
Volume 5, No. 3, March-April 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 187

ISSN No. 0976-5697

Open Source Secure Cloud Storage used to Dynamic Load Balancing Model
S.Pragadeeswaran¹, M.Sakthivel²

Assistant Professor, Assistant Professor and Head of The Department
1,2 Department of Computer Science and Engineering
Sengunthar Engineering College-Tiruchengode, India

Abstract: Load balancing in the cloud computing environment has an Essential collision on the recital. load balancing introduce cloud
computing more and well-organized and improves user contentment This paper improve a enhanced load balance model for the public cloud
based on the cloud partitioning concept with a switch and portioning mechanism to choose different strategies for different situations like
Critical warning ,Up , down The mode applies load balancing strategy to improve the efficiency in the public cloud environment.
Using Cloud Storage, users can remotely store their data and enjoy the on-demand high quality applications and services from a shared pool of
configurable computing resources without the burden of local data storage and maintenance we are introduce the openstack it provide the single
node multi node based on that it generate the token id and tenen id through this resource allocator allocate the requesting resource . assigned
resource is in warning or Critical state generate one Interrupt signal to the cloud server by nagios monitoring tool providing web user interface
the web user interface along with set of web controls it act as user interface collection . This data information forward to activity work flow in
that frame work decide approval or reject with help of development frame work this information forwarded to open stack folson entire state is
monitor by nagios monitoring it providing privacy and secure cloud storage . In this paper, we first discuss related works and present the scope
of this overview. Also, we outline the main component of openstack and nagios monitoring installation main system model. Resource allocator
with controller. challenges of the field as these multi node version the various approaches that are reported in literature. Finally, we briefly
describe the most commonly how to interact tenid in multi node in secure cloud storage

Key Words : load balancing model; public cloud; cloud partition; game theory Data storage, open source ,open stack, nagios monitoring state,
public Activity work flow ,cloud computing.

I. INTRODUCTION

Cloud computing is an attracting technology in the field
of computer science. In Gartner’s report[1], it says that the
cloud will bring changes to the IT industry. The cloud is
changing our life by providing users with new types of
services. Users get service from a cloud without paying
attention to the details[2]. NIST gave a definition of cloud
computing as a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction [3]. More and more people pay attention
to cloud computing [4, 5]. Cloud computing is efficient and
scalable but maintaining the stability of processing some any
jobs in the cloud computing environment is a very complex
problem with load balancing receiving much attention for
researchers.

Since the job arrival pattern is not predictable and the
capacities of each node in the cloud differ, for load
balancing problem, workload control is crucial to improve
system performance and maintain stability. Load balancing
schemes depending on whether the system dynamics are
important can be either static and dynamic[6]. Static
schemes do not use the system information and are less
complex while dynamic schemes will bring additional costs
for the system but can change as the system status changes.
A dynamic scheme is used here for its flexibility. The model
has a main controller and balancers to gather and analyze the
information. Thus, the dynamic control has little influence
on the other working nodes. The system status then provides
a basis for choosing the right load balancing strategy. The

load balancing model given in this article is aimed at the
public cloud which has numerous nodes with distributed
computing resources in many different geographic locations.
Thus, this model divides the public cloud into several cloud
partitions. When the environment is very large and complex,
these divisions simplify the load balancing. The cloud has a
main controller that chooses the suitable partitions for
arriving jobs while the balancer for each cloud partition
chooses the best load balancing strategy.

OpenStack Compute is open source software designed
to provision and manage large networks of virtual
machines, creating a redundant and scalable cloud
computing platform. It gives you the software, control
panels, and APIs required to orchestrate a cloud, including
running instances, managing networks, and controlling
access through users and projects. OpenStack Compute
strives to be both hardware and hypervisor agnostic,
currently supporting a variety of standard hardware con-
gurations and seven major hypervisors

