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Abstract: Server Consolidation is an efficient approach towards the utilization of physical machines, in order to reduce the total number of 
servers that an organization requires. To prevent the server sprawl, this practice was developed. Server Consolidation allow large-scale data 
centers to improve their resource utilization and energy efficiency using virtualization technologies. To prevent server sprawl, server 
consolidation aims at reducing the number of server machines used in the data centers by consolidating load and enhancing resource utilization 
of physical systems. Virtualization enables the migration of virtual machines (VMs) between the physical machines using the technique of live 
migration mainly for improving the efficiency. Virtual machine migration is promising approach to realize the objectives of efficient, adaptive 
and dynamic resource management in virtualized cloud environment. In this paper, a comprehensive study of the server consolidation algorithms 
and their usage towards dynamic resource management in the virtualized cloud environment is presented. We try to simulate and investigate the 
impacts of different server consolidation algorithms on the performance of the live machine migration in both source and target machine in terms 
of response time. Here in this paper, a performance evaluation of the chosen heuristics and fundamental insights obtained when variable load is 
generated over the physical machines, aimed at reducing server sprawl, optimizing power consumption and load balancing across the physical 
machines in virtualized cloud environment is presented. 
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I. INTRODUCTION 

In 1969, Leonard Kleinrock [15], one of the chief 
scientists of the original Advanced Research Projects 
Agency Network (ARPANET) which seeded the Internet, 
said: “As of now, computer networks are still in their 
infancy, but as they grow up and become sophisticated, we 
will probably see the spread of computer utilities which, like 
present electric and telephone utilities, will service 
individual homes and offices across the country.” This 
vision of computing utilities based on a service provisioning 
model anticipated the massive transformation of the entire 
computing industry in the 21st century whereby computing 
services will be readily available on demand, like other 
utility services available in today’s society. Cloud 
Computing is defined by NIST[21] as a model for enabling 
convenient, on demand network access to a shared pool of 
configurable computing resources that can be rapidly 
provisioned and released with minimal management effort 
or service provider interaction. 

For simplicity, a cloud is a pool of physical computing 
resources i.e. a set of hardware, processors, memory, storage, 
networks, etc. which can be provisioned on demand into 
services that can grow or shrink in real-time scenario[27]. 
Virtualization plays a vital role for managing and 
coordinating the access from the resource pool. A 
virtualized environment that enables the configuration of 
systems (i.e. compute power, bandwidth and storage) as well 
as the creation of individual virtual machines is the key 

features of the cloud computing. Virtualization is ideal for 
delivering cloud services. Virtualization Technology enables 
the decoupling of the application payload from the 
underlying physical hardware and provides virtualized 
resources for higher-level applications. An important feature 
of a virtual machine is that software running inside it is 
limited to resources and abstractions provided by the VM. 
The software layer that provides the virtualization is called 
virtual machine monitor (VMM). VMM virtualizes all of the 
resources of physical machine, thereby supporting the 
execution of multiple virtual machines. Virtualization can 
provide remarkable benefits in cloud computing by enabling 
VM migration to balance load across the data centers [13]. 

In the surge of rapid usage of virtualization, migration 
procedure has been enhanced due to the advantages of live 
migration say server consolidation and resource isolation. 
Live migration of virtual machines [5] [18] is a technique in 
which the virtual machine seems to be active and give 
responses to end users all time during migration process. 
Live migration facilitates energy efficiency, online 
maintenance and load balancing [14]. Live migration helps 
to optimize the efficient utilization of available CPU 
resources. 

Server consolidation is an approach to the efficient 
usage of computer server resources in order to reduce the 
total number of servers or server locations that an 
organization requires. This approach was developed in 
response to the problem of “server sprawl”. Server sprawl is 
a situation in which multiple underutilized servers 
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accommodate more space and consume more resources that 
can be justified by their workload. Many organizations are 
turning to server consolidation to reduce infrastructure 
complexity, improve system availability and save money. 
With increasingly powerful computing hardware, including 
multi-core servers; organizations can run large workloads 
and more applications on few servers. Reducing the 
numbers of servers has tangible benefits for the data centers 
as well. 

