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Abstract—Significant lossless compression results of color mapimages have been obtained by dividing the color maps into layers and by 
compressing the binary layers separately using an opti-mized context tree model that exploits interlayer dependencies. Even though the use of a 
binary alphabet simplifies the context tree construction and exploits spatial dependencies efficiently, it is expected that an equivalent or better 
result would be obtained by operating directly on the color image without layer separation. In this paper, we extend the previous context-tree-
based method to operate on color values instead of binary layers. We first generate an -ary context tree by constructing a complete tree up to a 
predefined depth, and then prune out nodes that do not provide compression improvements. Experiments show that the proposed method 
outperforms existing methods for a large set of different color map images. 
 
Keywords:  Context tree compression, lossless image coding map, image coding. 

I. INTRODUCTION 

In this paper, we consider the problem of lossless 
compres-sion of raster map images. These types of images 
usuallyhave few colors, a lot of detail, and are large. An 
example of a map image is shown in  Fig. 1. Predictive 
coding techniques such as JPEG-LS  [1], CALIC  [2], [3], 
TMW  [4], and FELICS  [5] work well on photographic 
images with smooth changes in color, but are less efficient 
on map images, due to the map im-ages’ sharp change in 
colors. 

The CompuServe Graphics Interchange Format (GIF) 
and Portable Network Graphic (PNG) formats are the most 
com-monly used file formats for compressing graphics. GIF 
uses LZW compression algorithm  [6]. PNG uses the 
DEFLATE algo-rithm  [7], which is a combination of the 
LZ77 dictionary-based compression algorithm  [8] and the 
Huffman coding. Both of these methods can also be used for 
the compression of map im-ages. These algorithms are 
looser than newer algorithms, which are based on context 
modeling. 

Typical map images have high spatial resolution for 
repre-senting fine details, such as text and graphics objects, 
but do not have as many color tones as photographic images. 
The Piece-wise-constant (PWC) algorithm  [9] hasbeen 
developed for thecompression of palette images. It uses two-
pass object-based Modeling. In the first pass, boundaries 
between constant color pieces are established by the edge 
model and encoded according to the edge context model, as 
proposed by Tate  [10]. The color of the pieces are 
determined and coded in the second pass by finding 
diagonal connectivity and by color guessing. Finally, an 
arithmetic coder encodes the resulting information. The 
latest version of PWC, which includes the skip-innovation 
technique and the streaming single-pass variant  [9], remains 
to be one of the best compression algorithms for palette 
images. 
 

 
 
 
 
 

 

 
Figure. 1. Example of color map image: full size (left) 1024 2 1024 pixels 

and (right) 100 2 100 part. 

Statistical context modeling that exploits 2-D spatial 
depen-dencies has also been applied for lossless palette 
image com-pression. The known schemes can be 
categorized into those that divide the images into binary 
layers and those that apply con-text modeling directly to the 
original colors. The separation of the input image can be 
done through color separation or through semantic 
separation [11], [12].The binary layers are then com-pressed 
by a context-modeling scheme, such as JBIG  [13], or by 
using the context tree [14]. The best results for this approach 
have been achieved by context tree compression with 
semantic separation  [11], [12], but this requires that the 
encoder has the semantic decomposition available 
beforehand, which is not gen-erally the case. In terms of 
color separation, the best results have been achieved by the 
multilayer context tree (MCT) compres-sion with an optimal 
order of layers and template pixels  [12]. The drawback of 
this approach is the compression time, which can be quite 
long due to the time required for the optimal or-dering of 
layers. 

A possible alternative to color separation is the 
separation of the colors into bit planes followed by the 
separate compression of each bit plane. Embedded image-
domain adaptive compres-sion of simple images (EIDAC)  
[15] usesa 3-D context modeltailored for the compression of 
grayscale images. The algorithm divides the image into bit 
planes and compresses them sepa-rately. However, the 
context pixels are selected not only from the current bit 
plane, but also from the already processed bit planes. 
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Figure. 2.  Overall scheme of the proposed algorithm. 

 
Figure. 3. Default location and order of the neighbor pixels for standard 

(left) 1-norm and (right) 2-norm templates. 

