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Abstract: In this paper, different types of interconnection networks are investigated and some of their properties are analyzed to summarize the 
differences in their network cost. The various properties of the interconnection networks such as connectivity, routing algorithm, diameter and 
broadcasting technology are investigated. This analysis gives a framework for the construction of more efficient interconnection networks in future. 
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I. INTRODUCTION 

In parallel computing, to achieve parallelism various 
techniques can be employed. One technique of achieving 
parallelism is using MIMD (Multiple Instruction Multiple 
Data stream). Machines using MIMD have a number of 
processor that functions  asynchronously and independently. 
At any time, different processors may be executing different 
instructions on different pieces of data. MIMD architectures 
may be used in a number of application areas such as  
computer aided design/computer -aided  manufacturing,  
simulation,  modeling, and as  communication switches. 
MIMD machines can be of either  shared memory or  
distributed memory categories. These classifications are based 
on how MIMD processors access memory. Shared memory 
machines may be of the  bus-based, extended, or  hierarchical 
type. Distributed memory machines may have  hypercube or  
mesh interconnection schemes. 

An interconnection network system which can be used to 
link multicomputer processors together greatly influences 
performance and scalability of the whole system. Based on the 
number of nodes, Interconnection networks are classified into 
meshes (n×k), hypercube (2n) and star (n!), and network 
scales to evaluate interconnection networks are degree, 
connectivity, scalability, diameter, network cost [4-10]. 

In an interconnection network, degree related to hardware 
cost and diameter related to message passing time is correlated 
with each other. In general, as degree of an interconnection 
network is increased, diameter is decreased, which can 
increase throughput in the interconnection network, however, 
it increases hardware cost with the increased number of pins 
of the processor when a parallel computer is designed. An 
interconnection network with less degree reduces hardware 
cost but increases message passing time, which adversely 
affects latency or throughput of an interconnection network. 

Network scales being typically used for comparative 
evaluation of an interconnection network due to the said 
characteristic include network cost [4-10] defined as degree x 
diameter of an interconnection network. By virtue of its merit 
of easily providing a communication network system required 
in applications of all kinds. Hypercube is node-symmetric and 
edge-symmetric, has a simple routing algorithm with maximal 
fault tolerance and a simple reflexive system, and also has a 
merit that it may be readily embedded with the proposed 
interconnection networks [11,12]. However, it involves weak 
points that network cost increases due to increase of degree 
with the increased number of nodes, and that a mean distance 
between diameter and node is not short as compared with 
degree. To improve such weak points, Reduced 
Hypercube[13] that reduced the number of edges of a 
hypercube interconnection network, Gaussian Hypercube[14], 
and Exchanged Hypercube[15] have been suggested, and in 
addition, Crossed Cube[5] that improved diameter of a 
hypercube interconnection network, Folded Hypercube[6], 
MRH[7], HFN[4], MRH[1] etc. have been proposed. Many 
interconnection networks that have been proposed until now 
demonstrated that they have superior network cost to 
hypercube by reducing just one network scale of degree or 
diameter of hypercube. Also, this paper demonstrates that 
network cost of MRH (n) is superior through comparative 
analysis of network cost between the hypercube-class 
interconnection networks and MRH (n). 
 
This paper is composed as follows: Section 2 Different types 
of Hypercube interconnection networks, Section 3 analyzes 
the properties of interconnection networks, Section 4 Results 
and discussions and finally, conclusion is given. 

II. TYPES OF INTERCONNECTION NETWORKS 

We have different types of interconnection networks. 
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Some of them are given below: 
a. Hypercube Network.  
b. Folded Hypercube Network. 
c. Multiply Twisted Hypercube Network.  
d. Recursive Circulant Hypercube Network.  
e. Multiple Reduced Hypercube Network.  
f. Half Hypercube Network  

A. Hypercube Network: 
Hypercube system interconnection network contains four 

processors; a processor and a memory module are placed at 
each vertex of a square. The diameter of the system is the 
minimum number of steps it takes for one processor to send a 
message to the other processor that is the farthest away. So, 
for example, the diameter of a 2-cube is 1. In a hypercube 
system with eight processors and each processor and memory 
module being placed in the vertex of a cube, the diameter is 3. 
In general, a system that contains 2^N processors with each 
processor directly connected to N other processors, the 
diameter of the system is N. One disadvantage of a hypercube 
system is that it must be configured in powers of two, so a 
machine must be built that could potentially have many more 
processors than is really needed for the application. 

Construction and different types of Hypercube are shown 
in Figure 1 [1]. 

Figure 1 shows below how to create a tesseract from a 
point. 

Dimension – 0: A point is a hypercube of dimension zero. 
Dimension –1: If one moves this point one unit length, it 

will sweep out a line segment, which is a unit hypercube of 
dimension one. 