Consolidation will result in reduced power consumption 
and thus reducing overall operational costs for data center 
administrators. Live migrations achieve this. Based on the 
load conditions, under-utilized machines having resource 
usage above a certain threshold are identified and migrations 
are triggered to tightly pack VMs to increase overall 
resource usage on all PMs and free up resources/PMs if 
possible[3]. 

The rest of this paper is organized as follows: Section II 
describes the survey of existing literature of various server 
consolidation algorithms for cloud computing environment. 
Section III provides the overview of the chosen server 
consolidation algorithms for performance analysis in 
virtualized cloud environment. Section IV gives details 
about the experimental test bed used in performance 
analysis. Section V discusses the experimental evaluation 
and results. Section VI provides the conclusion and future 
work. 

II. RELATED WORK 

Several research groups are working on server 
consolidation in both academia and industry. This section 
presents studies and systems related to server consolidation. 
Khanna et al. [11] presented a dynamic management 
algorithm, which is triggered when a physical server 
machine becomes overloaded or underloaded. The main aim 
of their algorithm was to: i) guarantee that SLAs are not 
violated (SLAs are specified in terms of response time and 
throughput); ii) minimizing the migration cost; iii) 
optimizing the residual capacity of the system; and iv) 
minimizing the number of physical machines used. Bobroff 
et al. [19] proposed a dynamic server consolidation 
algorithm to reduce the amount the amount of required 
capacity and the rate of SLA violations. This heuristics 
make use of historical data to forecast future demand and 
relies on periodic executions to minimize the number of 
physical machines to support the virtual machines. Mehta 
and Neogi [23] developed the ReCon tool, aimed at 
recommending dynamic server consolidation in multi-
cluster data centers. ReCon takes into account both static 
and dynamic costs of physical machines, the costs of VM 
migration and the historical resource consumption data from 
the existing environment in order to provide an optimal plan 
of VMs to physical machine mapping over time.  

Wood et al. [26] presented the sandpiper system for 
monitoring and detecting hotspots, and remapping VMs 
whenever necessary. In order to choose which VMs to 
migrate, Sandpiper sorts them using a volume-to-size (vsr) 
metric, which is a based on cpu, network, and memory 
loads. Sandpiper migrates the most loaded VMs from an 
overloaded physical machine to one with sufficient capacity. 
Srikantaiah et al. [24] studied the problem of request 
scheduling for multi-tier web applications in virtualized 
heterogeneous systems, to minimize the energy 

consumption, while trying to meet the performance 
requirements. They try to investigate the effects of 
performance degradation due to high utilization of different 
resources when the workload is consolidated. They have 
determined that the energy consumption per transaction 
results in a “U”-Shaped curve, and it is possible to find the 
optimal utilization point. The authors have developed a 
heuristic for the multidimensional bin packing problem as 
an algorithm for the consolidation of workload to handle the 
optimization over multiple resources. However, this 
approach is workload type and application dependent. 

Cardosa et al. [17] have developed an approach for the 
problem of power-efficient allocation of VMs in virtualized 
heterogeneous computing environments. They have used the 
min, max and shares parameters of Xen’s VMM, which 
represents minimum, maximum and proportion of the CPU 
allocated to VMs sharing the same resource. However, the 
approach suits only to enterprise environments as it does not 
support strict SLAs and requires the knowledge of 
application priorities to define the shares parameter. 
Speitkamp and Bichler [4] [16] introduced a linear 
programming for the static and dynamic server 
consolidation problems. They also formulated extension 
constraints for limiting the number of virtual machines in a 
physical server, mapping virtual machines to a specific set 
of physical servers that have some unique attribute and, 
limiting the total number of migrations for dynamic 
consolidation. In addition, they also designed an LP-
relaxation based heuristic for minimizing the cost of solving 
the linear programming formulations. Emmanuel et al. [6] 
proposed a dynamic resource allocation framework based on 
their load balancing VM migration algorithm on a test-bed 
of three ESX servers, a SAN, VMware VC (Virtual Center) 
and VIBM Migration Handler. Similarly, Verma et al. [1] 
presented the pMapper architecture and a set of server 
consolidation algorithms for heterogeneous virtualized 
resources. The algorithms take into consideration power and 
migration costs and the performance benefit when 
consolidating applications into physical servers. 