Simple to assign probabilities to each new pixel 
generated in the current context. We denote the frequency of 
the pixel Value in the context as (1) The conditional 
probability of the pixel value, K in the context X1,……., xm 
as where is the number of colors in the image, can then be 
calculated as (2) 

 
Another approach is to operate directly on the color 

values. Statistical context-based compression known as the 
predictionby partial matching (PPM) has been applied for 
the compressionof map images  [16]. The method is a 2-D 
version of the original PPM method  [17]; it combines a 2-D 
template with the standard PPM coding. Spatial context 
modeling is applied to the original colors without any 
separation into binary layers. The method has been applied 
both to palette images and street maps  [16]. The major 
problem with PPM-based methods is the context dilution 
problem, which occurs when pixel statistics are distributed 
over too many contexts, thus degrading the efficiency of the 
compres-sion. 

We propose the generalized context tree (GCT) 
algorithm  [18] of -ary tree with incomplete structure. The 
GCT approach has difficulties in its implementation due to 
its substantial time and memory requirements, especially for 
the construction of an optimal incomplete -ary tree. We 
propose a fast suboptimal pruning algorithm, which 
significantly decreases the processing time. The 
compression consists of two main phases. In the first phase, 
we construct and prune the context tree. We build up the 
context tree to a predefined maximum depth and collect the 
sta-tistics for each node in the tree, and then prune out nodes 
that do not provide improvement in compression. In the 

second phase, entropy coding is applied to the image using 
the optimized con-text tree. We need to store the context 
tree into the compressed file, as well. It consists of two 
parts: the description of the con-text tree structure and the 
encoded image. The proposed algo-rithm is outlined in  Fig. 
2. 

II. CONTEXT TREE MODELLING 

A. Finite Context Modeling: 
In context modeling, the probability of the current pixel 

 depends on the combination of  already encoded pixels 
. The combination of these pixel values is called 

context. The probabilities of the pixels, generated under 
thegiven context, are usually treated as being independent  
[19]. In 2-D modeling, the context is defined by the set of 
closest pixels. There are several ways to define the location 
and the order of the context pixels  [19], [20]. Simple 
examples of a 2-D template are shown in  Fig. 3. 
The context model is a collection of independent sources of 
random variables. By the assumption of independence, it is 
Using the given statistical model, the entropy coder does the 
encoding. The adaptive probability estimator of the entropy 
coder operates according to the formula Here, the parameter 
 is used for measuring the uncertainty of the model, and its 

value depends on the selected modeling scheme  [21]. At the 
beginning of the encoding, we set  to , by analogy with  
[22]. 

B. Context Tree Algorithm: 
Theoretically, a better probability estimation of pixels 

can be obtained by using a larger context template. 
However, the number of contexts grows exponentially with 
the size of the tem-plate, and the distribution of the pixel 
statistics over too many contexts degrades the compression 
efficiency. 

The use of the context tree algorithm [14] provides a 
more efficient approach for context modeling, so that a 
larger number of neighboring pixels can be taken into 
account without context dilution. The context tree algorithm 
is applied for the compres-sion in the same manner as the 
fixed size context, but with a different context selection. The 
selection is made by traversing the context tree from the root 
to a terminal node, each time se-lecting the branch 
according to the corresponding pixel value. The terminal 
node points to the statistical model that is to be used. 

Single-pass context tree modeling  [14] constructs the 
context tree adaptively. It makes the selection of the context 
according to the estimation of its proportion in the reduction 
of the con-ditional entropy. If this value outperforms the 
cost of the node, then it is selected. 

The two-pass context tree modeling  [14], [20] 
constructs the tree structure and collects the statistics for 
each context before coding. The context tree is then pruned 
in order to minimize the sum of the overall conditional 
entropy and tree description cost. In this approach, the 
context selection is done by traversing the context tree until 
the corresponding symbol points to a nonex-isting branch, or 
until the current node is a leaf. 

We use the second approach for constructing the 
context tree: optimize the context model according to the 
encoded data and store it to the compressed file. This 
approach requires a lot of memory and calculation resources 
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during the encoding, but the decoding is much faster and 
requires significantly less memory resources, because the 
tree already exists. 

C. Construction of an Initial Context Tree: 
To construct an initial context tree, it is necessary to 

process the image data to collect statistics for all potential 
contexts—that is, for all leaves and internal nodes. Each 
node stores information of the counts of each color 
appearing in the particular context. The algorithm of the 
context tree construc-tion operates as follows.  

