
Volume 5, No. 4, April 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 261

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Lossless Compression of Color Map Images by Context Tree Modeling

Archana P.Choudhary
SVPP, Borivali, Mumbai

Abstract—Significant lossless compression results of color mapimages have been obtained by dividing the color maps into layers and by
compressing the binary layers separately using an opti-mized context tree model that exploits interlayer dependencies. Even though the use of a
binary alphabet simplifies the context tree construction and exploits spatial dependencies efficiently, it is expected that an equivalent or better
result would be obtained by operating directly on the color image without layer separation. In this paper, we extend the previous context-tree-
based method to operate on color values instead of binary layers. We first generate an -ary context tree by constructing a complete tree up to a
predefined depth, and then prune out nodes that do not provide compression improvements. Experiments show that the proposed method
outperforms existing methods for a large set of different color map images.

Keywords: Context tree compression, lossless image coding map, image coding.

I. INTRODUCTION

In this paper, we consider the problem of lossless
compres-sion of raster map images. These types of images
usuallyhave few colors, a lot of detail, and are large. An
example of a map image is shown in Fig. 1. Predictive
coding techniques such as JPEG-LS [1], CALIC [2], [3],
TMW [4], and FELICS [5] work well on photographic
images with smooth changes in color, but are less efficient
on map images, due to the map im-ages’ sharp change in
colors.

The CompuServe Graphics Interchange Format (GIF)
and Portable Network Graphic (PNG) formats are the most
com-monly used file formats for compressing graphics. GIF
uses LZW compression algorithm [6]. PNG uses the
DEFLATE algo-rithm [7], which is a combination of the
LZ77 dictionary-based compression algorithm [8] and the
Huffman coding. Both of these methods can also be used for
the compression of map im-ages. These algorithms are
looser than newer algorithms, which are based on context
modeling.

Typical map images have high spatial resolution for
repre-senting fine details, such as text and graphics objects,
but do not have as many color tones as photographic images.
The Piece-wise-constant (PWC) algorithm [9] hasbeen
developed for thecompression of palette images. It uses two-
pass object-based Modeling. In the first pass, boundaries
between constant color pieces are established by the edge
model and encoded according to the edge context model, as
proposed by Tate [10]. The color of the pieces are
determined and coded in the second pass by finding
diagonal connectivity and by color guessing. Finally, an
arithmetic coder encodes the resulting information. The
latest version of PWC, which includes the skip-innovation
technique and the streaming single-pass variant [9], remains
to be one of the best compression algorithms for palette
images.

Figure. 1. Example of color map image: full size (left) 1024 2 1024 pixels

and (right) 100 2 100 part.

Statistical context modeling that exploits 2-D spatial
depen-dencies has also been applied for lossless palette
image com-pression. The known schemes can be
categorized into those that divide the images into binary
layers and those that apply con-text modeling directly to the
original colors. The separation of the input image can be
done through color separation or through semantic
separation [11], [12].The binary layers are then com-pressed
by a context-modeling scheme, such as JBIG [13], or by
using the context tree [14]. The best results for this approach
have been achieved by context tree compression with
semantic separation [11], [12], but this requires that the
encoder has the semantic decomposition available
beforehand, which is not gen-erally the case. In terms of
color separation, the best results have been achieved by the
multilayer context tree (MCT) compres-sion with an optimal
order of layers and template pixels [12]. The drawback of
this approach is the compression time, which can be quite
long due to the time required for the optimal or-dering of
layers.

A possible alternative to color separation is the
separation of the colors into bit planes followed by the
separate compression of each bit plane. Embedded image-
domain adaptive compres-sion of simple images (EIDAC)
[15] usesa 3-D context modeltailored for the compression of
grayscale images. The algorithm divides the image into bit
planes and compresses them sepa-rately. However, the
context pixels are selected not only from the current bit
plane, but also from the already processed bit planes.

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 262 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Figure. 2. Overall scheme of the proposed algorithm.

Figure. 3. Default location and order of the neighbor pixels for standard

(left) 1-norm and (right) 2-norm templates.