 Ameek et al. [2] has developed a HARMONY set-up 
with ESX server and SAN (storage area network) controller 
for integrating both server and storage virtualization 
technologies to design an agile data centers. Keller et al. 
[10] design Golondrina multi-resource management for 
operating system-level virtualized environment with client 
systems, manager server and cluster gate. Starling [12] 
introduced affinity based VM placement and migration in a 
decentralized approach with an 8-node cluster of 2x dual-
core AMD machines. Jung et al. [8] [9] have investigated 
the problem of dynamic consolidation of VMs running a 
multi-tier web-application using live migration, while 
meeting SLA requirements. The SLA requirements are 
modelled as the response time precomputed for each type of 
transactions specific to the web-application. A new VM 
placement is produced using bin packing and gradient 
search techniques. The migration controller decides whether 
there is a reconfiguration that is effective according to the 
utility function that accounts for the SLA fulfilment. 
However, this approach can be applied only to a single web-
application setup and, therefore, cannot be utilized for a 
multitenant IaaS environment.  
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III. SERVER CONSOLIDATION ALGORITHMS 

Server consolidation is an approach to the efficient 
usage of computer server resources in order to reduce the 
total number of servers or server locations that an 
organization requires. This approach was developed in 
response to the problem of “server sprawl”. In order to 
reduce server sprawl in the data centers, server consolidation 
algorithms are implemented. These algorithms are VM 
packing heuristics which try to pack as many VMs as 
possible on the physical machine (PM) so that resource 
usage is improved and under-utilized machines can be 
turned off. 

A. Sandpiper: 
Sandpiper is a system that automates the task of 

monitoring and detecting hotspots, determining a new 
mapping of physical resources to virtual resources, by 
resizing or migrating VM’s to eliminate the hotspots. 
Sandpiper makes use of automated black-box and gray box 
strategies for virtual machine provisioning in cloud data 
centers. Specifically the black-box strategy can make 
decisions by simply observing each virtual machine from 
the outside and without any knowledge of the application 
resident within each VM. The authors present a gray-box 
approach that assumes access to OS-level statistics in 
addition to external observations to better inform the 
provisioning algorithm. Sandpiper implements a hotspot 
detection algorithm that determines when to resize or 
migrate virtual machines, and a hotspot migration algorithm 
that determines what and where to migrate and how many 
resources to allocate. The hotspot detection component 
employs a monitoring and profiling engine that gathers 
usage statistics on various virtual and physical servers and 
constructs profiles of resource usage. These profiles are used 
in conjunction with prediction techniques to detect hotspots 
in the system. Upon detection, Sandpiper grants additional 
resources to overloaded servers if available. If necessary, 
Sandpiper’s migration is invoked for further hotspot 
mitigation. The migration manager employs provisioning 
techniques to determine the resource needs of overloaded 
VMs to underloaded servers. 

Sandpiper supports both black-box and gray-box 
monitoring techniques that are combined with profile 
generation tools to detect hotspots and predict VM Resource 
requirements. Hotspots are detected when CPU usage values 
are violated with respect to the CPU thresholds set.  Physical 
machines (PMs) are classified as underloaded or overloaded. 
The PMs are sorted based on the descending order of their 
volume metric, and VMs are sorted based on the descending 
order of their vsr metric, where volume and vsr are 
computed as: 

 

                    (1)   
  

                     (2) 
 

where cpu, memory and n/w refers to cpu, memory and 
n/w usages of the PMs and VMs respectively and size refers 
to the memory footprint of the VM. 

To mitigate hotspot on an overloaded PM, the highest 
vsr VM is migrated to a least loaded PM amongst the 

underloaded ones. If the least loaded PM can’t house the PM, 
next PM in the sorted order is checked. Similarly, if the VM 
cannot be housed in any of the underloaded PMs, next VM 
in the sorted order is checked. This way sandpiper tries to 
eliminate hotspots by remapping VMs on PMs through 
migration. The experimental results showed that migration 
overhead is less than that of swapping overhead; however, 
swapping increases the chances of mitigating hotspots in 
cluster with high average utilization [25] [26]. 