Step 1) Create a  root of the tree.  
Step 2) or each pixel, 

 

 
a. Traverse the tree along the path defined by the values of 

the context pixels   ,   , where the positions of 
the pixels are defined according to a predefined 
template.  

b. If the position of some pixel in the context is outside of 
the image, then the pixel value is set to zero.  

c. If some node along the path does not have a consequent 
branch for the transition to the next context pixel, then 
the algorithm creates the necessary child node and 
processes it. Each new node has   counters, which all 
are initially set to zero.  

d. In all visited nodes, the algorithm increases the count of 
the current pixel  value by 1. 
This completes the construction of the context tree for 

all pos-sible contexts. The time complexity of the algorithm 
is  , where  is the maximum depth of the context 
tree, and  is the number of pixels in the image. 

D. Pruning the Context Tree: 
The initial context tree is pruned by comparing every 

parent node against its children nodes to find the optimal 
combination of siblings. We denote the overall tree as , 
and the nodes of the tree as . The number of bits, required 
to store the node  in the compressed file, is denoted as  
and is defined by 
 

 
The leaves a significant part of all nodes in the context 

tree, and  (4) reduces the total number of bits required for 
the context tree description. We denote the set of all 
terminal nodes of the tree  as  . We denote the count 
of the symbol  as  , where  . The estimated code 
length generated by a ter-minal node  is calculated using 
the following expression  [19],  [23]: 

 
This definition corresponds to the result obtained by a 

single-pass arithmetic coder  [21]. We define the cost of the 

context tree  as 

 
The first term gives the cost of the storage of the tree, 

and the second term gives the cost of the compression of the 
image with this tree. The goal of the tree pruning is to 
modify the structure of the context tree so that the cost 
function  (6) will be minimized. For solving this problem, 
we use a bottom-up algorithm  [21], which is based on the 
principle that the optimal tree consists of optimal subtrees. 
For any node in the tree, we denote the vector of counts as, 
and the child nodes as. We denote the vector describing the 
structure of the node branches as the node configuration 
vector. This vector , defines which branches will be pruned 
out in the optimization: If , then the  -th branch is pruned. 

The maximum number of possible configuration vectors 
for a node is . The optimal cost  for any given tree 

 can be expressed by the recursive (7)  and (8) if   has no 
subtrees otherwise 

 
Here,  is a subtree of  starting from its child node 

. 
The operator “ ” denotes the Hadamard product (the 

element by element product of two vectors/matrices). These 
formulae require that, for the calculation of the optimal cost 
of any tree, we first need to calculate the optimal costs of all 
its subtrees. 

 
The algorithm recursively prunes out all unnecessary 

branches, and outputs the structure of the optimal context 
tree. An example of pruning a single node is shown in  Fig. 
4. The best configuration is chosen between 16 different 
variants of the pixel distribution between the parent and 
children. The resulting distribution produces the smallest 
value of the function  (6). 

III. FINDING THE OPTIMAL CONFIGURATION 
VECTOR 

Finding the optimal node configuration vector is the 
most time-consuming phase in the construction of the -ary 
incom-plete context tree. In the case of the full context tree, 
the config-uration can be chosen only from two alternatives: 
either prune all subtrees of the considered node or preserve 
them all. In the case of incomplete context tree, however, we 
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need to solve a more complicated optimization problem. 

 
Figure. 4. Example of a single-node pruning: Resulted node configuration 

is (0,0,0,1). 

 
Figure. 5.  Pseudocode of the local optimal configuration search. 

A. Full Search Approach: 
We need to process the pruning of each node of the 

context tree. A straightforward approach is to calculate all 
possible vari-ants of the subtree configurations and then 
choose the best one. If the number of nodes in the context 
tree is , then the time complexity of the full search is 

. In practice, the tree pruning requires fewer 
computations because the number of ex-isting subtrees at 
each node is usually smaller than  in real map images. 
Nevertheless, this part is the bottleneck of the algorithm 
because the pruning can take several hours, even for a small 
map image. 

B. Steepest Descent Approach: 
One possible way to reduce the time complexity is to 

com-promise the optimality by considering only a small 
amount of all possible configuration vectors. We apply the 
well-known steepest descent optimization algorithm. 