Dimension –2: If one moves this line segment its length in 
a  perpendicular direction from itself; it sweeps out a 2-
dimensional square. 

Dimension – 3: If one moves the square one unit length in 
the direction perpendicular to the plane it lies on, it will 
generate a 3-dimensional cube. 

Dimension – 4: If one moves the cube one unit length into 
the fourth dimension, it generates a 4-dimensional unit 
hypercube (a unit  tesseract). 

This can be generalized to any number of dimensions. 
This process of sweeping out volumes can be formalized 
mathematically as a  Minkowski  sum: the d-dimensional 
hypercube is the Minkowski sum of d mutually perpendicular 
unit-length line segments, and is therefore an example of a  
zonotope. The 1 -skeleton of a hypercube is a  hypercube 
graph. 

In H(n), for degree ‘n’ and if number of nodes is ‘n’, 
diameter ‘n’, and network cost will be ‘n2’. 

B. Folded Hypercube Network: 
Folded Hypercube is an  undirected graph formed from a  
hypercube graph by adding to it  perfect  matching edges that 
connects opposite pairs of hypercube vertices. The folded cube 
graph of order k (containing 2k − 1 vertices) may be formed by 
adding edges between opposite pairs of vertices in a 
hypercube graph of order k − 1. (In a hypercube with 2n 
vertices, a pair of vertices are opposite if the shortest path 
between them has length n.) It can, equivalently, be formed 

from a hypercube graph (also) of order k, which has twice as 
many vertices, by  identifying together (or contracting) every 
opposite pair of vertices. An order-k folded cube graph is k -
regular with 2k − 1 vertices and 2k − 2k edges. The  chromatic 
number of the order-k folded cube graph is two when k is even 
(that is, in this case, the graph is  bipartite) and four when k is 
odd. The  odd  girth of a folded cube of odd order is k, so for 
odd k greater than three the folded cube graphs provide a class 
of  triangle-free graphs with chromatic number four and 
arbitrarily large odd girth. As a  distance- regular graph with 
odd girth k and diameter (k − 1)/2, the folded cubes of odd 
order are examples of  generalized odd graphs [9]. When k is 
odd, the  bipartite double cover of the order-k folded cube is 
the order-k cube from which it was formed. 

Construction of Folded Hypercube is shown in Fig. 2. 
When k is even, the order-k cube is a  double cover but not the 
bipartite double cover. In this case, the folded cube is itself 
already  bipartite. Folded cube graphs inherit from their 
hypercube sub-graphs the property of having a  Hamiltonian 
cycle, and from the hypercubes that double cover them the 
property of being a  distance-transitive graph. When k is odd, 
the order-k folded cube contains as a sub-graph a  complete 
binary tree with 2k − 1 nodes. However, when k is even, this is 
not possible, because in this case the folded cube is a bipartite 
graph with equal numbers of vertices on each side of the 
bipartition, very different from the nearly two-to-one ratio for 
the bipartition of a complete binary tree. 

C. Multiply Twisted Cube Network: 
An n -dimensional multiply-twisted hypercube Qn has the 

same structural complexity as n-dimensional hypercube Q. 
That is, it has the same number of nodes and links, and each 
node has the same degree n, as Qn. However, previous 
investigations indicate that due to some of its properties better 
than hypercube, the multiply-twisted hypercube is a good 
alternative for constructing multiprocessor systems. It is 
known that hypercube machines can simulate many 
multiprocessor systems based on other topologies such as 
trees, meshes, linear arrays and rings. 

An n -dimensional multiply twisted cube has the same 
structural complexity as n -dimensional hypercube. That is 
they have the same number of nodes and links, and each node 
has the same degree n. However, previous investigations 
indicate that the multiply-twisted hypercube has some 
properties better than that of hypercube. The multiply-twisted 
hypercube is recursively defined, and it has a relative 
structure. It has observed that the diameter of Q is [n+1]/2 
which is about half of the diameter n of the n-dimensional 
hypercube Q. In addition, the average distance between nodes 
in Q is about 3/4 of the average distance between nodes in Q. 

In conjunction with the regularity, these properties can be 
used to design simple data communication algorithms for Qn 
that are more efficient than those for conventional hypercube 
Q. It is known that the n-dimensional hypercube can be 
embedded onto the n-dimensional hypercube, and vice-versa, 
with dilation and congestion. Also, many efficient hypercube 
algorithms can be directly modified to fit the twisted-
hypercube without simulations by embedding so that 
undesirable overheads in such simulations can be avoided. It 
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has been conjectured that the (2" -1)-node complete binary 
tree is a sub-graph of n -dimensional multiply-twisted 
hypercube (which has 2" nodes); but this is not true for the n 
dimensional hypercube. Since there is more and more 
evidence that multiply-twisted hypercube is a good alternative 
for the hypercube, it is important to further investigate the 
combinatorial structure and computational aspect of this 
architecture [1]. 

