
Volume 5, No. 4, April 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 237

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Identifying the Places of Data Hiding and Ways of Digital Evidence Collection in
Different Types of File Systems

Manish H Bhagwani
Chhattissgarh Instt. Of Tech

Rajnandgaon (CG, India)
manishbhagwani1@rediffmail.com

Rajiv V Dharaskar
MPGI Group of Institutions,

Nanded (MS, India)
rvdharaskar@yahoo.com

V. M. Thakare

Sant Gadge Baba Amravati Univesity,
Amravati (MS, India)

vilthakare@yahoo.co.in

Abstract-There are many data hiding techniques available to hide data in various file systems. Digital analyst needs to identify the places,
recover the hidden data along with the evidences which can be helpful for investigation. Different file systems are studied for the purpose and
procedures for analysis of data are also described.

Keywords-File systems, Digital evidence, Data hiding, Investigation, Digital Analyst

I. INTRODUCTION

Brian Carrier [1] defines digital investigation as a
process where we develop and test hypotheses that answer
questions about digital events. This is done using the
scientific method where we develop a hypothesis using
evidence that we find and then test the hypothesis by
looking for additional evidence that shows the hypothesis is
impossible. Digital evidence is a digital object that contains
reliable information that supports or refutes a hypothesis.
Evidence has both legal and investigative uses.

This paper is organized as follows: section 2 describes
the ways of finding the existence of deleted file in the file
system and ways of recovering file. Section 3 deals with
data hiding techniques in NTFS file system and ways of
analyzing data to detect and recover the hidden data with
evidence.

II. DELETED FILE

Once a file was deleted, the first letter of the file name
was lost (overwritten with the hexadecimal character E5h)
and the areas of the File Allocation Table which used to
point to the storage areas on the disk occupied by the file
were set to zero, indicating that those allocation units were
available for reuse. According to Geoff H. Fellows [2], files
which are placed in the Recycle Bin are not deleted files.

They are current files on the system, which are merely
in a state preparatory to being deleted.

Figure 1: Contents of INFO2 records in Recycle Bin folders

The existence of the data in the INFO2 file in the

Recycle Bin folders (INFO on some systems) means it is
possible for the analyst to acquire evidence about the date
and time of the deletion of the file as well as what its
original full path was on the disk. Of course, once the file is
cleared from the Recycle Bin it becomes a deleted FAT file
like any other and the INFO2 records are cleared, but even
then, because the INFO2 file has an ordered structure of
records of 280 bytes in length (or 800 under Windows 2000,
XP etc.) it is sometimes still possible in these circumstances
to recover deleted INFO2 file data and hence valuable
evidence.

Under the New Technology File System (NTFS) the
evidence gets better still.

Figure 2: Windows XP Recycler SID’s

One reason for this is the fact that the NTFS Recycle
Bin is divided up into user Security ID’s (SID’s), and each
user’s deleted files are placed into the folder relating to his
or her SID. The login names associated with these two
SID’s can be identified from the Windows Registry files. Of
course, each of the SID folders in the Recycle Bin has its
very own INFO2 file, and so the details of file deletion in
relation to each user logon name is available as well.

When a file is deleted on an NTFS volume two main
events occur as far as the file system is concerned. Firstly,
the MFT record for the file is marked as relating to a deleted
file. Secondly, a system file called $Bitmap is updated to
show that the allocation units occupied by the file are
available for reuse by the system. Nothing in the MFT
record’s data (or other) attributes is disturbed or altered
(unless the MFT record comes to be overwritten itself).

Manish H Bhagwani et al, International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 237-239

© 2010-14, IJARCS All Rights Reserved 238 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Even where the data has been partially overwritten on an
NTFS volume, but the MFT record still survives, the analyst
may still be able to recover and to produce useful evidence.

In case mobile phones, many handsets use variants of
the FAT file system, originally created by Microsoft for the
IBM PC, to maintain media files such as pictures and video
clips in NAND flash memory. The differences between the
implementations on a handset and on a PC make the
recovery of deleted files from the handset more difficult.

Figure 3: Directory entry (Nokia 6230) with ”initial” bytes (orange),

attributes (green), SC (yellow), modification-time (pink), modification-date
(brown) and file-size (blue): Before deletion

If the entry in fig. 3 were to be deleted (as in fig. 4), the
initial byte in every block making up the directory entry
would be overwritten with 0xE5.

Figure. 4: Directory entry (Nokia 6230) with ”initial” bytes (orange),

attributes (green), SC (yellow), modification-time (pink), modification-date
(brown) and file-size (blue): After deletion, with overwritten initial byte

and SC

A. Fragmented Files:
Garfinkel [3] presented statistics about the incidence of

file fragmentation on actual file systems recovered from
used hard drives purchased on the secondary market. The
kinds of fragmentation patterns observed on those drives are
representative of fragmentation patterns found in drives of
forensic interest. Analysis of Garfinkel corpus was
performed using Carrier’s Sleuth Kit [4] and a file walking
program that was specially written for this project.