B. Khanna’s Algorithm: 
Khanna et al., in [11] [25], proposed Dynamic 

Management Algorithm (DMA) that is based on 
Polynomial-Time Approximation Scheme (PTAS) heuristic 
algorithm. The algorithm operates by maintaining two types 
of ordering lists, which are migration cost list and residual 
capacity list. The PMs are sorted according to the increasing 
order of their residual capacities across any resource 
dimension like CPU. The VMs on each PM are sorted 
according to the increasing order of their resource utilization 
like CPU usage. Migration costs of the VMs are determined 
based on their resource usage i.e. high usage implies high 
costly migration. Whenever a hotspot is detected on a PM 
due to violation of upper threshold, VM with least resource 
usage is chosen for migration to target host which has the 
least residual capacity to house it. If a PM cannot 
accommodate the VM, next PM in the sorted order is 
checked. Similarly, if the VM cannot be accommodated by 
any of the candidate target PMs, next least usage VM from 
the sorted order is checked. 

Whenever coldspots are detected, the least usage VMs 
across all the underloaded PMs is chosen and migrated to a 
targeted PM, only if addition of the new VM increases the 
variance of residual capacities across all the PMs, else we 
choose the next VM in order. If there is no residual space 
left for the chosen VM, then the heuristic for coldspot 
mitigation stops. Variance is defined as follows: 

 

 
 

      (3) 

                   (4) 
  

rn=                              (5) 

In above equation, mean is defined as the average of 
normalized residual capacities across ‘m’ different resources 
like cpu, memory, networks, etc. rescpu , resmem, resnet  … 
stands for residual capacities across different resource 
dimensions. rn is the magnitude of the vector which 
comprises of the individual variances across ‘n’ physical 
machines. 

Khanna’s Algorithm packs the VMs as tightly as 
possible trying to minimize the number of PMs by 
maximizing the variance across all the PMs. Thus, Khanna’s 
algorithm minimizes power consumption by detecting 
underutilization in the managed using Max-Min thresholds 
selection model. 

When the resource usage of a running PM violates a 
minimum predefined threshold value, the algorithm tries to 
pack the running VMs as close as possible thus trying to 
minimize the number of running physical machines. 
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C. Entropy: 
Entropy proposes a consolidation algorithm based on 

constraint problem solving. The main idea of the constraint 
programming based resource manager is to formulate the 
VM resource allocation problem as constraint satisfaction 
problem, and then applies a constraint solver to solve the 
optimization problem. The ability of this solver to find the 
global optimum solution is the main motivation to take this 
approach. Entropy resource manager utilizes Choco 
constraint solver to achieve the objectives of minimizing the 
number of the running nodes and minimizing the migration 
cost. Entropy iteratively checks optimality constraint i.e. the 
current placement uses minimum number of the running 
nodes. If Entropy is successful in constructing a new optimal 
placement (uses fewer nodes) at VM packing problem 
(VMPP) phase, it will activate the re-allocation. Entropy 
employs a migration cost model that relates memory and 
CPU usage with migration context. High parallelism 
migration steps increases the cost. Using constraint 
programming techniques facilitates the task of capturing such 
context in two phases.  

In the first phase, Entropy computes a tentative 
placement (mapping of VMs to PMs) based on the current 
topology and resource usage of PMs and VMs and 
reconfiguration plan needed to achieve the placement using 
minimum number of PMs required. In the second phase, it 
tries to improve the reconfiguration plan by reducing the 
number of migrations required. Since obtaining the 
placement and reconfiguration may take a considerable 
amount of time, the time given to the CSP solver is defined 
by the users, exceeding which whatever immediate value the 
solver has computed is considered for dynamic placement of 
VMs. VMs are classified as active or inactive based on their 
usage of CPU with respect to thresholds set.  