Simple to assign probabilities to each new pixel
generated in the current context. We denote the frequency of
the pixel Value in the context as (1) The conditional
probability of the pixel value, K in the context X1,……., xm
as where is the number of colors in the image, can then be
calculated as (2)

Another approach is to operate directly on the color

values. Statistical context-based compression known as the
predictionby partial matching (PPM) has been applied for
the compressionof map images [16]. The method is a 2-D
version of the original PPM method [17]; it combines a 2-D
template with the standard PPM coding. Spatial context
modeling is applied to the original colors without any
separation into binary layers. The method has been applied
both to palette images and street maps [16]. The major
problem with PPM-based methods is the context dilution
problem, which occurs when pixel statistics are distributed
over too many contexts, thus degrading the efficiency of the
compres-sion.

We propose the generalized context tree (GCT)
algorithm [18] of -ary tree with incomplete structure. The
GCT approach has difficulties in its implementation due to
its substantial time and memory requirements, especially for
the construction of an optimal incomplete -ary tree. We
propose a fast suboptimal pruning algorithm, which
significantly decreases the processing time. The
compression consists of two main phases. In the first phase,
we construct and prune the context tree. We build up the
context tree to a predefined maximum depth and collect the
sta-tistics for each node in the tree, and then prune out nodes
that do not provide improvement in compression. In the

second phase, entropy coding is applied to the image using
the optimized con-text tree. We need to store the context
tree into the compressed file, as well. It consists of two
parts: the description of the con-text tree structure and the
encoded image. The proposed algo-rithm is outlined in Fig.
2.

II. CONTEXT TREE MODELLING

A. Finite Context Modeling:
In context modeling, the probability of the current pixel

 depends on the combination of already encoded pixels
. The combination of these pixel values is called

context. The probabilities of the pixels, generated under
thegiven context, are usually treated as being independent
[19]. In 2-D modeling, the context is defined by the set of
closest pixels. There are several ways to define the location
and the order of the context pixels [19], [20]. Simple
examples of a 2-D template are shown in Fig. 3.
The context model is a collection of independent sources of
random variables. By the assumption of independence, it is
Using the given statistical model, the entropy coder does the
encoding. The adaptive probability estimator of the entropy
coder operates according to the formula Here, the parameter
 is used for measuring the uncertainty of the model, and its

value depends on the selected modeling scheme [21]. At the
beginning of the encoding, we set to , by analogy with
[22].

B. Context Tree Algorithm:
Theoretically, a better probability estimation of pixels

can be obtained by using a larger context template.
However, the number of contexts grows exponentially with
the size of the tem-plate, and the distribution of the pixel
statistics over too many contexts degrades the compression
efficiency.

The use of the context tree algorithm [14] provides a
more efficient approach for context modeling, so that a
larger number of neighboring pixels can be taken into
account without context dilution. The context tree algorithm
is applied for the compres-sion in the same manner as the
fixed size context, but with a different context selection. The
selection is made by traversing the context tree from the root
to a terminal node, each time se-lecting the branch
according to the corresponding pixel value. The terminal
node points to the statistical model that is to be used.

Single-pass context tree modeling [14] constructs the
context tree adaptively. It makes the selection of the context
according to the estimation of its proportion in the reduction
of the con-ditional entropy. If this value outperforms the
cost of the node, then it is selected.

The two-pass context tree modeling [14], [20]
constructs the tree structure and collects the statistics for
each context before coding. The context tree is then pruned
in order to minimize the sum of the overall conditional
entropy and tree description cost. In this approach, the
context selection is done by traversing the context tree until
the corresponding symbol points to a nonex-isting branch, or
until the current node is a leaf.

We use the second approach for constructing the
context tree: optimize the context model according to the
encoded data and store it to the compressed file. This
approach requires a lot of memory and calculation resources

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 263 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

during the encoding, but the decoding is much faster and
requires significantly less memory resources, because the
tree already exists.

C. Construction of an Initial Context Tree:
To construct an initial context tree, it is necessary to

process the image data to collect statistics for all potential
contexts—that is, for all leaves and internal nodes. Each
node stores information of the counts of each color
appearing in the particular context. The algorithm of the
context tree construc-tion operates as follows.