According to  (7) and(8)m the optimization problem for tree 
 can be formulated as 

 
The candidate solutions  are considered as the 

vertices of an  -dimensional hypercube . 
The proposed optimization algorithm is applied for each 

node of the context tree. The result of the optimization is the 
optimal configuration vector and the cost of the node. The 
algorithm 
 

 

 
The pseudocodes of the proposed optimization 

technique and the steepest descent algorithm are shown in  
Figs. 5 and  6, corre-spondingly. In the worst case, the 
number of calculations in this steepest descendent algorithm 
for each node is , which is the same as in the full search. 
However, we can adjust the tradeoff between time and 
optimality of the algorithm by a suitable se-lection of the 
threshold. The threshold value defines how large the set of 
possible solutions in the steepest descent optimiza-tion is. If 
the threshold value is large, then the set of solutions is large 
and the result of the optimization is close to the global op-
timum, but the algorithm works slower. A small threshold 
value narrows the set of processed solutions, thereby 
increasing the speed of algorithm and reducing the accuracy 
of the optimiza-tion. We use the threshold value set to 0.01, 
which was found experimentally. 

IV. HYBRID TREE VARIANT 

Free tree coding was introduced in  [20]. Thelocations 
of thecontext pixels in the previous context algorithm are 
defined by a static template, whereas the free tree optimizes 
the locations to the encoded image. The locations of each 
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context pixel depend on the values of the previous context 
pixels.  Fig. 7 shows an ex-ample of the binary free tree with 
optimized pixels locations. In the example, the coordinates 
of the second context pixels de-pend on the value of the 
pixel with relative coordinates  . If the value of the 
pixel is white, then the next context pixel is located at 
position  . Otherwise, the next context pixel is located 
at position . 

A greedy algorithm for free tree constructing has been 
de-scribed in  [19]. The algorithm builds up the free tree 
level-by-level, proceeding through the entire image during 
each iteration. 
 

 
Figure. 6.  Pseudocode of the recursive steepest descent algorithm. 

 
Figure. 7.  Illustrative example of the free tree. 

 
Figure. 8. Example of the hybrid tree: Locations of depths less than or 

equal to four are defined by the free tree, and locations of bigger depth are 
defined by unused positions in the static template. 

 
Figure. 9.  Sample 256 2 256 pixel fragments of the test images. 

The number of all possible contexts and memory 
requirements increase exponentially with the depth of the 
free tree. Therefore, the construction of a free tree that is 
deep can be problematic. 

As an alternative to the free tree, we consider a so-
called hy-brid tree, where the free tree is built up only to a 
predefineddepth , and the locations of deeper contexts are 
defined by a fixed template. During encoding we traverse 
along the context tree and mark all locations that have 
occurred in a fixed template. For contexts with depths 
smaller than or equal to , we choose the locations 
according to the free tree structure. For contexts with depth 
greater than , we choose the first unused location in the 
fixed predefined template.  Fig. 8 shows an example of the 
hybrid tree. 

The hybrid tree coding produces better compression 
than the fixed one, but the construction of the tree and the 
procedure for choosing the locations significantly increase 
the processing for choosing the locations significantly 
increase the processing time. 

Table 1: Properties Of The Map Images From Different Test Sets 

 

V. EXPERIMENTS AND DISCUSSIONS 

The proposed algorithm was tested on six sets of 
different map images; see  Fig. 9 for illustrative examples 
and  Table I for their statistics. The sets from #1 to #4 are 
from the database of the National Land Survey of Finland  
[24]. We compare the following compression methods. 
a. GIF: CompuServe interchange format  [6].  
b. PNG: Portable network graphics format  [7], [8].  
c. MCT: Multilayer binary context tree with optimized 

order of the layers  [12].  
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d. PWC: Piecewise-constant image model  [9].  
e. CT: The  -ary context tree modeling with full tree 

structure  [20], [25]. 
f. GCT: Generalized context tree algorithm with an 

incom-plete  -ary tree structure with fixed template.  
g. GCT-HT: Generalized context tree algorithm with 

incom- plete -ary tree structure with hybrid tree. 
We used the MQ coder as the entropy coder, which is a 

mod-ification of the Q coder  [26]. All benchmarking was 
done on a 3-GHz P4 computer, with 1-GB of RAM, under 
Windows XP. 