II. OPENSTACK COMPONENTS

A. OpenStack Compute (code-name Nova):
With a focus on ease of use, performance, and security,

the latest release of OpenStack Compute makes it easier for
operators to configure large pools of virtual machines. A
new "config drive" capability stores network configuration
information, eliminating the need for DHCP, and a new
"host aggregation" feature places workloads into the best
pools of resources for the job, such as GPU clusters for HPC
work. Performance and security enhancements enable users
to expose unique features of the CPUs powering their cloud,
including support for Trusted Computing, which relies on
hardware to verify the cloud computing environment's state

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 188

B. More Folsom Features:

a. OpenStack Block Storage (code-name Cinder):
The first full release of OpenStack Block Storage

implements advanced, extensible block and volume storage
capabilities, while still supporting previously deployed
OpenStack Volumes. Previously a sub-component of
OpenStack Compute, the Block Storage capabilities of
OpenStack have been promoted to a full project with a
dedicated development team that will increase the rate of
innovation as the OpenStack development community grows

b. OpenStack Dashboard (code-name Horizon):
The second full release of OpenStack Dashboard brings

usability improvements in launching Compute instances,
working Object Storage resources, and managing OpenStack
projects and users. Other feature advances include support
for public and private image uploads and management of
advanced networks. End users will appreciate better cross-
browser support, timezone support, dynamic quota displays,
improved error handling, and performance improvements.

c. OpenStack Image Service (code-name Glance):
There were major advancements in usability and

functionality to the Image Service, including a new API, a
new client library, new replication options for increased
performance and security improvements reaching from the
client to the image storage system.

d. OpenStack Object Storage (code-name Swift):
Among many operational enhancements, operators can

now connect OpenStack Object Storage to a statsd server
and receive hundreds of real-time metrics about their cluster
to help with troubleshooting, diagnostics, day-to-day
operational issues, and long-term capacity management. To
improve performance, clusters with high write requirements
or large quantities of stored objects can now take advantage
of solid-state drives (SSDs) for storing metadata without
incurring a high overhead in disk space. Additionally, the
ability to place data in cluster locations that are “as unique-
as-possible,” makes it easier to deploy small clusters and
provides better flexibility for all clusters when handling
hardware failure.

e. OpenStack Networking (code-name Quantum):
An advanced network automation platform that

empowers users to choose their back-end technology,
OpenStack Networking includes support for Open vSwitch,
the Ryu open source network operating system, standard
Linux bridge networking and commercial solutions from
Cisco, Nicira, and NEC via a plug-in architecture.
Additionally, the release includes significant updates to
control Layer 2 networking, IP address management, API
quotas, notifications, extension support for Layer 3
forwarding, Secure Network Address Translation (SNAT),
and floating IPs.

f. OpenStack Identity (code-name Keystone):
The second full release of OpenStack Identity brings

improved support for Public Key Infrastructure (PKI)
authentication and improved integration and management
across OpenStack services.–

III. CONCEPTUAL ARCHITECTURE

The OpenStack project as a whole is designed to
"deliver(ing) a massively scalable cloud operating system."
To achieve this,fig 1 shows each of the constituent services
are designed to work together to provide a complete
Infrastructure as a Service (IaaS). This integration is
facilitated through public application programming
interfaces (APIs) that each service offers (and in turn can
consume). While these APIs allow each of the services to
use another service, it also allows an implementer to switch
out any service as long as they maintain the API. These are
(mostly) the same APIs that are available to end users of the
cloud.

A. Compute:

Figure 1.Openstack conceptual view

Nova is the most complicated and distributed
component of OpenStack. A large number of processes
cooperate to turn end user API requests into running virtual
machines. Below is a list of these processes and their
functions: nova-api accepts and responds to end user
compute API calls. It supports OpenStack Compute API,
Amazon's EC2 API and a special Admin API (for privileged
users to perform administrative actions). It also initiates
most of the orchestration activities (such as running an
instance) as well as enforces some policy (mostly quota
checks).

The nova-compute process is primarily a worker
daemon that creates and terminates virtual machine
instances via hypervisor's APIs (XenAPI for
XenServer/XCP, libvirt for KVM or QEMU, VMwareAPI
for VMware, etc.). The process by which it does so is fairly
complex but the basics are simple: accept actions from the
queue and then perform a series of system commands (like
launching a KVM instance) to carry them out while
updating state in the database.