D. Recursive Circulant Hypercube Network: 
Recursive Circulant Hypercube Network considered in 

this paper is the recursive circulant graph G(N, d) proposed by 
Park and Chwa [19 ] 

Definition: For two positive integers N and d, the 
recursive circulant graph G(N, d) has the vertex set V = {0, 1, 
. . .,N − 1}, and two vertices u and v are adjacent if and only if 
u−v =±di (mod N) for some 0≤i≤[logd N]-1. The family of 
recursive circulant graphs is proposed as a network topology 
for multicomputer systems [17]. Recursive circulant graph 
G(N, d) is known to have a recursive structure for N = dm, 
m≥1 and N = cdm, 2 ≤ c < d, m≥ 0 [18]. 

Induced by vertices {v | v ≡ j (mod d)}. Then, for very 0 
≤j < d, Gj (cdm , d) is isomorphic to G(cdm-1 , d), that is, G(cdm, 
d) contains d disjoint copies of (cdm-1, d). Furthermore, the 
edges not contained in any Gj form a Hamiltonian cycle. We 
call the Hamiltonian cycle with the edges of the form {i, i + 
1}, i = 0, 1, . cdm-1, the basic cycle. Hence, G(cdm, d) is 
constructed recursively from d copies of G(cdm-1, d) and the 
basic cycle. G(cd0, d), c≥3, and G(d, d) are isomorphic to the 
cycle of length c and d, respectively. For c = 2, G(2d0, d) is 
K2. Cycles in networks are useful in applications such as 
embedding linear arrays and rings. We call a graph G with n 
vertices pancyclic if G contains cycles of every length k, 
3≤k≤n. Since bipartite graphs have no odd cycles, a bipartite 
graph G is called bipancyclic if G has cycles of every even 
length. It is easy to see that n-dimensional hypercube is 
bipancyclic for n≥2. Pancyclic properties on cube-connected 
cycles, arrangement graphs and butterfly graphs have been 
investigated. It is known that G(2m, 4), a special case of 
recursive circulant graphs, is pancyclic [18]. We study in this 
paper the existence of cycles of given length in G(cdm, d), and 
prove a necessary and sufficient condition for G(cdm, d) to be 
pancyclic or bipancyclic [19]. 

E. Multiple Reduced Hypercube Network: 
According to [1], the nodes of a Multiple Reduced 

Hypercube MRH(n) are expressed as n bit strings sn sn-1...si...s2 
s1 consisting of binary numbers {0,1} (1≤i≤n). The edges of 
MRH(n) are expressed in three forms according to connection 
method, they are called hypercube edge, exchange edge, and 
complement edge, respectively, and are indicated as h-edge, x-
edge, and c-edge, respectively ([n / 2]+1≤h≤n). Each edge is 
defined into when n is an even number and n is an odd 
number. 

Case 1: When n is an even number, it is assumed that for 
edge definition, sn sn-1 ...si+1 is α and a bit string si 
...s2  s1   is β in the bit string of a node U(=sn  sn-1  ..si 
...s2  s1). Therefore the bit string of a node U(=sn  sn-1 
..si ...s2 s1) can be simply expressed as αβ. Assuming that the 

nodes U and V are adjacent with each other, adjacent edges 
are as follows. 

a) Hypercube edge : This edge indicates an edge 
linking two nodes U(=sn sn-1 ..si ...s2 s1) and V(=sn sn-

1.......si+1 si ...s2 s1) of MRH(n) (n/2≤j≤n). 
b) Exchange edge: This edge indicates an edge linking 

two nodes U(=αβ ) and V(=βα) of MRH(n) if α≠β in 
the bit string of the nodes.  

c) Complement edge : This edge indicates an edge 
linking two nodes U(=sn α'β') and V(=sn α'β' ) of 
MRH(n) if α≠β in the bit string of the nodes. 

Case 2: When n is an odd number. It is assumed that for 
edge definition, sn-1...si+1 is α’ and a bit string 
sn si...s2s1  is β’ inthe bit stringof a node U(=sn1...si...s2 s1). Then 
the n u mber of bit string s of α’ and β’  iseach  n  /2   .  
Thereforea  node  U  canbe indicated as U (=sn α'β') 

a) Hypercube edge: This edge indicates an edge linking 
two nodes U (=snsn-1....sj...si+1si...s2s1) and V(=sn 
sn-1... sj ....si+1 si...s2 s1) of MRH(n) 

b) Exchange edge: This edge indicates an edge linking 
two nodes U(=sn α'β') and V(=sn β’α’) of MRH(n) in 
the bit string of a node.  

c) Complement edge: This edge indicates an edge 
linking two nodes U(=sn α'β') and V(=sn α'β') of 
MRH(n) if α'= β' in the bit string of a node.  

Node (edge) connectivity is the least number of nodes (edges) 
that are required to be eliminated to divide an interconnection 
network into two or more parts without common nodes. Even 
if k-1 or less nodes are eliminated from a given 
interconnection network, an interconnection network is linked, 
and once the interconnection network is separated when 
proper k nodes are eliminated, connectivity of the 
interconnection network is called k. An interconnection 
network having the same node connectivity and degree means 
that it has maximal fault tolerance [2]. It is known that node 
connectivity, edge connectivity, and degree of an 
interconnection network G are called k(G), λ(G), and d(G), 
respectively, and k(G)=λ(G)=d(G) [2]. This paper 
demonstrates that node connectivity and degree of MRH(n) 
are same in order to prove that MRH(n) has maximal fault 
tolerance, and based on the result, MRH(n) has maximal fault 
tolerance.  

F. Half Hypercube Network: 
A half hypercube network is an interconnection network 

which has same number of nodes as hypercube but reduces the 
degree by approximately half. 

The hypercube Qn (n>=2) is defined as an n-dimensional 
binary cube where the nodes of Qn are all binary tuples. Two 
nodes of Qn are adjacent to each other if and only if their 
corresponding n tuples differ in one bit at exactly one position. 
Qn is an n regular graph with 2n nodes and its diameter is n 
[20]. 
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Figure 1. Construction and Different types of Hypercube 

 
Figure 2. Different types Folded Hypercubes 

 
Figure 3. Multiple Reduced Hypercube (MRH(n)) 

III. ANALYSIS OF PROPERTIES OF 
INTERCONNECTION NETWORKS 

Assuming  that  in  MRH(n),  a  certain  node  of  the 
initial node U(=unun-1....uj...ui+1ui...u2u1) is having the same 
node connectivity and degree [1]. It means that it has maximal 
fault tolerance [2]. It is known that node connectivity, edge 
connectivity, and degree of an interconnection network G are 
called k(G), λ(G), and d(G), respectively, and 
k(G)=λ(G)=d(G)[1]. In paper [1], it is considered that node 
connectivity and degree of MRH(n) are same in order to prove 
that MRH(n) has maximal fault tolerance, and based on the 
result of the theorem, it is proved that MRH(n) has maximal 
fault tolerance. 

IV. RESULTS AND DISCUSSIONS 

Network cost is indicated by a multiple of diameter and 
degree. Diameter indicates a maximum distance of the shortest 
route linking two nodes. 

 
Figure 5. Hypercube Class Comparative for Node vs Network Cost 

In the above figures 4 & 5, it gives the analysis for 
network cots and network diameter interconnection network as 
a factor to determine the complexity of routing control logic, 
which is a reference to measure the cost of hardware used to 
implement an interconnection network and degree is the 
number of pins composing the processor when a parallel 
computer is designed with a Therefore network cost is the 
most critical factor to measure an interconnection network. 
Table1. Hypercube variants vs Modified Hypercubes Interconnection Network 

Diameter and Network Costs 

Interconnection Network Nodes Degree Diameter 
Network 
Cost 

     

Hypercube Network (H(n)) 2n n n n2 

Folded Hypercube (FH(n)) 2n n [n/2] ≈n2/2 
     

Multiply Twisted Cube (MTC) 2n n [(n+1)/2] ≈n2/2 

Recursive Circulant (RC) 2n n [3n/4] ≈3n2/4 
Multiple Reduced Hypercube 
(MRH(n)) 2n n [n/2+1] ≈n2/3 

Half Hypercube 2n n [n/2] ≈n2/2 
 
MRH(n) gives best performance then other networks, 

which can be an effective reference to measure message 
passing as a lower limit of latency required to disseminate 
information in the whole interconnection network. 

 

 
Figure 4. Hypercube Class Comparative for Node vs Network Diameter 

MRH(n) based on the results of previous studies is 
suitable for implementation of a large scale system for parallel 
processing, it is proven to be superior to the previously 
proposed hypercube classes of Hypercube H(n), Folded 
Hypercube FH(n), Multiply twisted Cube, and Recursive 
Circulant class in terms of network cost as mentioned in above 
discussion and Table 1. For analysis of network cost for an 
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interconnection network, cases of the same number of nodes 
are compared. 

V. CONCLUSION 

In this paper, different types of interconnection networks 
such as Hypercube H(n), Folded Hypercube FH(n), Multiply 
twisted Cube, and Recursive Circulant are investigated and 
some of their properties are analyzed to summarize the 
differences in their network cost. It has been observed that 
MRH(n) is a more superior interconnection network than the 
other mentioned hypercube networks through comparative 
analysis of network cost if hypercube classes have the same 
number of nodes. MRH(n) is a more superior interconnection 
network through comparative analysis of network cost if 
hypercube classes have the same number of nodes. 
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