
Volume 5, No. 3, March-April 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 112

ISSN No. 0976-5697

“Comparison of Rule based Semantic Web Reasoners for Ontologies in OWL2 Profile”

Deepika Chaudhary*
Associate Professor MCA,

Chitkara Univeristy Punjab,India

Dr. Archana Mantri
Pro VC,

Chitkara University, Punjab, India

Dr. D.P.Kothari

FNAE,FNASc, Fellow-IEEE
Director - Research

MVSR Engineering College , Hyderabad, India

Abstract: The Semantic Web is a vision for the future of the Web in which information is given explicit meaning, making it easier for machines
to automatically process and integrate information available on the Web[1]. In semantic web, Knowledge can be encoded using a formal
language termed as OWL (Ontology Web Language). To keep this language alive Progression of OWL2 from OWL is one such major step.
OWL2 is a strong Modeling language and extends the W3C OWL with a small but useful set of features. The objective of this study is an
attempt to highlight those features and to provide and indepth analysis on:

a. Introduction to three profiles of OWL2 with a particular focus on how these profiles differ and why the differences are important.
b. Comparison of OWL Profiles on the basis of Usage, Reasoning Time, Complexity and Algorithms.
c. Reasoning in OWL RL Profile and comparison of Reasoners in OWL RL Profiles.

Keywords: OWL – Ontology Web Language, OWL axioms – Inference rules

I. INTRODUCTION

OWL is a Ontology (‘schema’) language for semantic
web which refers to a description of knowledge about a
particular domain, basically referred for two main purposes
i.e data modeling and automated reasoning. Ontology is a
term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are
related. Now the question here arises why develop an
Ontology? The possible answers to this question can be: To
share common understanding of the structure of information
among people or software agents, to enable reuse of domain
knowledge, make domain assumptions explicit, separate
domain knowledge from the operational knowledge, analyze
domain knowledge. Sharing common understanding of the
structure of information among people or software agents is
one of the more common goals in developing ontologies
(Musen 1992; Gruber 1993). For example, suppose several
different Web sites contain medical information or provide
medical e-commerce services. If these Web sites share and
publish the same underlying ontology of the terms they all
use, then computer agents can extract and aggregate
information from these different sites.

The agents can use this aggregated information to
answer user queries or as input data to other applications. An
ontology is a formal explicit description of concepts in a
domain of discourse (classes (sometimes called concepts)),
properties of each concept describing various features and
attributes of the concept (slots (sometimes called roles or
properties)), and restrictions on slots (facets (sometimes

called role restrictions))[2]. An ontology together with a set
of individual instances of classes constitutes a knowledge
base. In reality, there is a fine line where the ontology ends
and the knowledge base begins. Classes are the focus of
most ontologies. Classes describe concepts in the domain.
For example, a class of wines represents all wines. In
practical terms, developing an ontology includes: defining
classes in the ontology, arranging the classes in a taxonomic
(subclass–superclass) hierarchy, defining slots and
describing allowed values for these slots, filling in the values
for slots for instances. We can then create a knowledge base
by defining individual instances of these classes filling in
specific slot value information and additional slot
restrictions An OWL ontology may include descriptions of
classes, properties and their instances[3]. It also refers to a
formal way of writing machine readable content in the form
of OWL axioms(rules of inference). The OWL axioms allow
us to state a sub class relation which can be understood by
an OWL reasoner i.e a subclass axiom and equivalent Class
axiom.

The W3C standards specifies some characteristics for
defining an Ontology.

(a). Ontologies have a well defined syntax
(b). A formal Semantics
(c). Convenience of expression
(d). Efficient reasoning support
(e). Sufficient expressive power.
Out of which a formal semantics is of utmost

importance. A formal Semantics describes the meaning of
knowledge precisely and is a prerequisite for effective
reasoning. There are different form for specifying semantics

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 113

a) Direct Semantics- The meaning of OWL axioms is
derived by directly relating them to Description Logic.
Description logics (DL) are logics serving primarily for
formal description of concepts and roles (relations).
Semantically they are found on predicate logic, but
their language is formed so that it would be enough for
practical modeling purposes and also so that the logic
would have good computational properties such as
decidability. Knowledge representation system based
on DLs consists of two components - TBox and ABox.
The TBox describes terminology, i.e., the ontology in
the form of concepts and roles definitions, while the
ABox contains assertions about individuals using the
terms from the ontology. Concepts describe sets of
individuals, roles describe relations between
individuals[4].

b) RDF Based Semantics– In this the axioms are
translated first in the form of Directed Graphs(RDF)
and then reasoned upon. Resource Description
Framework (RDF) is a framework for representing
information about resources in a graph form. Since it
was primarily intended for representing metadata about
WWW resources, it is built around resources with URI.
Information is represented by triples subject-predicate-
object in RDF.