The author define a viable configuration as one in which 
every active VM present in the cluster has access to 
sufficient cpu and memory resources on any PM. There can 
be any number of inactive VM on the PM satisfying the 
constraint. The CSP solver takes this viable condition into 
account in addition to the resource constraints, while 
procuring the final placement plan. However, considering 
only viable processing nodes and CPU-Memory Resource 
model is the limitation of the Entropy model [7] [25]. 

IV. EXPERIMENTAL TEST BED 

Our implementation and evaluation is based on Xen 
Hypervisor. Four PMs with Xen 4.1 hypervisor installed 
were used to serve as the physical hosts and another machine 
was used as NFS [20] Server to house the VMs images. 
Physical machines which worked as clients were used 
simultaneously to generate load on the virtual machines 
hosted on the PMs. Seven VMs were created with Ubuntu 
10.04, lucid host operating system with each 256 MB 
memory size and Ubuntu 11.10 as PMs Host operating 
system. They all have Apache, PHP and MySQL configured 
on them to act as web and Database servers. A separate 
machine has been configured which acts as the Management 
node, which runs the controller and the Decision Engine. The 
VIRT-M cluster management tool was implemented on this 
management node. Python programming was used to 
prototype these heuristics. Apart from these, RRD tool [22] 
was installed on the Management node running the Decision 

Engine, for storage of resource data. Our Experimentation 
takes these heuristics into consideration and implements 
these on idle VMs to investigate their impacts on 
performance of live migration in both source and target 
machine. 

 

 
Figure 4.1 Experimental Test Bed 

V. EVALUATION AND RESULTS 

An experiment was performed with five VMs, two of 
which were idle and three having variable workloads. This is 
an interesting experiment to perform since if the rate is fixed, 
the cpu usage levels will not vary drastically within the 
duration of experiment and hence after some reconfiguration 
in the initial topology to start with, the PMs are expected to 
stabilize without further threshold violation. If the rate 
changes, the usage levels will vary more and in such a 
scenario, it will be of interest to have an idea how reactively 
the algorithms do consolidation. “Httperf” with Webcalender 
PHP scripts has been used for this experiment to inject 
varying workload. The following scenario was created:  
PM84 - lucid08 - no load  
PM161 - lucid12 and lucid13 - rates varying as 10 req/sec, 20 
req/sec and 30 req/sec on both the VMs  
PM170 - lucid09 - rates varying as 10 req/sec, 20 req/sec and 
30 req/sec 
PM180 - lucid14 - no load  

The experiment was performed for 10 minutes duration 
for all the algorithms. The upper cpu threshold was kept as 
60%. From figures 5.1, 5.2 and 5.3, it was observed that 
there is too much of cpu usage level variations which was 
expected due to variation of rates. Amongst the three, 
variation in Entropy has been slightly lesser amongst the 
PMs. Sandpiper mitigates 1 hotspot and triggers 1 migration 
from PM170 to PM180. Khanna’s Algorithm performs 5 
migrations in total and uses 3 PMs same as sandpiper.  
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Figure 5.1 Khanna’s Algorithm 
 

      Figure 5.2 Sandpiper 
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Figure 5.3 Entropy Algorithm 

Entropy reduces the number of PMs by 3 and triggers 3 
migrations. As it was analyzed that PM84 has comparatively 
higher usages than the others because of VM receptions from 
other PMs. From figures 5.1, 5.2 and 5.3, it was observed 
that Sandpiper detects a hotspot on PM170, migrates lucid09 
to PM180 and reduces the number of PMs by 1. Khanna’s 
Algorithm detects a coldspot at PM180, does coldspot 
mitigation. It triggers a series of migrations, and finally uses 
3 PMs at the end of the experimental run. Lucid14 was 
migrated from PM 180 to PM 84. Lucid13 was migrated 
from PM161 to PM 170. Lucid 14 from PM84 to PM161, 
followed by lucid14 from PM161 to PM84, and finally lucid 
08 from PM84 to PM161. Entropy in this case as well puts 
all the VMs on PM161. As already known in entropy, viable 
configuration is to be satisfied, which means number of 
active PMs should have access to sufficient available 
processing units. Here, even though the cpu usage of PM161 
increases, the viability condition might have been satisfied 
for which all the VMs were put on the PM. Also, there was a 
decrease in cpu usage trend in the other PMs after entropy 
migrates all the VMs to PM 161.  