Nova-volume manages the creation, attaching and
detaching of persistent volumes to compute instances
(similar functionality to Amazon’s Elastic Block Storage). It
can use volumes from a variety of providers such as iSCSI
or Rados Block Device in Ceph. A new OpenStack projects,

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 189

Cinder, will eventually replace nova-volume functionality.
In the Folsom release, nova-volume and the Block Storage
service will have similar functionality.

The nova-network worker daemon is very similar to
nova-compute and nova-volume. It accepts networking tasks
from the queue and then performs tasks to manipulate the
network (such as setting up bridging interfaces or changing
iptables rules). This functionality is being migrated to
Quantum, a separate OpenStack service. In the Folsom
release, much of the functionality will be duplicated
between nova-network and Quantum.

The nova-schedule process is conceptually the simplest
8piece of code in OpenStack Nova: take a virtual machine
instance request from the queue and determines where it
should run (specifically, which compute server host it
should run on).

The queue provides a central hub for passing messages
between daemons. This is usually implemented with
RabbitMQ today, but could be any AMPQ message queue
(such as Apache Qpid). New to the Folsom release is
support for Zero MQ (note: I've only included this so that
Eric Windisch won't be hounding me mercilessly about it's
omission).

The SQL database stores most of the build-time and
run-time state for a cloud infrastructure. This includes the
instance types that are available for use, instances in use,
networks available and projects. Theoretically, OpenStack
Nova can support any database supported by SQL-Alchemy
but the only databases currently being widely used are
sqlite3 (only appropriate for test and development work),
MySQL and PostgreSQL.

Nova also provides console services to allow end users
to access their virtual instance's console through a proxy.
This involves several daemons (nova-console, nova-
vncproxy and nova-consoleauth).

Nova interacts with many other OpenStack services:
Keystone for authentication, Glance for images and Horizon
for web interface. The Glance interactions are central. The
API process can upload and query Glance while nova-
compute will download images for use in launching images.

B. Object Store:
The swift architecture is very distributed to prevent any

single point of failure as well as to scale horizontally. It
includes the following components:

Proxy server (swift-proxy-server) accepts incoming
requests via the OpenStack Object API or just raw HTTP. It
accepts files to upload, modifications to metadata or
container creation. In addition, it will also serve files or
container listing to web browsers. The proxy server may
utilize an optional cache (usually deployed with memcache)
to improve performance.

Account servers manage accounts defined with the
object storage service.

Container servers manage a mapping of containers (i.e
folders) within the object store service.

Object servers manage actual objects (i.e. files) on the
storage nodes.

There are also a number of periodic process which run
to perform housekeeping tasks on the large data store. The
most important of these is the replication services, which
ensures consistency and availability through the cluster.
Other periodic processes include auditors, updaters and
reapers.

The object store can also serve static web pages and
objects via HTTP. In fact, the diagrams in this blog post are
being served out of Rackspace Cloud's Swift service.
Authentication is handled through configurable WSGI
middleware (which will usually be Keystone).

C. Image Store:
The Glance architecture has stayed relatively stable

since the Cactus release. The biggest architectural change
has been the addition of authentication, which was added in
the Diablo release. Just as a quick reminder, Glance has four
main parts to it:

Glance-api accepts Image API calls for image
discovery, image retrieval and image storage.

Glance-registry stores, processes and retrieves metadata
about images (size, type, etc.).

A database to store the image metadata. Like Nova, you
can choose your database depending on your preference (but
most people use MySQL or SQlite).

A storage repository for the actual image files. In the
diagram above, Swift is shown as the image repository, but
this is configurable. In addition to Swift, Glance supports
normal filesystems, RADOS block devices, Amazon S3 and
HTTP. Be aware that some of these choices are limited to
read-only usage.

There are also a number of periodic process which run
on Glance to support caching. The most important of these
is the replication services, which ensures consistency and
availability through the cluster. Other periodic processes
include auditors, updaters and reapers.