A. Why OWL Profiles?:
Profiles in context of OWL can be defined as a sub-

language (syntactic subsets) that can offer important
advantages in particular application scenarios. The first
version of OWL created a profile called OWL Lite which
tried to restrict the features of OWL in order to make
reasoning easier. However, the goal was not achieved. OWL
2 defines three new profiles or sub-languages that offer
important advantages depending on your application
scenario: OWL 2 EL, OWL 2 QL and OWL 2 RL. Given that
reasoning in OWL 2 is so hard, each of these profiles tries to
find a sweet spot for particular application scenarios by
trading off the expressiveness (what you can express in the
ontology) in order to gain the possibility of creating efficient
algorithms for reasoning. Three different profiles are defined:
OWL 2 EL, OWL 2 QL, and OWL 2 RL. Each profile is
defined as a syntactic restriction of the OWL 2 Structural
Specification, i.e., as a subset of the structural elements that
can be used in a conforming ontology, and each is more
restrictive than OWL DL.

B. OWL2 Profiles:
a. OWL2 EL – This profile is particularly useful in

applications employing ontologies that contain very
large number of properties and classes for eg in
biomedical ontologies.Gene Ontology is an ontology
that describes genes and gene properties with more than
25k classes while SNOMED-CT is an ontology of
clinical terms with over 500k classes. With this
profile, classes can be defined with complex
descriptions such as defining a class in terms of the
existence of something else[5].

b. OWL 2 RL- is tailored for applications that want to
describe rules in ontologies. This profile is ideal if you
already have RDF data and you want to implement your
business logic in rules (if/then). OWL 2 RL runs
efficiently on business rule engines, such as Drools.
Therefore, OWL 2 RL is basically a rule language
(hence the RL).This profile is used for those
applications where scalable reasoning is required but
without sacrificing for expressive power for eg. While
reasoning with web data. It is geared towards running
efficiently on traditional business rule engine.

c. OWL 2 QL- is tailored for applications that want to
reason on top of very large volumes of data. The
motivation for this profile was to be able to keep data in
a relational database and allow reasoning to be
translated into queries on the database (hence the QL).
In order for reasoning to be translated into a query, the
expressivity of QL is a bit restricted. This profile can
express conceptual models such as UML class diagrams
and ER diagrams and also define hierarchies between
classes and properties and inverse properties[6].

Any OWL 2 EL, QL or RL ontology is, of course, also
an OWL 2 ontology and can be interpreted using either the
Direct or RDF-Based Semantics. When using OWL 2 RL, a
rule-based implementation can operate directly on RDF
triples and so can be applied to an arbitrary RDF graph, i.e.,
to any OWL 2 ontology. In this case, reasoning will always
be sound (that is, only correct answers to queries will be
computed), but it may not be complete (that is, it is not
guaranteed that all correct answers to queries will be
computed). Theorem PR1 of the Profiles document states,
however, that (in general) when the ontology is consistent
with the structural definition of OWL 2 RL, a suitable rule-
based implementation performing ground atomic queries will
be both sound and complete[4].Fig 1 shows the relation
between OWL1 and OWL2 which commonly is a fragment
or a sub language of OWL, that trades expressive power for
efficiency in reasoning and has three different profiles, each
of which achieves efficiency in a different way and is useful
in different application scenario.

e
Figure 1 Transition from OWL1 To OWL2 Profile

Below we present the comparison of 3 Profiles of OWL
language on the basis of their usage and various complexity
parameters.

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 114

Table: 1

Language Application/Usage Reasoners Required Reasoning Complexity
 Reasoning

Problems
Taxanomic Data Query

OWL2 EL Ontologies that contain large
number of properties and
classes.

Dedicated and highly
scalable reasoners.
Elk,pellet, CEL

Ontolology
Consistency,
Class expression,
Satifiability,
Subsumption,
Intsance
Checking

PTime Complete PTime
Complete

Not
Applicable

Conjuctive Query
Answering

PTime Complete PTime
Complete

NP-Complete

OWL2 RL Ontologies that require
scalable reasoning without
sacrificing too much
expressive power

Reasoner based on first order
implication rules.
OWLIM,OWLRM,Jena.An
attractive feature of OWL2
RL is that reasoning is
polynomial with respect to
size of ontology.