III. NTFS FILE SYSTEM

Ewa Huebner (et. al.2006) [5] discussed the methods of
hiding data in the NTFS file system. Analysis techniques
which can be applied to detect and recover data hidden
using each of these methods are also discussed.

A. Hiding Data In $Data Attribute:
Most of the metadata files, except the directories and

the extension metadata files already contain the $DATA

attribute. It is possible to append some hidden data to these
$DATA attributes without disturbing the data already
present. To discover whether there is any data hidden in this
manner the investigator should check the number of clusters
allocated to each $DATA attribute using NTFS File Sector
Information Utility Nfi (Microsoft OEM).

B. Hiding Data In $Boot File:
In NTFS the boot record is stored in a metadata file

called $Boot. This is the only file with a fixed location; it
always starts at the first cluster of the file system. Windows
allocates 16 sectors to this file but typically only half of
these sectors contain non-zero bits (Carrier[1]). According
to the NTFS documentation at the Linux NTFS project
(Provos and Honeyman [6]), there are certain unused bytes
in the boot sector. However, Windows will not mount the
file system if there are any non-zero values in these unused
bytes. As a result, this space cannot be used to hide data.
However, the bytes allocated to boot code in the $Boot file
of NTFS file system can be used to hide data. Boot code is
only essential for a bootable file system to locate files
required to boot up Windows (Carrier[1]). The analysis of
hidden data in the $Boot file should start by comparing the
boot sector and the backup boot sector.
The consistency check would only give an indication of file
system manipulation if the checksums differ from each
other. If they are the same, there is still a possibility that the
modified boot sector was copied to its backup to avoid
detection. For this reason the extracted content should still
be analyzed with a hex editor.

Figure 5 – Analysis of hidden data in $Boot file and the backup boot sector.

C. Hiding Data In $Badclus File:
Modern hard disk controllers handle bad sectors

themselves without any involvement of the operating
system. According to Schindler et al., [7] typically one of
the following two ways is used: slipping (modifying Logical
Block Number (LBN) to physical mapping to skip the
defective sector) or remapping (reallocating LBN from
defective area to a spare sector). In addition the volume
managers included with Windows are capable of remapping
bad sectors, so called sector sparring, and even recovering
data on fault tolerant systems [10]. Fig. 3 shows the
flowchart for detection of hidden data in faked bad clusters.

Manish H Bhagwani et al, International Journal of Advanced Research in Computer Science, 5 (4), April 2014 (Special Issue), 237-239

© 2010-14, IJARCS All Rights Reserved 239 CONFERENCE PAPER
Two day National Conference on Innovation and Advancement in Computing

Organized by: Department of IT, GITAM UNIVERSITY Hyderabad (A.P.) India
Schedule: 28-29 March 2014

Figure 6: Detection of Hidden Data in Faked Bad Clusters

According to the NTFS documentation at the Linux
NTFS project Provos and Honeyman [6], there are certain
unused bytes in the boot sector. However, Windows will not
mount the file system if there are any non-zero values in
these unused bytes [1]. As a result, this space cannot be used
to hide data. The analysis of hidden data in the $Boot file
should start by comparing the boot sector and the backup
boot sector.

Figure 7 – Analysis of hidden data in $Boot file and the backup boot sector.

IV. CONCLUSION

Data hiding methods in different file systems help to
understand the ways in which culprits hide their data. The
methods of digital diagnosis are suggested here which will
help analyst to produce evidences.

V. REFERENCES

[1]. Brian Carrier, “File System Forensic Analysis”, Addison
Wesley Professional [Book], March 17, 2005, ISBN: 0-32-
126817-2.

[2]. Geoff H. Fellows, “The joys of complexity and the deleted
file”, Digital Investigation (Elsevier), Vol. 2, pp: 89-93,
February 2005.

[3]. Garfinkel Simson, “Forensic feature extraction and cross-
drive analysis”, Digit Investigation (Elsevier),
http://www.dfrws.org/2006/proceedings/10-Garfinkel.pdf,
pp: 71-81, August, 2006.

[4]. Carrier Brian, “The Sleuth Kit & Autopsy: forensics tools for
Linux and other Unixes”, http://www.sleuthkit.org, 2005.

[5]. Ewa Huebner, Derek Bem, Cheong Kai Wee, “Data hiding
in the NTFS file system”, Digital Investigation (Elsevier),
pp. 211-226, March 2006.

[6]. Provos N, Honeyman P, “Detecting steganographic content
on the internet”, pp. 13.

[7]. Schindler J, Griffin JL, Lumb CR, Ganger GR, “Track-
aligned extents: matching access patterns to disk drive
characteristics”, Conference on file and storage technologies
(FAST), Monterey, CA, USA, pp. 16, 2002.

[8]. Russinovich ME, Solomon DA, “Microsoft Windows
Internals”, Redmond: Microsoft Press[Book], 2005.