As you can see from the diagram in the Conceptual
Architecture section, Glance serves a central role to the
overall IaaS picture. It accepts API requests for images (or
image metadata) from end users or Nova components and
can store its disk files in the object storage service, Swift.

D. Identity:
Keystone provides a single point of integration for

OpenStack policy, catalog, token and authentication.
Keystone handles API requests as well as providing

configurable catalog, policy, token and identity services.
Each Keystone function has a pluggable backend which

allows different ways to use the particular service. Most
support standard backends like LDAP or SQL, as well as
Key Value Stores (KVS).

Most people will use this as a point of customization for
their current authentication services.

E. Network:
Quantum provides "network connectivity as a service"

between interface devices managed by other OpenStack
services (most likely Nova). The service works by allowing
users to create their own networks and then attach interfaces
to them. Like many of the OpenStack services, Quantum is
highly configurable due to it's plug-in architecture. These
plug-ins accommodate different networking equipment and
software. As such, the architecture and deployment can vary
dramatically. In the above architecture, a simple Linux
networking plug-in is shown.

Quantum-server accepts API requests and then routes
them to the appropriate quantum plugin for action.

Quantum plugins and agents perform the actual actions
such as plugging and unplugging ports, creating networks or
subnets and IP addressing. These plugins and agents differ

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 190

depending on the vendor and technologies used in the
particular cloud. Quantum ships with plugins and agents for:
Cisco virtual and physical switches, Nicira NVP product,
NEC OpenFlow products, Open vSwitch, Linux bridging
and the Ryu Network Operating System. Midokua also
provides a plug-in for Quantum integration. The common
agents are L3 (layer 3), DHCP (dynamic host IP addressing)
and the specific plug-in agent.

Most Quantum installations will also make use of a
messaging queue to route information between the quantum-
server and various agents as well as a database to store
networking state for particular plugins.

Quantum will interact mainly with Nova, where it will
provide networks and connectivity for its instances.

F. Block Storage:
Cinder separates out the persistent block storage

functionality that was previously part of Openstack
Compute (in the form of nova-volume) into it's own service.
The OpenStack Block Storage API allows for manipulation
of volumes, volume types (similar to compute flavors) and
volume snapshots.

Cinder-api accepts API requests and routes them to
cinder-volume for action.

Cinder-volume acts upon the requests by reading or
writing to the Cinder database to maintain state, interacting
with other processes (like cinder-scheduler) through a
message queue and directly upon block storage providing
hardware or software. It can interact with a variety of
storage providers through a driver architecture. Currently,
there are drivers for IBM, SolidFire, NetApp, Nexenta,
Zadara, linux iSCSI and other storage providers.

Much like nova-scheduler, the cinder-scheduler daemon
picks the optimal block storage provider node to create the
volume on.

Cinder deployments will also make use of a messaging
queue to route information between the cinder processes as
well as a database to store volume state.

Like Quantum, Cinder will mainly interact with Nova,
providing volumes for its instances.

IV. NAGIOS PROVIDES

a. By using Nagios, you can:

Plan for infrastructure upgrades before outdated

systems cause failures Respond to issues at the first sign of a
roblem Automatically fix problems when they are etected
Coordinate technical team responses Ensure your
organization's SLAs are being metEnsure IT infrastructure
outages have a minimal effect on your organization's bottom
line Monitor your entire infrastructure and business
processes.

b. How It Works:

A. Monitoring:
IT staff configure Nagios to monitor critical IT

infrastructure components, including system metrics,
network protocols, applications, services, servers, and
network infrastructure.

B. Alerting

Nagios sends alerts when critical infrastructure

components fail and recover, providing administrators with
notice of important events. Alerts can be delivered via
email, SMS, or custom script.

C. Response:
IT staff can acknowledge alerts and begin resolving

outages and investigating security alerts immediately. Alerts
can be escalated to different groups if alerts are not
acknowledged in a timely manner.

D. Reporting:

Reports provide a historical record of outages, events,

notifications, and alert response for later review.
Availability reports help ensure your SLAs are being met.

E. Maintenance:

Scheduled downtime prevents alerts during scheduled

maintenance and upgrade windows.