Ontolology
Consistency,
Class Expression,
Satifiability,
Subsumption,
Intsance
Checking

PTime Complete PTime
Complete

Not
Applicable

Conjuctive Query
Answering

PTime Complete NP-Complete NP-Complete

OWL2 QL The ontologies that uses very
large number of instance
data and where query
answering is the most
important reasoning task.

Reasoners efficient in
conjuctive query answering
OWLgres,Quest.

Ontolology
Consistency,
Class expression,
Satifiability,
Subsumption,
Intsance
Checking

IN AC° Not
Applicable

NLOGSPACE
Complete

Conjuctive Query
Answering

IN AC° NP-Complete NP-
Complete

II. OWL2 RL PROFILE LANGUAGE AND
REASONING

The OWL2 profile specification defines OWL2 RL as
“aimed at applications that require scalable reasoning without
sacrificing too much expressive power”[6]. The profile is
designed to work on rule engines and for this the
specifications are provided in RDF Based semantics which
can be applied on to RDF Graphs.OWL2 RL can therefore be
divided in two ways-:

a) As restrictions placed on OWL 2 Full in the use and
position of certain OWL2 language features

b) As set of entailment rules to be applied to the RDF
serialization of an OWL Ontology[6].

Below we present the syntax of entailment rules
A rule is generally of the form
A1 ^ A2 ^…………………….^ An A,
Where A1……..An are expression of the form C(x)

concept expressions or R(x,y) role names, x and y are the
variables or individual names where y can also be a data type
if allowed and the following conditions are satisfied

a) The pattern of variables in rule body forms a tree.
b) The first argument of A is the root of the just

mentioned tree.
These rules are defined by W3C in the following Style

Table: 2

Name If Then

Eq-sym T(?x, owl:SameAs, ?y) T(?y,owl : SameAs, ?x)

Every rule has a name some if condition and a then part.

It is also possible to have no if condition that means this rule
will be executed at the program start. The rules mentioned
above can be divided into six categories

a) Semantics of Equality
b) Semantics of axioms and properties
c) Semantics of classes
d) Semantics of class axiom
e) Semantics of Data types
f) Semantics of Schema Vocabulary

Figure 2 gives example of certain rules:

Man(x) ^ hasBrother(x,y) ^ hasChild(y,z) Uncle(x)
 Cake(x)

contains.Egg(x)
 worksAt(x,y) ^ University(y)

Employeeof(x,y)
supervises(x,z) ^ PhdStudent(z) Guideof(x,z)
 These rules take a variety of forms-:
a) Triple pattern rules- The rule body and head are

made up of atomic formulae representing triples in
RDF graph.

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 115

b) Assertional rules- The rule body is empty, in which
case these can be considered as being always
applicable.

c) Consistency check- The head of these rules contain
false only, in which case the input RDF graph
should be considered inconsistent when the
premises of the rule body hold.

d) List rules – These rules make shorthand notations
for processing RDF collections.

e) Data type rules- These rules require special
processing for data types, eg rule dt-eq that asserts
lt1 owl:sameas lt2[7].

One advantage of encoding knowledge using OWL is
that there are many tools available now a days that can reason
ontologies in a simpler and easier manner. In OWL2 RL
Profile the reasoning is done using a rule based reasoner.
Many software packages are now a days available for
creating ontologies and then reason upon them. i.e Protégé
3.5 and Protégé version 4.2 In Protégé 3.5 PROTÉGÉ
OWL’s SWRLTAB supports an OWL RL Reasoner. The
SWRLTab provides control of the OWL 2 RL inference
process by allowing the selective enabling and disabling of
these rules. This control is provided at the Java API level via
the SWRL Rule Engine API, the SQWRLQueryTab, the
SWRLDroolsTab, and the SWRLJessTab. This interface
provides a control tab to indicate if rule tables are active or
inactive. The following is an example of this interface as
displayed in the SWRLJessTab.[7].

Figure 2 SWRL Jess Tab

In protégé 4.2 however the rules are visible under
Window -> Views -> Ontology Views -> Rules and SWRL
Tab is visible under Window -> Tabs -> SWRL.

Figure 3 SWRL Tab in Protege 4.2

III. COMPARISON OF OWL2 RL PROFILE
BASED REASONERS

This section of the study focuses the characteristics of
OWL2 RL profile reasoners i.e Jena , OWLIM, Owl2 RL
based inference engin integrated in Oracle 11g etc.