The MCT algorithm was applied to the binary layers 
after color separation of the test images. The rest of the 
algorithms were applied to the original color images. 
Because of the huge processing time needed for the optimal 
ordering of the layers, the MCT algorithm was run only with 
the first five test sets. 

Table 4: Total Processing Times (In Seconds) For Different Phases Of 
Compression And Decompression Of The Gct-Ht Algorithm 

 

We also implemented the two-pass version of CT 
algorithm  [14], [20] with backward pruning  [20]. It utilizes 
variable depth context modeling with a full -ary context 
tree. 

Compression results are summarized in  Table II. The 
proposed algorithm outperformed all comparative methods 
in terms of compression performance. The GCT algorithm 
worked better with all test sets because it utilized the color 
dependencies better. The proposed algorithm gave at least a 
6% lower bit rate, on average, than the comparative 
methods. Between the two variants, the hybrid tree approach 
(GCT-HT) was slightly better than the GCT using a static 
template. 

TABLE 2 COMPRESSION RESULTS (BITS PER PIXEL) 

 
 Tables III and  IV report the processing times of the 

GCT and GCT-HT algorithms. In the compression stage, 

most time was spent on context tree construction and 
pruning. The experiments show that the algorithm is 
asymmetric in execution time: the decompression stage 
takes much less time than the compression stage. It can be 
observed that the GCT method is suitable for online 
processing of images of reasonably small size. 

Table 3: Total Processing Times (In Seconds) Of The Gct For Different 
Steps Of The Compression And Decompression 

 
Table V shows the performance of the steepest descent 

ap-proach in comparison with the full search for a single 
map from test set #5. The results indicate that the steepest 
descending ap-proach provides results almost as good the 
full search but is sig-nificantly faster. It is, therefore, more 
applicable to the online processing of images. 
Table 5: Compression Times (In Seconds) Of The Gct For Full Search And 

Steepest Descent Approaches As A Function Of The Maximum Depth 

 
Fig. 10 shows the dependency of the compression 

efficiency and the image size. For this experiment, we took 
the images from test set #5 and divided them into fragments 
of dimensions 100  100, 200  200, and 400  400 pixels. 

The resulting bit rates were calculated as the average of 
all compressed files. The experiments showed that the bit 
rate of the GCT algorithm re-mains rather stable when 
operating with images of small size. 

 
Figure. 10.  Dependency of the bit rate on the image size. 
Fig. 11 illustrates the dependency of the GCT 

compression efficiency on the number of colors. The tests 
were processed on test set #6, where the number of colors 
was decreased by color quantization from 67 down to 32, 
16, 10, 6, and 2. 
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Figure. 11.  Dependency of the bit rate on the image color depth. 

The proposed algorithm can be used mainly for the 
compres-sion of palette and halftone images in general, but 
there are some problems, which can decrease its efficiency 
in the case of photo-graphic images. The necessity of storing 
the context tree in the compressed file can decrease the 
compression performance if the number of colors is 
increased significantly. The storage de-mands are about  
bits per each node and the space requirement increases 
exponentially with tree depth. The algorithm is, there-fore, 
not expected to work efficiently for images with a large 
color palette (more than 128 colors), or for small images 
(with the size less than 100  100 pixels). 

In the case of larger images, the processing time of the 
algo-rithm can still be a bottleneck in real time applications. 
Most of the time, the compression is taken by the 
construction and pruning of the context tree, and the time 
increases as the number of colors and maximum depth of the 
tree increases. The time could be reduced further by 
applying fast calculation of the es-timated code length, in 
the same manner as proposed in  [19]. 

VI. CONCLUSION 

In this paper, we propose an -ary context tree model 
with incomplete tree structure for the lossless compression 
of color map images. A fast heuristic pruning algorithm was 
also intro-duced to decrease the time required in the 
optimization of the tree structure. 

The proposed -ary incomplete context-tree-based 
algorithm outperforms the competitive algorithms (MCT, 
PWC) by 20%, and by 6% in the case of full context tree 
(CT) algorithm. 

The compression method was successfully applied to 
raster map images up to 67 colors. If the overwhelming 
memory con-sumption can be solved in the case of images 
with a larger number of colors, then it is expected that the 
method could also be applicable to photographic images. 
This is a point for further study. 
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