F. Planning:

Trending and capacity planning graphs and reports

allow you to identify necessary infrastructure upgrades
before failures occur.

Nagios is an awesome Open Source monitoring tool,
its provides you more comprehensive monitoring
environment to always keep an eye on your all machines /
networks whether you are in a your data center or just your
small labs.

With Nagios, you can monitor your remote hosts and
their services remotely on a single window. It shows

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 191

warnings and indicates if something goes wrong in your
servers which eventually helps us to detect some problems
before they occur. It helps us to reduce downtime and
business losses.

Recently, Nagios released its latest versions Nagios
4.0.1 on 15th October 2013, and its latest stable release of
Nagios plugins 1.5.

This article is intended to guide you with easy
instructions on how to implement and install latest Nagios
4.0.1 from source (tarball) on RHEL 6.4/6.3/6.2/6.1/6/5.8,
CentOS 6.4/6.3/6.2/6.1/6/5.8 and Fedora
19,18,17,16,15,14,13,12 distributions. Within 30 minutes
you will be monitoring your local machine, no any advanced
installation procedure only basic installation that will work
100% on most of the today’s Linux servers.

Please Note: The installation instructions were shown in
here are written based on CentOS 6.4 Linux distribution.
If you follow these instructions correctly, you will end up
with following information.

a) Nagios and its plugins will be installed under
/usr/local/nagios directory.

b) Nagios will be configured to monitor few services
of your local machine (Disk Usage, CPU Load,
Current Users, Total Processes, etc.)

c) Nagios web interface will be available at
http://localhost/nagios

Step 1: Install Required Dependencies
We need to install Apache, PHP and some libraries like

gcc, glibc, glibc-common and GD libraries and its
development libraries before installing Nagios 4.0.1 with
source. And to do so we can use yum default package
installer.

[root@tecmint]# yum install -y httpd php gcc glibc
glibc-common gd gd-devel ma
Step 2:

Create Nagios User and Group Create a new nagios user
and nagcmd group account and set a password.
[root@tecmint]# useradd nagios
[root@tecmint]# groupadd nagcmd

Next, add both the nagios user and the apache user to
the nagcmd group.
[root@tecmint]# usermod -G nagcmd nagios
[root@tecmint]# usermod -G nagcmd apache
Step 3: Download Nagios Core 4.0.1 and Nagios
Plugin 1.5
Create a directory for your Nagios installation and all its
future downloads.
[root@tecmint]# mkdir /root/nagios
[root@tecmint]# cd /root/nagios
Now download latest Nagios Core 4.0.1 and Nagios plugins
1.5 packages with wget command.
[root@tecmint nagios~]# wget
[root@tecmintnagios~]#wgethttps://www.nagios-
plugins.org/download/nagios-plugins-1.5.tar.gz
Step 4: Extract Nagios Core and its Plugins We
need to extract downloaded package with tar
command as follows.
[root@tecmint nagios~]# tar –xvf nagios-4.0.1.tar.gz
[root@tecmint nagios~]# tar –xvf nagios-plugins-1.5.tar.gz
When you extract these tarballs with tar command, two new
folders will appear in that directory.
[root@tecmint nagios ~]# ll total 3712 drwxrwxr-x 18 root
root 4096 Oct 17 03:28 nagios-4.0.1

-rw-r--r-- 1 root root 1695367 Oct 15 19:49 nagios-
4.0.1.tar.gz drwxr-xr-x 15 200 300 4096 Oct 14 10:18
nagios-plugins-1.5
-rw-r--r-- 1 root root 2428258 Oct 2 11:27 nagios-plugins-
1.5.tar.gz
Configure Nagios Core