A. Jena2 Overview:
Jena2 offers a simple abstraction of RDF Graph and

was first released in August 2003 which is the second
generation toolkit In addition to providing an API for RDF,
RDFS, OWL and SPARQL, it includes a rule-based
inference engine; the inference engine can use both forward
and backward chaining, and it supports the most common
OWL constructs. Additionally it allows users to define their
own custom rules, however it does not natively support any
constructs introduced in OWL 2. Jena also supports
incremental maintenance (when the forward-chaining
RETE-based engine is used). This is used uniformly for
graph implementations, including in-memory, database-
backed, and inferred graphs. The main contribution of Jena
is a rich API for manipulating RDF graphs. Around this,
Jena provides various tools, e.g., an RDF/XML parser, a
query language, I/O modules for N3, N-triple and
RDF/XML output. Underneath the API the user can choose
to store RDF graphs in memory or in databases. Jena
provides additional functionality to support RDFS and
OWL[8].

The two key architectural goals of Jena2 are:
a. Multiple, flexible presentations of RDF graphs to

the application programmer. This allows easy
access to, and manipulation of, data in graphs
enabling the application programmer to navigate
the triple structure.

b. A simple minimalist view of the RDF graph to the
system programmer wishing to expose data as
triples.

B. Storage Schema and Architecture of Jena2:
Jena2 uses a denormalized schema in which URIs and

simple literal values are stored directly in the statement table
and a separate table is only used to store literal values and

http://protege.cim3.net/cgi-bin/wiki.pl?SWRLRuleEngineAPI�
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRLQueryTab�
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLDroolsTab�
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab�
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab�

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 116

separate resource table is used to store long URIs only, the
advantage of which is that many operations are possible
without a Join operation.Jena2 persistent architecture is
implemented using specialized Graph interface as shown in
the diagram below

Figure 4 Jena2 Persistence Architecture an Overview

Jena2 also provides a general facility for clustering
properties that are commonly accessed together. A Jena2
property table is a separate table that stores the subject value
pairs related by a particular property[8]. The schema’s for
various tables are as
Statement Table
Subject Predicate Object
mylib.doc1 dc:title Jena2
mylib.doc1 dc:description 101
Literals Table
Id Value
101 A very long description that might be

stored using blob.
Resource Table
Id URI
201 hp: aResource with an extremely long URI
DC Properties Table
Subject Title Publisher Description
Mylib.doc1 Jena2 - 101

C. Jena2 Persistence Architecture:
An overview of Jena2 architecture was presented in

Figure1. In this section we describe an implementation of
that architecture.

a. Specialized Graph Interface:
The Jena2 persistence layer presents a Graph interface

to the higher levels of Jena, supporting the graph operations
of add, delete and find.

b. Database Driver:
The database driver provides an abstract storage

interface that insulates the specialized graphs from
differences in how database engines support
blobs,nulls,expressions,table and index creations.

c. Configuration and Meta Graphs:
Jena2 provide default graphs containing the default

configuration parameters for all supported
databases.Associated with each Jena2 persistent store is a
meta-graph, a separate auciliary RDF graph containing
metadata about each logical graph.

D. Inference Support :
In Jena2, inference engines are structured as Graph

combinators called Reasoners. An instance of Reasoners
combine one or more RDF Graphs and exposes the
entailments from them as another RDF Graph.

Figure 5 The inference API Layering

E. Built in Reasoners:
As a part of default distribution we include a selection

of inference engines which includes
a) Transitive Reasoner- This reasoners provides the

transitive closure of the rdfs:subPropertyOf
relationships contained in the source graphs.

b) RDFS Reasoner- This provides an implementation
of the RDFS closurerules.

c) Rubrik Reasoner- This reasoner supports rule based
RDF inferences. Rule clauses are either extended
triple or procedural callouts to primitives defined in
Java. Both forward chaining and backward chaining
rule engines are provided with some hybridization
in that forward rules are able to create and install
new backward rules.

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 117

Figure 6 Forward and Backward engine : Rubrik Reasoner

To summarize we can conclude as
a) Supports a denormalized schema used for storing

generic triple statements.
b) Property tables are used to store subject value pairs.
c) Provides an efficient implementation for reification

IV. OWLIM A SEMANTIC REPOSITORY

The OWLIM Repository is implemented in Java which
consist of a native RDF Store, a reasoner and a query
answering engine. It is packaged as SAIL (Storage and
Inference Layer) and distributed as scalable, resilient
platform[9].