The cpu usage of PM161 were expected to increase 
when varying workloads, but comparatively the hike is not 
that much. It was believed that this happened because when 
the rates are high on a VM, due to increase in processing 
time of the requests or delay in sending response to the 
client, the cpu usage of the VMs reduce even if the rate is 
high from the client. The new topologies generated are:  

• Sandpiper - PM84 with lucid08, PM161 with lucid12 
and lucid13, PM180 with lucid14 and lucid09 

• Khanna’s Algorithm - PM84 with lucid14, PM161 with 
lucid08 and lucid12, PM170 with lucid09 and lucid13  
• Entropy - all on PM161 

Table I describes the measured statistics. It was analyzed 
that both sandpiper and Khanna’s Algorithm uses 3 PMs 
whereas Entropy uses just 1 PM. Sandpiper and Khanna’s 
Algorithm reacts to hotspots when they are formed, whereas 
Entropy doesn’t wait for hotspots or coldspots to happen, 
based on the current topology configuration, it searches for 
an optimal reconfiguration plan, once it finds it, the 
reconfiguration plan is implemented.  That is why in this 
experiment entropy took only more than 1 minute to generate 
the new plan whereas, Sandpiper used  3  PMs after 
approximately 9.34 minutes from the start of the experiment 
and Khanna’s Algorithm took more than 8 minutes to reduce 
the number of PMs. Also, Sandpiper triggers just 1 migration 
over Khanna’s Algorithm and entropy.   

Table I. Measured Evaluation Metrics 

Algorithm No. of PMs No. of 
Migrations 

Time Taken(mins) 

Sandpiper 3 1 N/A 
Khanna’s Algorithm 3 5 8.22 
Entropy 1 3 1.8 
 

As mentioned earlier a plan has been designed to 
perform evaluation of application performance which is very 
crucial for analysis. But due to much unexpected 
circumstances valid correct response time values could not 
be logged from which some concrete results could be 
inferred. Here, the response time variation of 1 VM, lucid12 
across all the three algorithms were presented. 
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Figure 5.4 Response Time Variation of Lucid12 in case of Sandpiper 

 
 

Figure 5.5 Response Time Variation of Lucid12 in case of Khanna’s 
Algorithm 

 
Figure 5.6 Response Time Variation of Lucid12 in case of Entropy 

From figures 5.4, 5.5 and 5.6, it can be observed that 
response time for lucid12 in case of sandpiper is higher than 
Khanna’s Algorithm and entropy. As seen from the graph, in 
experimenting with Khanna’s Algorithm, the average 
response time was approximately 200 milliseconds with 
transient spikes where the response time value increased to 
as high as 600 millisecs and 1100 millisecs. The reason 
behind this sudden increase is the fact, that PM161 which 
hosted lucid12, triggered migrations of lucid13 (co-located 
VM). PM161 had been the source as well destination for 
three migrations. And it is known that the application 
performance of co-located VMs is affected in such cases. 
Reception and migration of VMs from the same host could 
occur where lucid12 resides must have been the reason of 
sudden spikes in the response time.  

In case of Entropy, the results are in conformity to the 
events triggered by the algorithm. PM161 where lucid12 
resides was chosen as the destination PM for all the VMs in 
the topology. As a result, PM161 had been the destination 
PM for three migrations.  This increases the cpu usage of 
PM161 slightly affecting the response time at the server on 
lucid12. In addition to this, addition of three more VMs in 
lucid12’s host and colocation amongst four other VMs must 
have affected its request processing, affecting its application 
performance. In Khanna’s Algorithm there are infrequent 
spikes, but in entropy there are no spikes, the increase in 
response times are persistent, the average is very close to 
each other.  