Step 1) Create a root of the tree.
Step 2) or each pixel,

a. Traverse the tree along the path defined by the values of

the context pixels , , where the positions of
the pixels are defined according to a predefined
template.

b. If the position of some pixel in the context is outside of
the image, then the pixel value is set to zero.

c. If some node along the path does not have a consequent
branch for the transition to the next context pixel, then
the algorithm creates the necessary child node and
processes it. Each new node has counters, which all
are initially set to zero.

d. In all visited nodes, the algorithm increases the count of
the current pixel value by 1.
This completes the construction of the context tree for

all pos-sible contexts. The time complexity of the algorithm
is , where is the maximum depth of the context
tree, and is the number of pixels in the image.

D. Pruning the Context Tree:
The initial context tree is pruned by comparing every

parent node against its children nodes to find the optimal
combination of siblings. We denote the overall tree as ,
and the nodes of the tree as . The number of bits, required
to store the node in the compressed file, is denoted as
and is defined by

The leaves a significant part of all nodes in the context

tree, and (4) reduces the total number of bits required for
the context tree description. We denote the set of all
terminal nodes of the tree as . We denote the count
of the symbol as , where . The estimated code
length generated by a ter-minal node is calculated using
the following expression [19], [23]:

This definition corresponds to the result obtained by a

single-pass arithmetic coder [21]. We define the cost of the

context tree as

The first term gives the cost of the storage of the tree,

and the second term gives the cost of the compression of the
image with this tree. The goal of the tree pruning is to
modify the structure of the context tree so that the cost
function (6) will be minimized. For solving this problem,
we use a bottom-up algorithm [21], which is based on the
principle that the optimal tree consists of optimal subtrees.
For any node in the tree, we denote the vector of counts as,
and the child nodes as. We denote the vector describing the
structure of the node branches as the node configuration
vector. This vector , defines which branches will be pruned
out in the optimization: If , then the -th branch is pruned.

The maximum number of possible configuration vectors
for a node is . The optimal cost for any given tree

 can be expressed by the recursive (7) and (8) if has no
subtrees otherwise

Here, is a subtree of starting from its child node

.
The operator “ ” denotes the Hadamard product (the

element by element product of two vectors/matrices). These
formulae require that, for the calculation of the optimal cost
of any tree, we first need to calculate the optimal costs of all
its subtrees.

The algorithm recursively prunes out all unnecessary

branches, and outputs the structure of the optimal context
tree. An example of pruning a single node is shown in Fig.
4. The best configuration is chosen between 16 different
variants of the pixel distribution between the parent and
children. The resulting distribution produces the smallest
value of the function (6).

III. FINDING THE OPTIMAL CONFIGURATION
VECTOR

Finding the optimal node configuration vector is the
most time-consuming phase in the construction of the -ary
incom-plete context tree. In the case of the full context tree,
the config-uration can be chosen only from two alternatives:
either prune all subtrees of the considered node or preserve
them all. In the case of incomplete context tree, however, we

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 264 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

need to solve a more complicated optimization problem.

Figure. 4. Example of a single-node pruning: Resulted node configuration

is (0,0,0,1).

Figure. 5. Pseudocode of the local optimal configuration search.

A. Full Search Approach:
We need to process the pruning of each node of the

context tree. A straightforward approach is to calculate all
possible vari-ants of the subtree configurations and then
choose the best one. If the number of nodes in the context
tree is , then the time complexity of the full search is

. In practice, the tree pruning requires fewer
computations because the number of ex-isting subtrees at
each node is usually smaller than in real map images.
Nevertheless, this part is the bottleneck of the algorithm
because the pruning can take several hours, even for a small
map image.

B. Steepest Descent Approach:
One possible way to reduce the time complexity is to

com-promise the optimality by considering only a small
amount of all possible configuration vectors. We apply the
well-known steepest descent optimization algorithm.

