
��������	�
����	�
�����������

�� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 526

�����������	
��
�	�

Adaptive SLA enforcement for SOA Applications Using a Middleware

Prof. P. Karthikeyan*
1
, Prof. E.Sathya Moorthy

2
 and S.Senthil Ganesh

3

School of Information Technology and Engineering, VIT University

Vellore, India
1mailme_kk@yahoo.com
3sesas.senthil@gmail.com

Abstract: Service Level Agreement becomes the prevailing business model for specifying the QoS requirements of the web services in a

complex service based environments. Such QoS requirements include service availability, service efficiency, service throughput, etc.., The

Service Level Agreement for the web services are difficult to maintain since the usage of the service varies widely over time. We present a

middleware architecture which dynamically allocates the clustered resources to the services. The middleware generates the SLA document on

the fly based on the popularity of services deployed in the cluster. This feature of adaptive SLA generation is not done in any application server.

Thus our middleware architecture eliminates the need for the service provider to manually provide the Service Level Agreement to the

Application Service Provider (which needs to be replaced often). This paper discusses the middleware architecture, its implementation and

sample scenario which illustrates the usage of the middleware in the real case.

Keywords: Service Level Agreement (SLA), Service Oriented Architecture (SOA), Middleware, Quality of Service (QoS), Application Service

Provider (ASP).

I. INTRODUCTION

Service Oriented Architecture (SOA) is a business-centric

IT architectural approach that supports integrating your

business as linked, repeatable business tasks, or services. Thus,

the services may be distributed across an enterprise or even

across the globe. There may be thousands of services defined

for the same purpose and so the customer needs to select the

service which suits his needs. To ease the work of the customer

the Web Service providers has come up with the QoS (Quality

of Service) requirements for their services which will help the

customers to select appropriate service for their need.

The services are often given to the Application Service

Providers (ASP) to deploy and maintain the service in a

clustered (or even grid) computing environment. Thus it’s the

responsibility of the ASP to assign clustered resources (the

number of nodes in the cluster to service the request) to the

services deployed in their cluster.

All services are not treated alike by the service providers.

So the ASP maintains a SLA with the service provider which

specifies certain QoS factors to be satisfied by the ASP. The

ASP reads the SLA document and configures the cluster to

accommodate the QoS requirements of the services deployed in

the cluster. The service providers can assess the popularity of

the service only after its being deployed and used by the client.

Thus the service provider needs to update the SLA often to

accommodate the different QoS requirements of the service

over time. The specification of wrong SLA by the service

provider will be unprofitable to both the ASP and the service

provider.

Thus we are in need of an adaptive SLA enforcement

mechanism for the SOA based applications. The addition of

new mechanism should not bring down the performance of the

application server. The implementation of the mechanism

should also work cooperatively with the other services. Thus,

we are in need of middleware services to the application server.

It allows the ASP to configure the existing application server

only to the minimum and the feature can be enabled/ disabled

by doing few changes to the configuration of the application

server.

The reminder of this paper is organized as follows; section

2 presents the literature reviews of various concepts involved in

our paper. Section 3 presents the proposed middleware

architecture and its interactions with various components in it.

Section 4 discusses generation of SLA based on the runtime

configuration of the deployed services. Section 5 discusses the

implementation feasibility of the middleware in JBoss

Application Server; Section 6 presents a scenario that

corresponds to the real case. Section 7 is the conclusion.

II. RELATED WORK

The QoS requirements are specified using a SLA

document which can be a simple XML file. There are various

SLA Specification Languages such as WSLA and SLAng.

Mostly the specification of the SLA can be satisfied by

configuring the Application Server cluster, network routers,

database management systems, middleware and so on.

The Web Service Level Agreement (WSLA) addresses the

service level management issues and challenges in a Web

Services environment on SLA Specification, creation and

monitoring [1]. The WSLA framework consists of flexible and

extensible language based on XML Schema and a runtime

architecture comprising several SLA monitoring services,

which may be outsourced to third party monitoring services.

However, a WSLA only covers the agreed common view of a

service between the parties involved. To actually act as a

participant in a WSLA, parties have various degrees of freedom

to define an implementation policy for a service and its

supervision. Typically the obligations of a WSLA must be

translated into system-level configuration information, which

can be proprietary to each party involved.