Unexpectedly, in sandpiper the response time values are 
more compared to both Khanna’s Algorithm and entropy 
both of which are comparable.  Although in Sandpiper, 
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lucid12 was not migrated neither did its host PM161 
undergo VM receptions from other hosts, the response times 
are higher. This is because of the fact that, the MySQL 
server running at the VM lucid12 got blocked because of too 
many connections for some time. When the workload was 
generated with varied rates, since database was inaccessible 
for some time, the response time values increased and this 
had an effect on the overall response time values of the 
entire experimental run. However, it was noticed that the 
application performance of the VM gets affected if the host 
PM triggers too many migrations or undergoes VM 
receptions. A migrating VM will undergo degraded 
application performance. Thus, in this experiment, entropy 
does best in terms of application performance. 

VI. CONCLUSION AND FUTURE WORK 

With the popularity of cloud computing systems, live 
virtual machines migration will be great beneficial tool for 
dynamic resource management in the modern day data 
centers. To prevent server sprawl, server consolidation aims 
at reducing the number of server machines by consolidating 
load, enhancing resource utilization of physical systems 
along with provision of isolation & security of the 
application hosted. In this paper, we presented a performance 
evaluation of the chosen server consolidation algorithms in 
virtualized cloud computing environment when no workload 
is generated on the client machines. Sandpiper and Khanna’s 
Algorithm uses a threshold based technique of triggering VM 
migrations. Entropy relies on CSP solver 4.4.1 to perform 
consolidation by providing a set of constraints, optimizing 
the number of PMs needed to house the VMs and the 
migration cost to determine the selection of configuration 
plan. In sandpiper, the migration cost is in terms of vsr metric 
whereas Khanna’s algorithm considers the resource 
utilization as the migration cost metric. All of them intend to 
reduce migration cost in terms of the memory allocated to the 
VMs. Unlike other algorithms, Entropy tries to obtain a 
globally optimal solution, which distinguishes itself in its 
consolidation approach. Unlike other algorithms does, 
Entropy considers all the hosts in the topology and based on 
their current resource usages, finds out an optimal solution 
which tries to decrease the migration overhead in terms of 
memory. The other algorithms try to achieve consolidation 
on a per host basis, making sure that resource violations are 
prevented every time each host is scanned, and then the VMs 
are packed as closely as possible. 

In case of varying workloads, when there are changing 
cpu utilization levels, entropy performs better than Khanna’s 
Algorithm. It uses less number of PMs and triggers less 
number of migrations over Khanna’s Algorithm. Moreover, 
it didn’t take much time to procure the reconfiguration plan 
and initiate the new mapping.  It is within acceptable limits 
to cross the upper cpu threshold, at the benefit of obtaining 
reduced number of PMs with less migration overhead. Too 
many migrations in the system always induces some amount 
of instability in the system, also, it could be observed that the 
relatively higher variation of cpu utilizations across the PMs 
with Khanna’s algorithm than the others. The reasoning is 
that it is because of frequent VM relocation across PMs 
which happens in Khanna’s Algorithm. Khanna’s algorithm 
seems to be more befitting in an environment where there is 
need of cpu usages within specified thresholds as a high 
priority requirement, in the process of performing 

consolidation. It can be seen that better consolidation is 
possible than what Khanna’s Algorithm does, but the cpu 
usage at the destination PM may reach too high, beyond 
acceptance level in some cases.  

The application performance of lucid12 is best in 
Entropy. But unless it was analyzed the application 
performance of all the other VMs present in the topology, it 
cannot be ascertained concretely about the goodness of the 
algorithms. These algorithms try to efficiently prevent server 
sprawl and ensure non-disruptive load balancing in data 
centers. Efficiency of the algorithm depends on the resource 
parameters and metrics considered. Hence, a comparative 
performance analysis was carried out to analyse their 
applicability, goodness and incurred overhead. In near future, 
Evaluation of these algorithms with mixed load where 
different types of applications are used together, can facilitate 
in figuring out the distinct cases where an algorithm will 
behave well and hence can be used in those cases only to 
leverage the maximum benefits. 

By increasing the scale of experimentation, 
investigations can be done in finding out whether behavior of 
algorithms changes when the number of PMs and VMs are 
increased in term of the metrics defined to compare the 
goodness of the algorithms. Moreover, more algorithms 
which does similar jobs like consolidation can be chosen in 
near future and their relative behavior can be analysed with 
the already chosen algorithms. 
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