Now, first we will configure Nagios Core and to do so
we need to go to Nagios directory and run configure file and
if everything goes fine, it will show the output in the end as
sample output. Please see below.
[root@tecmint nagios~]# cd nagios-4.0.1
[root@tecmint nagios-4.0.1]# ./configure --with-command-
group=nagcmd
Sample output:
Nagios executable: nagios
Nagios user/group: nagios,nagio
Command user/group: nagios,nagcmd
 Event Broker: yes
 Install ${prefix}: /usr/local/nagios
 Install${includedir}:/usr/local/nagios/include/nagios
Lockfile: ${prefix}/var/nagios.lock
Check result directory: ${prefix}/var/spool/checkresults
 Init directory: /etc/rc.d/init.d
 Apache conf.d directory: /etc/httpd/conf.d
 Mail program: /bin/mail
 Host OS: linux-gnu
 Web Interface Options:

 HTML

 CGI
 Traceroute (used by WAP): /bin/traceroute

Review the options above for accuracy. If they look
okay, type 'make all' to compile the main program and CGIs.
Now, after configuring we need to Compile and install all
the binaries with make command and make install
command will install all the needed libraries in your
machine and we can proceed further.
[root@tecmint nagios-4.0.1]# make all
[root@tecmint nagios-4.0.1]# make install
Sample output:
*** Main program, CGIs and HTML files installed ***

You can continue with installing Nagios as follows
(type 'make'without any arguments for a list of all possible
options):
make install-init - This installs the init script in
/etc/rc.d/init.d
make install-commandmode
 - This installs and configures permissions on the directory
for holding the external command file
make install-config - This installs sample config files in
/usr/local/nagios/etc
Following command will install the init scripts for Nagios.
[root@tecmint nagios-4.0.1]#
 make install-init To make nagios work from command line
we need to install command-mode.
[root@tecmint nagios-4.0.1]#
 make install-commandmode
Next, install sample nagios files, please run following
command.
[root@tecmint nagios-4.0.1]# make install-config

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 192

Sample output:
/usr/bin/install -c -m 775 -o nagios -g nagios -d
/usr/local/nagios/etc
/usr/bin/install -c -m 775 -o nagios -g nagios -d
/usr/local/nagios/etc/objects
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/nagios.cfg /usr/local/nagios/etc/nagios.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/cgi.cfg /usr/local/nagios/etc/cgi.cfg
/usr/bin/install -c -b -m 660 -o nagios -g nagios sample-
config/resource.cfg /usr/local/nagios/etc/resource.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/templates.cfg
/usr/local/nagios/etc/objects/templates.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/commands.cfg
/usr/local/nagios/etc/objects/commands.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/contacts.cfg
/usr/local/nagios/etc/objects/contacts.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/timeperiods.cfg
/usr/local/nagios/etc/objects/timeperiods.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/localhost.cfg
/usr/local/nagios/etc/objects/localhost.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/windows.cfg
/usr/local/nagios/etc/objects/windows.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/printer.cfg
/usr/local/nagios/etc/objects/printer.cfg
/usr/bin/install -c -b -m 664 -o nagios -g nagios sample-
config/template-object/switch.cfg
/usr/local/nagios/etc/objects/switch.cfg
*** Config files installed ***

Remember, these are *SAMPLE* config files. You'll
need to read the documentation for more information on
how to actually define services, hosts, etc. to fit your
particular needs.

Step 5: Customizing Nagios Configuration
Open the “contacts.cfg” file with your choice of editor

and set the email address associated with the nagiosadmin
contact definition to receiving email alerts.
vi /usr/local/nagios/etc/objects/contacts.cfg

Sample Output:
##
###############################
##
###############################

CONTACTS

##
###############################
##
###############################

Just one contact defined by default - the Nagios admin
(that's you)
This contact definition inherits a lot of default values from
the 'generic-contact'

template which is defined elsewhere.
define contact{
contact_name nagiosadmin ; Short name
of user use generic-contact ;
Inherit default values from generic-contact template (defined
above)

Step 6: Install and Configure Web Interface for Nagios:
We are done with all configuration in the backend, now

we will configure Web Interface For Nagios with following
command. The below command will Configure Web
interface for Nagios and a web admin user will be created
“nagiosadmin”.

[root@tecmint nagios-4.0.1]# make install-webconf In
this step, we will be creating a password for
“nagiosadmin”. After executing this command, please
provide a password twice and keep it remember because
this password will be used when you login in the Nagios
Web interface.
[root@tecmint nagios-4.0.1]# htpasswd -s -c
/usr/local/nagios/etc/htpasswd.users nagiosadmin
New password:
Re-type new password:
Adding password for user nagiosadmin
Restart Apache to make the new settings take effect.
[root@tecmint]# service httpd start (On RedHat / CentOS)
[root@tecmint]# systemctl start httpd.service (On Fedora)
Step 7: Compile and Install Nagios Plugin
We have downloaded nagios plugins in /root/nagios, Go
there and configure and install it as directed below.
[root@tecmint nagios]# cd /root/nagios
[root@tecmint nagios]# cd nagios-plugins-1.5
[root@tecmint nagios]# ./configure --with-nagios-
user=nagios --with-nagios-group=nagios
[root@tecmint nagios]# make
[root@tecmint nagios]# make install

Step 8: Verify Nagios Configuration Files:
Now we are all done with Nagios configuration and its

time to verify it and to do so please insert following
command. If everything goes smooth it will show up similar
to below output.

[root@tecmint nagios]# /usr/local/nagios/bin/nagios -v
/usr/local/nagios/etc/

Step 9: Add Nagios Services to System Startup:
To make Nagios work across reboots, we need to add

nagios and httpd with chkconfig command.
[root@tecmint]# chkconfig --add nagios
[root@tecmint]# chkconfig --level 35 nagios on
[root@tecmint]# chkconfig --add httpd
[root@tecmint]# chkconfig --level 35 httpd
Restart Nagios to make the new settings take effect.
[root@tecmint]# service nagios start (On RedHat /
CentOS)
[root@tecmint]# systemctl start nagios.service (On Fedora)

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 193

Figure 2 system with load balancing model

V. SYSTEM MODEL

There are several cloud computing categories with this
work focused on a public cloud. A public cloud isbased on
the standard cloud computing model, with service provided
by a service provider[3]. A large public cloud will include
many nodes and the nodes indifferent geographical
locations. Cloud partitioning is used to manage this large
cloud. A cloud partition is a subarea of the public cloud with
divisions based on the geographic locations. The
architecture is shown in

The load balancing strategy is based on the cloud
partitioning concept. After creating the cloud partitions ,the
load balancing then starts: when a job arrives at

Figure 3 Controller and Balancer portioning the cloud

A. Main controller and balancers:
The load balance solution is done by the main

controllerand the balancers.The main controller first assigns
jobs to thesuitable cloud partition and then communicates
withthe balancers in each partition to refresh this
statusinformation. Since the main

Figure 4.Algoritham portioning based on the state controller deals

withinformation for each partition, smaller data sets willlead to the higher
processing

Figure: 5

Figure 5 Algorithm compute Load degree rates. The
balancers ineach partition gather the status information from
everynode and then choose the right strategy to distribute
the jobs. The relationship between the balancers and the
main controller is shown in

B. Assigning jobs to the cloud partition:
When a job arrives at the public cloud, the first step isto

choose the right partition. The cloud partition statuscan be
divided into three types:

S.Pragadeeswaran et al, International Journal of Advanced Research In Computer Science, 5 (3), March- April, 2014,187-194

© 2010-14, IJARCS All Rights Reserved 194

a) Idle: When the percentage of idle nodes
b) exceeds _,
c) Normal: When the percentage of the normal

nodesexceeds _, change to normal load status.

Figure 6 Resource allocated by Requested state

d) Overload: When the percentage of the overl oaded
nodes exceeds , change to overloaded status.The
parameters _, _, and are set by the cloud partition
balancers.

The main controller has to communicate with the
balancers frequently to refresh the status information. The
main controller then dispatches the jobs using the following
strategy: When job i arrives at the system, the main
controller queries the cloud partition where job is located. If
this location’s status is idle or normal, the job is handled
locally. If not, another cloud partition is found that is not
overloaded. The algorithm is shown in
Algorithm 1

C. Assigning jobs to the nodes in the cloud:
Partition The cloud partition balancer gathers load

information from every node to evaluate the cloud partition
status. This evaluation of each node’s load status is very
important. The first task is to define the load degree of each
nodes. The node load degree is related to various static
parameters and dynamic parameters. The static parameters
include the number of CPU’s, the CPU processing speeds,
the memory size, etc. Dynamic parameters are the memory
utilization ratio, the CPU utilization ratio, the network
bandwidth, etc. The load degree is computed from these
parameters as below:

Load degree high 6 Load degree’s /; the node is not
available and cannot receive jobs untilit returns to the
normal.