The SLAng is a language for defining Service Level

Agreements which falls under the three primary services:

network services, Storage Services and the middleware services

P. Karthikeyan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,526-529

© 2010, IJARCS All Rights Reserved 527

[2]. SLAng besides specifying the QoS requirements of the

services at the application layer level, it specifies the

contractual agreements that are necessary when different ISO

/OSI layers of a deployment are spread across multiple

organizations.

III. MIDDLEWARE ARCHITECTURE

 The middleware addresses the following issues in the

SLA driven maintenance of SOA Applications.

a. The service provider often needs to specify the SLA

document with changing requirements of the services.

b. The service provider may not be accurate in specifying the

QoS requirements for the deployed services.

c. Optimized resource utilization in assigning the clustered

resource to process the service request.

To address these issues we proposed QoS middleware

architecture which incorporates the three principle services:

SLA Generation and Monitoring Service, Cluster

Configuration Service, and the Load Balancing Service. This

architecture will be designed to be deployed in a cluster of

Application Servers. The cluster will contain a set of

application server instance. Each node (Application Server

Instance) will contain the copy of these services running in it.

The principle responsibilities of these services are as

follows:

SLA Generator and Monitoring Service is responsible

for generating the SLA documents for the services deployed in

the cluster. The SLA is generated whenever the popularity

(usage) of the services in the cluster gets changed. This service

computes the popularity Factor based on its usage and the

maximum resource that can be allocated to that particular

service. The percentage of clustered resource that can be

assigned to a service depends on the above mentioned factors

of the remaining services in the cluster. Thus change in

configuration of one service will reflect the change in SLA

parameters for the remaining services also. A logger service

maintains the history of SLA specification for each service

deployed in the cluster. This log can be sent to the service

provider for his reference.

The change in SLA document will trigger the

configuration service to reconfigure the cluster configuration if

necessary.

Cluster Configuration Service is responsible for

configuring the cluster in order to honour the SLA of the

services deployed in the cluster. The main activities performed

by the cluster configuration service is configuring the cluster at

the web service deployment time and possibly reconfiguring

the cluster at the run time.

The cluster configuration process takes the default SLA

parameters which is generated by the SLA Generator and

Monitoring Service and forms a initial cluster from a minimum

set of available nodes (application server instance) to ensure

that the default SLA requirements of the deployed service is

met.

The cluster re configuration process takes place to account

for the dynamically increasing load on the cluster and in case a

clustered node fails and needs to be replaced by an operational

one (or more than one); for this purpose a pool of spare nodes

is maintained.

The nodes may also be released from the cluster in order to

optimize the resource utilization. If the load on the hosted web

service significantly decreases, some of the nodes allocated to

that application may be dynamically de allocated and included

in the pool of spare nodes for future use.

Load Balancing Service is implemented at the

middleware level and balances the load of SOAP client

requests among the clustered nodes. It is aware of the runtime

operational conditions of the nodes in the cluster. Thus it helps

in avoiding overloading any particular node or sending requests

to nodes which may be unavailable at that instant. Thus Load

Balancing Service provides high availability and as well as it

contributes in honouring the SLA of the deployed services.

Figure 1: Middleware service interactions

The Load Balancing service uses a WSDL (Web Service

Definition Language) file to extract technical interface details

about a Web Service and uses information returned to create an

actual SOAP request to that Web Service. The Load Balancer

Service then emulates a real Web Service Client making a

request. The SOAP request can be used to confirm that the

Web Service is serving the expected response data and in a

timely manner in correspondence with the SLA.

A. Middleware interactions

Our middleware services co-operate with each other to

dynamically generate the SLA and honour the generated SLA

by configuring the cluster at runtime.

Fig 1 shows how the services interact. In Fig 1, the service

requester sends the XML request to call a web service in the

cluster. The request is intercepted by the load balancer. When a

request for a particular service is received the popularity of the

service gets changed. The SLA monitoring services notifies

this change and calls the SLA generator to generate the new

SLA documents for the services. The configuration service

takes the generated SLA and sends the SLA parameters to the

SLA monitoring service. The SLA Monitoring Service

cooperates with the load balancing service to obtain the QoS

delivered by the cluster. i.e., the maximum service the cluster

can provide at this instant. The monitoring service then

computes the monitoring parameters such as the popularity

Factor and efficiency index which serve to check whether

cluster operational conditions are close to violate the generated

SLA for the requested service.