According to (7) and(8)m the optimization problem for tree
 can be formulated as

The candidate solutions are considered as the

vertices of an -dimensional hypercube .
The proposed optimization algorithm is applied for each

node of the context tree. The result of the optimization is the
optimal configuration vector and the cost of the node. The
algorithm

The pseudocodes of the proposed optimization

technique and the steepest descent algorithm are shown in
Figs. 5 and 6, corre-spondingly. In the worst case, the
number of calculations in this steepest descendent algorithm
for each node is , which is the same as in the full search.
However, we can adjust the tradeoff between time and
optimality of the algorithm by a suitable se-lection of the
threshold. The threshold value defines how large the set of
possible solutions in the steepest descent optimiza-tion is. If
the threshold value is large, then the set of solutions is large
and the result of the optimization is close to the global op-
timum, but the algorithm works slower. A small threshold
value narrows the set of processed solutions, thereby
increasing the speed of algorithm and reducing the accuracy
of the optimiza-tion. We use the threshold value set to 0.01,
which was found experimentally.

IV. HYBRID TREE VARIANT

Free tree coding was introduced in [20]. Thelocations
of thecontext pixels in the previous context algorithm are
defined by a static template, whereas the free tree optimizes
the locations to the encoded image. The locations of each

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 265 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

context pixel depend on the values of the previous context
pixels. Fig. 7 shows an ex-ample of the binary free tree with
optimized pixels locations. In the example, the coordinates
of the second context pixels de-pend on the value of the
pixel with relative coordinates . If the value of the
pixel is white, then the next context pixel is located at
position . Otherwise, the next context pixel is located
at position .

A greedy algorithm for free tree constructing has been
de-scribed in [19]. The algorithm builds up the free tree
level-by-level, proceeding through the entire image during
each iteration.

Figure. 6. Pseudocode of the recursive steepest descent algorithm.

Figure. 7. Illustrative example of the free tree.

Figure. 8. Example of the hybrid tree: Locations of depths less than or

equal to four are defined by the free tree, and locations of bigger depth are
defined by unused positions in the static template.

Figure. 9. Sample 256 2 256 pixel fragments of the test images.

The number of all possible contexts and memory
requirements increase exponentially with the depth of the
free tree. Therefore, the construction of a free tree that is
deep can be problematic.

As an alternative to the free tree, we consider a so-
called hy-brid tree, where the free tree is built up only to a
predefineddepth , and the locations of deeper contexts are
defined by a fixed template. During encoding we traverse
along the context tree and mark all locations that have
occurred in a fixed template. For contexts with depths
smaller than or equal to , we choose the locations
according to the free tree structure. For contexts with depth
greater than , we choose the first unused location in the
fixed predefined template. Fig. 8 shows an example of the
hybrid tree.

The hybrid tree coding produces better compression
than the fixed one, but the construction of the tree and the
procedure for choosing the locations significantly increase
the processing for choosing the locations significantly
increase the processing time.

Table 1: Properties Of The Map Images From Different Test Sets

V. EXPERIMENTS AND DISCUSSIONS

The proposed algorithm was tested on six sets of
different map images; see Fig. 9 for illustrative examples
and Table I for their statistics. The sets from #1 to #4 are
from the database of the National Land Survey of Finland
[24]. We compare the following compression methods.
a. GIF: CompuServe interchange format [6].
b. PNG: Portable network graphics format [7], [8].
c. MCT: Multilayer binary context tree with optimized

order of the layers [12].

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 266 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

d. PWC: Piecewise-constant image model [9].
e. CT: The -ary context tree modeling with full tree

structure [20], [25].
f. GCT: Generalized context tree algorithm with an

incom-plete -ary tree structure with fixed template.
g. GCT-HT: Generalized context tree algorithm with

incom- plete -ary tree structure with hybrid tree.
We used the MQ coder as the entropy coder, which is a

mod-ification of the Q coder [26]. All benchmarking was
done on a 3-GHz P4 computer, with 1-GB of RAM, under
Windows XP.

The MCT algorithm was applied to the binary layers
after color separation of the test images. The rest of the
algorithms were applied to the original color images.
Because of the huge processing time needed for the optimal
ordering of the layers, the MCT algorithm was run only with
the first five test sets.

Table 4: Total Processing Times (In Seconds) For Different Phases Of
Compression And Decompression Of The Gct-Ht Algorithm

We also implemented the two-pass version of CT
algorithm [14], [20] with backward pruning [20]. It utilizes
variable depth context modeling with a full -ary context
tree.

Compression results are summarized in Table II. The
proposed algorithm outperformed all comparative methods
in terms of compression performance. The GCT algorithm
worked better with all test sets because it utilized the color
dependencies better. The proposed algorithm gave at least a
6% lower bit rate, on average, than the comparative
methods. Between the two variants, the hybrid tree approach
(GCT-HT) was slightly better than the GCT using a static
template.

TABLE 2 COMPRESSION RESULTS (BITS PER PIXEL)

 Tables III and IV report the processing times of the

GCT and GCT-HT algorithms. In the compression stage,

most time was spent on context tree construction and
pruning. The experiments show that the algorithm is
asymmetric in execution time: the decompression stage
takes much less time than the compression stage. It can be
observed that the GCT method is suitable for online
processing of images of reasonably small size.

Table 3: Total Processing Times (In Seconds) Of The Gct For Different
Steps Of The Compression And Decompression

Table V shows the performance of the steepest descent

ap-proach in comparison with the full search for a single
map from test set #5. The results indicate that the steepest
descending ap-proach provides results almost as good the
full search but is sig-nificantly faster. It is, therefore, more
applicable to the online processing of images.
Table 5: Compression Times (In Seconds) Of The Gct For Full Search And

Steepest Descent Approaches As A Function Of The Maximum Depth

Fig. 10 shows the dependency of the compression

efficiency and the image size. For this experiment, we took
the images from test set #5 and divided them into fragments
of dimensions 100 100, 200 200, and 400 400 pixels.

The resulting bit rates were calculated as the average of
all compressed files. The experiments showed that the bit
rate of the GCT algorithm re-mains rather stable when
operating with images of small size.

Figure. 10. Dependency of the bit rate on the image size.
Fig. 11 illustrates the dependency of the GCT

compression efficiency on the number of colors. The tests
were processed on test set #6, where the number of colors
was decreased by color quantization from 67 down to 32,
16, 10, 6, and 2.

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 267 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Figure. 11. Dependency of the bit rate on the image color depth.

The proposed algorithm can be used mainly for the
compres-sion of palette and halftone images in general, but
there are some problems, which can decrease its efficiency
in the case of photo-graphic images. The necessity of storing
the context tree in the compressed file can decrease the
compression performance if the number of colors is
increased significantly. The storage de-mands are about
bits per each node and the space requirement increases
exponentially with tree depth. The algorithm is, there-fore,
not expected to work efficiently for images with a large
color palette (more than 128 colors), or for small images
(with the size less than 100 100 pixels).

In the case of larger images, the processing time of the
algo-rithm can still be a bottleneck in real time applications.
Most of the time, the compression is taken by the
construction and pruning of the context tree, and the time
increases as the number of colors and maximum depth of the
tree increases. The time could be reduced further by
applying fast calculation of the es-timated code length, in
the same manner as proposed in [19].

VI. CONCLUSION

In this paper, we propose an -ary context tree model
with incomplete tree structure for the lossless compression
of color map images. A fast heuristic pruning algorithm was
also intro-duced to decrease the time required in the
optimization of the tree structure.

The proposed -ary incomplete context-tree-based
algorithm outperforms the competitive algorithms (MCT,
PWC) by 20%, and by 6% in the case of full context tree
(CT) algorithm.

The compression method was successfully applied to
raster map images up to 67 colors. If the overwhelming
memory con-sumption can be solved in the case of images
with a larger number of colors, then it is expected that the
method could also be applicable to photographic images.
This is a point for further study.

VII. REFERENCES

[1] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I
lossless image compression algorithm: Principles and
standardization into JPEG-LS,” IEEE Trans. Image
Process., vol. 9, no. 8, pp. 1309–1324, Aug. 2000.

[2] X. Wu, “An algorithmic study on lossless image
compression,” in Proc.IEEE Data Compression Conf., Apr.

1996, pp. 150–159.

[3] N. Memon and A. Venkateswaran, “On ordering color
maps for loss-less predictive coding,” IEEE Trans. Image
Process., vol. 5, no. 11, pp. 1522–1527, Nov. 1996.

[4] B. Meyer and P. Tischer, “TMW—A new method for
lossless image compression,” presented at the Int. Picture
Coding Symp., Sep. 1997.

[5] P. Howard and J. Vitter, “Analysis of arithmetic coding for
data com-pression,” in Proc. IEEE Data Compression
Conf., Apr. 1991, pp. 3–12.

[6] T. Welch, “A technique for high-performance data
compression,” Comput. Mag., vol. 17, no. 6, pp. 8–19, Jun.
1984.

[7] P. Ausbeck, “The piecewise-constant image model,” Proc.
IEEE, vol. 88, no. 11, pp. 1779–1789, Nov. 2000.

[8] S. Tate, “Lossless Compression of Region Edge Maps,”
Tech. Rep. CS-1992-09, Dept. Computs. Sci., Duke Univ.,
Durham, NC.

[9] S. Forchhammer and O. Jensen, “Content layer progressive
coding of digital maps,” IEEE Trans. Image Process., vol.
11, no. 12, pp. 1349–1356, Dec. 2002.

[10] P. Kopylov and P. Fränti, “Compression of map images by
multilayer context tree modeling,” IEEE Trans. Image
Process., vol. 14, no. 1, pp. 1–11, Jan. 2005.

[11] JBIG, Progressive Bi-Level Image Compression, ISO/IEC
InternationalStandard 11544, 1993.

[12] J. Rissanen, “A universal data compression system,” IEEE
Trans. Inf.Theory, vol. 29, no. 5, pp. 656–664, Sep. 1983.

[13] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded image-
domain adaptive compression of simple images,” in Proc.
32nd Asilomar Conf. Signals,Systems, Computers, Nov.
1998, vol. 2, pp. 1256–1260.

[14] S. Forchhammer and J. Salinas, “Progressive coding of
palette images and digital maps,” in Proc. IEEE Data
Compression Conf., Apr. 2002, pp. 362–371.

[15] J. Cleary and I. Witten, “Data compression using adaptive
coding and partial string matching,” IEEE Trans. Commun.,
vol. 32, no. 4, pp. 396–402, Apr. 1984.

[16] A. Martin, G. Seroussi, and M. Weinberger, “Linear time
universal coding and time reversal of tree sources via FSM
closure,” IEEE Trans.Inf. Theory, vol. 50, no. 7, pp. 1442–
1468, Jul. 2004.

[17] B. Martins and S. Forchhammer, “Tree coding of bi-level
images,” IEEE Trans. Image Process., vol. 7, no. 4, pp.
517–528, Apr. 1998.

[18] R. Nohre, “Topics in Descriptive Complexity,” Ph.D.
dissertation, Univ. Linköping, Linköping, Sweden, 1994.

[19] P. Howard and J. Vitter, “Fast and efficient lossless image
compres-sion,” in Proc. IEEE Data Compression Conf.,
Apr. 1993, pp. 351–360.

[20] G. Martin, “An algorithm for removing redundancy from a
digitized message,” presented at the Video and Data
Recording Conf., Jul. 1979.

[21] M. Weinberger and J. Rissanen, “A universal finite memory
source,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 643–
652, May 1995.

Archana P.Choudhary ,International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 261-268

© 2010-14, IJARCS All Rights Reserved 268 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

[22] National Land Survey of Finland. Helsinki, Finland
[Online]. Avail-able: http://www.nls.fi/index_e.html

[23] M. Weinberger, J. Rissanen, and R. Arps, “Application of
universal context modeling to lossless compression of gray-
scale images,” IEEETrans. Image Process., vol. 5, no. 4, pp.

575–586, Apr. 1996.

[24] J. Mitchell and W. Pennebaker, “Software implementations
of the Q-coder,” IBM J. Res. Develop., vol. 32, no. 6, pp.
753–774, Nov. 1988.