The load degree results are input into the Load Status
Tables created by the cloud partition balancers. Each
balancer has a Load Status Table and refreshes it each fixed
period T . The table is then used by the balancers to
calculate the partition status. Each partition status has
a different load balancing solution. When a job arrivesat a
cloud partition, the balancer assigns the job to then
odesbased onit current load strategy. This strategy is
changed by the balancers as the cloud partition status
Changes

VI. CONCLUSION

In this paper, we propose a secure- for data storage
security in Cloud Computing. We utilize Activity workflow
it will optimize the user manager and administrator it will
provide authorization and requesting resource allocation
approval or reject to the corresponding request this entire
information is request and resource allocation fully
automated processor controlled by negios monitoring tool
cloud server during the efficient allocation process, which
not only eliminates the
burden of cloud user from the tedious and possibly
expensive task, but also alleviates the users’ fear of their
outsourced data leakage. Considering Token id tenen id
may concurrently handle multiple sessions from different
users for their outsourced data files, we further extend our
privacy-preserving load balancing system into a multi-user
setting, where that automatically providing the allocated
resource to corresponding manager or user that can
perform multiple resource allocation tasks in a batch
manner for better efficiency. Extensive analysis shows that
our schemes are provably secure and highly efficient.

VII. REFERENCE

[1]. KEN people Technologist::Cyclist::Zombie
Hunter“http://ken.pepple.info/openstack/2012/09/25/openst
ack-folsom-architecture/

[2]. Nagios Monitoring tool in load balancing for public cloud
http://www.nagios.org

[3]. “A Load Balancing Model Based on Cloud partitioning for
the public cloud” Ieee Transactions On Cloud Computing
Year 2013 Gaochao Xu, Junjie Pang, and Xiaodong Fu*

[4]. R. Hunter, The why of cloud ,www.gartner.com Display
Document?doc_cd=226469&ref=g_noreg,2012

[5]. Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C.
Mcdermid, Availability and load balancing in cloud
computing, presented at the 2011 International Conference
on Computer and Software Modeling, Singapore, 2011

[6]. R.Hunter, The why of cloud, www.gartner.com
isplayDocument?doc cd=226469&ref= g noreg, 2012.

[7]. Microsoft Academic Research, Cloud
computing,http://libra.msra.cn/Keyword/6051/clouduting?q
uery=cloud%20computing, 2012.

	OPENSTACK COMPONENTS
	OpenStack Compute (code-name Nova):
	OpenStack Block Storage (code-name Cinder):
	OpenStack Dashboard (code-name Horizon):
	OpenStack Image Service (code-name Glance):
	OpenStack Object Storage (code-name Swift):
	OpenStack Networking (code-name Quantum):
	Object Store:
	Image Store:
	Identity:
	Network:
	Block Storage:

	NAGIOS PROVIDES
	How It Works:
	Monitoring:
	Alerting
	Response:
	Reporting:
	Maintenance:
	Planning:
	Step 1: Install Required Dependencies
	Step 2:
	Create Nagios User and Group Create a new nagios user and nagcmd group account and set a password.
	Step 3: Download Nagios Core 4.0.1 and Nagios Plugin 1.5
	Step 4: Extract Nagios Core and its Plugins We need to extract downloaded package with tar command as follows.
	Configure Nagios Core
	Sample output:
	Sample output:
	Sample output:

	Step 5: Customizing Nagios Configuration
	Sample Output:

	Step 6: Install and Configure Web Interface for Nagios:
	Step 7: Compile and Install Nagios Plugin
	Step 8: Verify Nagios Configuration Files:
	Step 9: Add Nagios Services to System Startup:

