testing the unit level:

	WHICH TESTS ARE OF CONCERN?
	CONCLUSION
	REFERENCES