SLA Monitoring service firsts checks the client

responsibilities of the generated SLA. If clients are sending

more number of requests than the allowable limit then an

application level exception is raised and no other action is

taken by the cluster. Next the SLA monitoring service checks

the server responsibilities of the generated SLA. If the cluster

operational condition is close to breach the SLA parameters

�

�

Cluster

Load

Balancing

Service �������

�������������

��������

�����������

��������

����

��������

��������

 �!���"�����

 �!����#�����

��������

��"�������

�!$�����������

�!$�

P. Karthikeyan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,526-529

© 2010, IJARCS All Rights Reserved 528

then the monitoring service calls the configuration service to

reconfigure the cluster. The configuration service acts upon the

cluster by adding new nodes to the cluster up to a predefined

limit. Adding nodes to the cluster causes the performance to be

increased which can ultimately satisfy the generating SLA.

Node failures and voluntary disconnections are detected by

Monitoring Service, which then raises an exception to the

cluster Configuration Service. In both cases the configuration

service re configures the cluster;

IV. SERVICE LEVEL AGREEMENT

 A service level agreement is an arrangement between

a customer and a provider, describing technical and non-

technical characteristics of a service, including QoS

requirements and the related set of metrics with which

provision of these requirements is being measured [1].

The content of an SLA varies depending on the service

offered and incorporates the elements and attributes required

for the particular negotiation. The SLA specifies the following

responsibilities which are as follows:

 Client Responsibilities – This must be stated by the

client of the service. In our middleware it is obtained only once

from the client.

 Service Responsibilities – It includes the

responsibilities which must be satisfied by the application

server cluster in delivering the service. It is not obtained from

the service provider. Our middleware will generate this part of

the SLA based on the popularity of the service.

 Mutual Responsibilities – It specifies clearly the

charges and benefits of the two parties. Some of them might

overlap [1]. These requirements are compiled by both the client

and service provider. This part of the SLA document is also

obtained once from the client and service provider.

A snapshot of the partial SLA which is based on the

SLAng Specification language is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

<SLAng xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xs1:noNamespaceSchemaLocation=”abc/QaASCluster/SLAng1_1/SLA.xsd”>

 <Vertical>

 <Hosting>

 <Client>

 <Name> ABC private Lmt </Name>

 <Place>Texas</Place>

 <Availability>95%</Availability>

 <Client>

 <Server>

 <Name>MyQaASCluster</Name>

 <Place>Chennai</Place>

 <HighAvailability>99.5</HighAvailability>

 <Performance response time=”2.6”/>

 <Cluster_throughput containers=”9” active clients =”310”

 method_invocation=”53.141” />

 </Server>

 <Mutual>

 <service_schedule start=”2009-12-12” end = “2010-12-12” />

 </Mutual>

 </Hosting>

 </Vertical>

 </SLAng>

Fig -2 SLAng Specification of SLA document

In fig -2 the tags which are in bold face are generated by

the SLA generator module of the middleware based on the

runtime popularity of the deployed service while the rest of the

portion of the document is obtained from the client and the

service provider only once.

The SLA documents are enforced by the SLA Enforcement

engine which co-ordinates with the Web Service runtime,

manipulates the WSDL file accordingly and deploys the file to

the web service runtime.

V. JBOSS IMPLEMENTATION

 We conducted a feasibility study on implementing our

middleware architecture on JBoss v 4.0.4.GA Application

Server. JBoss consists of a collection of middleware services

for communication, persistence, transactions and security. [5]

These services interact by means of a microkernel based on the

Java Management Extension (JMX) Specifications [6]. JMX

defines a common software bus that allows the java developers

to integrate components such as modules, containers and

plugins. These components are declared as Managed Bean

(MBean) services; they are loaded into JBoss and administered

by the JMX software bus.

 A number of JBoss Application Server instances can

be started so that it forms a cluster. The nodes in the cluster

communicate with each other by the underlying group

communication mechanism, namely, JGroups, included in the

JBoss Application Server. JGroups provides the clustered

nodes with reliability properties such as lossless message

transmission, message ordering and atomicity.

 Each service will be serviced by a subset of nodes

(referred as partition). The number of nodes in the partition

depends on the runtime SLA of the service. A node

(application server instance) may be present in more than one

partition. The service is deployed with the binding addresses of

all the nodes in its partition. Thus whenever a web service

requests comes then the load balancer module selects a node

from its partition to service the request. The selection of node is

based on the load balancing algorithms such as Round Robin

algorithm, Random Selection, Queue Selection and so on.

�

�

�

� �

Figure 3. Logical representation of services and their partitions.

 The cluster configuration service starts up the

additional server nodes by means of an external program which

starts or stops the application server in the network. The

external program uses RMI to start/stop the server instance.

The cluster configuration also maintains the partition

information for each service. The SLA monitoring service

�

���������� ��������	�

��������
�

����

����

����

�������������
�������������

P. Karthikeyan et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,526-529

© 2010, IJARCS All Rights Reserved 529

evaluates the partition members of each and every service and

notifies the cluster configuration service in case of

adding/removing nodes from the sub partition. Adding new

nodes to the partition is required if the generated SLA requires

new nodes to be added to the partition to honour the SLA. The

removal of nodes assigned for a partition of any service is

required if honouring the SLA of the service doesn’t require the

extra node to be present in that partition. Thus the removed

node can be used by other partitions in the cluster. In case of

situations where there is no exclusive node added to the

partition to service the web service request then the node from

any other partition may be shared with this partition. The

impact of sharing the node from one partition to the other is

assessed by the SLA monitoring service and the partition may

be re configured if necessary.

VI. SAMPLE SCENARIO

 Consider a sample scenario of Book Shop application

which is deployed as a service to the Application Server

cluster. The client of the Book Shop application gives the client

responsibilities of the SLA document. The service provider and

the client of the service co-operatively provide the mutual

responsibilities of the SLA document. The partial SLA

document is given to the SLA generator Module of the

middleware. The SLA generator Module initially fills in the

server responsibilities of the SLA document with the default

values for the Performance response time and cluster

throughput which is based on the assessment tests carried out in

the cluster environment. The assessment tests are out of scope

of this paper.

 For each client invocation of the service the client

responsibilities are checked by the SLA monitoring service. If

the client breaches the client responsibilities specified in the

SLA then the application level exception is raised and the client

is blocked from using the service.

 The popularity of the service is updated for each

successful invocation of the service. The SLA monitor

evaluates the updated popularity against the SLA parameters

specified in the document along with the current cluster

configuration and cluster efficiency. If the change in popularity

of the service needs to update the SLA, then the SLA Monitor

notifies the SLA generator to generate a new SLA for the

service. The SLA generator generates the new SLA document

based on the popularity of the service for which the document

is going to be generated and the popularity of other services in

the cluster. The SLA generator notifies the cluster

configuration service to modify the cluster configuration to

accommodate the changes made to the SLA document.

Thus the SLA document is generated dynamically which is

monitored and honoured by the middleware services.

VII. CONCLUSION AND FUTURE WORK

 In this paper we discussed a middleware architecture

which facilitates the adaptive SLA generation for the services

deployed in the application server cluster. The paper also

discusses the various components of the middleware and their

interactions. A sample scenario is presented which clearly

explains how the services interact and generates the SLA at

runtime.

 What we do next is to take advantage of the design

idea of the middleware discussed in this paper and implement

the prototype of the middleware services using JBOSS

Application Server which is a fully complaint J2EE application

Server with robust EJB Support.

VII. REFERENCES

[1] Heiko Ludwig, Alexander Keller, Asit Dan, Richard

P.King, Richard Franck, “Web Service Level Agreement

(WSLA) Language Specification”.

[2] D.Davide Lamanna, James Skene, Wolfgang Emmerich,

“SLAng: A Language for Defining Service Level

Agreements”

[3] “JBoss Enterprise Middleware System," JBoss,

http://www.jboss.org, 2006.

[4] “SLA for Application Service Provisioning,” ASP Industry

Consortium White Papers, http://www.allaboutasp.org,

2006.

[5] M. Fleuryy and F. Reverbel, “The JBoss Extensible

Server,” Proc. ACM/IFIP/USENIX Int’l Middleware

Conf., June 2003

[6] G.Lodi and F.Panzieri, “QoS-Aware Clustering of

Application Servers,” Proc. First IEEE Int’l Workshop

Quality of Service in Application Servers/23rd Int’l Symp.

Reliable Distributed Systems (SRDS ’04), Oct. 2004.