The reasoner is based on R-entailment defined by ter
Horst, where inference rules are applied directly to RDF
triples. Each rule is made up of a number of premises and
conclusions, each of which is an RDF triple pattern with
variables allowed at any position. The rule language is based
on R-entailment defined by ter Horst and the reasoner uses
forward chaining to apply selected inference rules directly to
RDF Statements. There are two editions of OWLIM:
SwiftOWLIM and BigOWLIM, The SwiftOWLIM is an
entirely in memory system and BigOWLIM uses a file based
storage layer. Typically SwiftOWLIM can manage millions
of explicit statements on desktop hardware whereas
BigOWLIM can manage billion of statements and multiple
concurrent user sessions[10,11].

Figure 7 OWLIM Architecture (owlim.ontotext.com)

A. Reasoning Capabilities:
The inferencing strategy in OWLIM is materialization of

all inferred statements at load time which are based on R-
entailment like rules. Total materialization involves
computing all the entailed statements at load time which
somewhat increases the reasoning cost but can be balanced as
query processing can proceed extremely fast. In all edition of
OWLIM several standard rule set are included i.e ‘empty’ (no
inference), OWL-Horst,RDFS and OWL2 RL. In addition to
the standard semantics, user-defined rule set can also be used.

V. CONCLUSION

This is a review paper in which an attempt is made to
highlight the three profiles of OWL moreover it also gives a
brief introduction to OWL RL profile language and the
working of few reasoners under this profile. The reasoners
Jena2 and OWLIM were evaluated on the basis of their
working and the Performance measurements of Jena2
indicated that the denormalized schema of Jena2 is twice as
fast as that of Jena1,which can further be optimized when
native SQL types will be used instead of string literals. On
the other hand OWLIM is both sound and complete when
working on OWL RL/RDF rules except for the missing
support for data type reasoning.

VI. REFERENCES

[1] Jeff Heflin , Raphael Volz , Raphael Volz , Requirements
for a Web Ontology Language, www.w3.org/TR/2002/WD-
webont-req-20020307/

[2] Natalya F. Noy and Deborah L. McGuinness, Ontology
Development 101: A Guide to Creating Your First
Ontology,
http://protege.stanford.edu/publications/ontology_developm
ent/ontology101-noy-mcguinness.html

http://www.w3.org/TR/2002/WD-webont-req-20020307/�
http://www.w3.org/TR/2002/WD-webont-req-20020307/�
http://www.w3.org/TR/2002/WD-webont-req-20020307/�

Deepika Chaudhary et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,112-118

© 20110-14, IJARCS All Rights Reserved 118

[3] Michael K. Smith, Chris Welty, Deborah L. McGuinness,
OWL Web Ontology Language
Guide, http://www.w3.org/TR/owl-guide/

[4] Frank W. Hartela, Sherri de Coronadoa,Robert Dionneb,
Gilberto Fragosoa, Jennifer Golbeckc, Modeling a
description logic vocabulary for cancer research,
http://www.sciencedirect.com/science/ article/pii/
S1532046404000917

[5] Juan Sequeda, Introduction to OWL Profiles,
http://semanticweb.com/introduction-to-owl-
profiles_b35607

[6] Boris Motik Bernardo Cuenca Grau, OWL 2 Web
Ontology Language Profiles http:// www.w3.org // TR
/owl2-profiles/

[7] Jartin J.O’Connor, Amar Das,”A Pair of OWL2 RL
Reasoners”, Standford Centre of Biomedical Informatics
Research Standford,CA 94305,U.S.A

[8] Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave
Reynolds, Efficient RDF Storage and Retrieval in
Jena2,http://www.hpl.hp.com/techreports/2003/HPL- 2003-
266.pdf

[9] Barry Bishop, Spas Bojanov,”Implementing OWL 2 RL and
OWL 2 QL rule-sets for OWLIM”. Proc. of 8th
International”, Workshop on OWL: Experiences and
Directions (OWLED2011), San Francisco, USA, June 5-6,
2011, CEUR-WS.org, ISSN 1613-0073.

[10] [10] OWLIM Primer nlpainter.googlecode.com
/svn.../owlim_docs/OWLIM_primer_v4.3.pdf

[11] [11] Atanas Kiryakov, Barry Bishop, Damyan Ognyanoff,
Ivan Peikov, Zdravko Tashev,Ruslan Velkov Ontotext AD,
135 Tsarigradsko Chaussee, “The Features of BigOWLIM
that Enabled the BBC’s World Cup Website” Proceedings
of VLDB 2010, International Conference on Very Large
Databases Singapore.

.

http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�
http://www.sciencedirect.com/science/article/pii/S1532046404000917�

