
Volume 5, No. 2, March 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 110

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

PMP: Parallelism with Multicore Processors
Thatikonda Venkatesh1, YVR Naga Pawan2

II M.Tech (SE)1, Associate Professor, Dept. of IT2,
Anurag Engineering College, Kodad, India

Abstract: Multicore processors unleashed the computing power of desktops, laptops figuring out thermal, power, memory constraints. This paper
throws light on multiprocessor architecture, implementing parallelism, task scheduling, and shared memory management

Keywords: PMP, multicore, processor, Parallelism

I. INTRODUCTION

As embedded applications become more and more
complicated, embedded system designers rely more on
multi-processor or multi-core platforms to obtain high
computing performance. Meanwhile, due to the
power/thermal constraints, the memory bottleneck, as well
as the limitation of the instructional level parallelism in
programs, industry is changing its gear toward the multi-
core architecture rather than continuing to pursue high
performance uniprocessor architecture. Conceivably, most
of the future embedded systems will be built upon multicore
architectures. A major issue in developing multi-core
computing systems is how to utilize the available computing
resources most effectively.

Recently, a new multi-core scheduling approach, i.e. so
called semi-partitioned approach has been proposed. In the
semi-partitioned scheduling approach, most tasks are
assigned to one particular processor, i.e. the same as the
partitioned scheduling approach[5]. However, a few of tasks
(i.e. no more than (M−1) tasks, where M is the number of
processors) are allowed to be divided into several subtasks
and those sub tasks are assigned to different processors.

The semi-partitioned approach not only outperforms the
traditional partitioned approach and global approach
theoretically but also has been shown as sound and practical
in the real implementation. Furthermore, by implementing
the semi-partitioned scheduling method in the Linux
operating system, and running experiments on an Intel Core-
i7 4-cores computer, Zhang et al showed that the overhead
in the task migration can be relatively low, and thus its
impact on the schedulability is small.

Fortunately, there is an impressive gain in processor
performance, due to advances in hardware technologies and
also to innovation in processor architecture (i.e., how the
processor is designed and organized to perform its
computational tasks). One distinguish development is the
introduction of parallelism in the architecture of the
processors in the form of pipelining, multitasking, and
multithreading leading to significant performance
enhancement. As a result of that a new type of relatively
low-cost and powerful multi-core processor is emerged and
widely-used in present computers. A multi-core processor is
a processor which contains two or more microprocessors
(cores) each with its own memory cache on a single chip.
The cores can operate in parallel and run programs much

faster than a traditional single-core chip with a comparable
processing power. Intel is now providing seven-core
processors, which is known as i7-core processors; the
number of cores will continue to increase as technology
advances. And then next another major component of a
computer is the software, which is categorized into
operating system (OS) and application software. Traditional
computer software is vastly improved to efficiently utilize
the processing power of the emerged multi-core processors.

With the advent of multi-core processors, the
importance of parallel computing is significant in the
modern computing era since the performance gain of
software will mainly depend on the maximum utilization
across the cores existing in a system. It is necessary that
tools exists to make the full use of the capabilities offered by
the parallel computing. Though current parallelizing
compilers support parallelization at loop level it is a hard
task to detect parallel patterns and do conversions at the
compiler level.

Using multiple processor cores on a single chip allows
designers to meet performance goals without using the
maximum operating frequency. Overall performance is
achieved with cores having simplified pipeline architectures
is relatively equivalent to single core solution..

There are four distinct paths to develop application
software for parallel computers:

a. Extend an existing compiler to translate sequential
programs into parallel Programs.

b. 2. Extend an existing language with new operations
that allow users to express Parallelism.

c. Add a new parallel language layer on top of an
existing sequential language.

d. Define a totally new parallel language and compiler
system.

A. Extend a Compiler
In this approach a parallelized compiler is developed

to detect parallelism in the existing programs written in
sequential language.

B. Extend a Sequential Programming Language:
Unlike the above process here existing language is

extended that allow users to write code in parallel
mechanism.

Thatikonda Venkatesh et al, International Journal of Advanced Research in Computer Science, 5 (2), March 2014 (Special Issue),110-113

© 2010-14, IJARCS All Rights Reserved 111 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

C. Add a Parallel Programming Layer:
Parallel program is having two layers. The first or lower

layer contains the core of the computation, in which a
process manipulates the data to produce the result. An
existing sequential programming language would be suitable
for expressing this portion of the activity. The upper layer
controls the creation and synchronization of processes and
the partitioning of the data among the processes. These tasks
could be programmed using a parallel language (perhaps a
visual programming language). And compiler translate this
two-layer parallel program into code, this code is suitable
for execution on a parallel computer.

D. Create a Parallel Language:
The fourth approach is to give the programmer the

ability to express parallel operations explicitly. One way to
support explicit parallel programming is to develop 3
parallel languages from scratch. Occam is the language
famous example for this approach. it supports parallel as
well as sequential execution of processes and automatic
process communication and synchronization[7].

II. MULTICORE ARCHITECTURE

We studied three multi-core platforms, with
significantly different architecture and memory
organizations. The first is a 4-core Intel Core i7 processor.
Each core supports two Simultaneous Multi-threaded (SMT)
thread contexts. The cores have private 32 KB L1 and 256
KB L2 caches but share an 8 MB L3 cache. The second
platform we use is a 48-core AMD Many-Cores machine.
There are four CPU chips on the memory bus, each holding
12 cores. The chips are connected using AMD proprietary
Hyper-transport 3.0 links. On each chip, the cores are
located on two separate dies, with each die holding 6 cores.
Each core has a private 64 KB L1 and 512 KB L2 caches,
and shares 6 MB L3 cache with other cores on the same die.
A specialized interconnect is used to connect the caches
across dies. The cores have non-uniform memory access
(NUMA) to different regions in memory and experience
non-uniform latencies on cache hits to the L3 cache
depending on whether the cache line is in the L3 cache of
the same die or a remote die. The third platform is the Tilera
TilePro64, an many-core architecture with 64 identical tiled
cores. Tilera features low latency and high bandwidth
communication fabric interconnecting the cores[4].

While there are a number of challenges to the design of
multicore architectures, arguably the most challenging
aspect of the transition to multicore architectures is enabling
mainstream application developers to make effective use of
the multiple processors. To address this challenge we
consider in this section the techniques of thread-level
speculation (TLS) that can be used to automatically
parallelize sequential applications and transactional memory
(TM) which can simplify the task of writing parallel
programs. As is evident from the chapters that describe
these techniques, their efficient implementation requires the
close interaction between systems software and hardware
support[8].

A. Single-Core Memory Architecture:
A typical computer has a Random Access Memory

(RAM), often referred to as the working memory, and also a
smaller cache memory with faster access time in between

the RAM and CPU, as shown in Fig. 1. Every data element
that is requested from the CPU will be brought into the
cache memory, if not already there. The idea of introducing
an intermediate memory between the RAM and CPU is
based on the observation of data temporal and spatial
locality.

Figure 1: Single and Shared Memory Architecture

B. Shared Memory Multicore Architecture:
In a shared-memory multicore architecture, there are

several CPUs that can access a shared RAM, but each CPU
also has a private cache memory, as shown in Fig. 1. Notice
that here the CPUs share a common bus to communicate to
the RAM. This is however only an example and the
organization of bus connections differ among different
computer architectures. The simplified view depicted in Fig.
1 shows that even though the CPUs have a shared memory,
it is beneficial to construct an algorithm that will keep the
data locally in the private cache memory of each CPU,
improving the overall performance. Also it illustrates the
fact that two processors can block memory accesses for each
other since only one processor at the time can access the
bus.

C. Parallel Processing Models:
The first step in mapping an application to a multicore

processor is to identify the task parallelism and select a
processing model. There are two dominant models those are
a Master/Slave model in which one core controls the work
assignments on all cores, and the next one is Data Flow
model in which work flows through processing stages as in
a pipeline.

Figure 2: Master Slave Model

D. Data Flow Model:
In the Data Flow model there will be a distributed

control and execution. Here data is processed by each core
using various algorithms and then the data is passed to

Thatikonda Venkatesh et al, International Journal of Advanced Research in Computer Science, 5 (2), March 2014 (Special Issue),110-113

© 2010-14, IJARCS All Rights Reserved 112 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

another core for further processing. The initial core is
connected to an input interface and supplies the initial data
for processing from either a sensor or FPGA. Applications
those running on Data Flow model often contain large and
computationally complex components that are dependent on
each other and may not fit on a single core[9].

Synchronization of execution is achieved using message
passing between cores. Data is passed between cores using
shared memory or DMA transfers.

Data Flow processing is shown in Figure 3.

Figure 3: Dataflow Process Model

E. OpenMP Model:
OpenMP is an Application Programming Interface

(API) for developing multi-threaded applications in C/C++
or Fortran for shared-memory parallel (SMP) architectures.
OpenMP standardizes the last 20 years of SMP practice and
it is a programmer-friendly approach with many advantages.
Using the API is very easy and quick to implement; once the
programmer identifies parallel regions and inserts the
relevant OpenMP constructs, the compiler and runtime
system figures out the rest of the details. The API makes it
easy to scale across cores and allows moving from an ‘m’
core implementation to an ‘n’ core implementation with
minimal modifications to source code. And the OpenMP is
sequential-coder friendly; that is, when a programmer has a
sequential piece of code and he would like to parallelize it, it
is not necessary to create a total separate multicore version
of the program. Instead of this all-or-nothing approach,
OpenMP provides an incremental approach to
parallelization, where programmers can focus on
parallelizing small blocks of code at a time. The API also
allows programmers to maintain a single unified code base
for both sequential and parallel versions of code[2].

III. PARALLELISM WITH MULTICORE

A. Parallel Programming Models:
Just as there are several different classes of parallel

hardware, so too are there several distinct models of parallel
programming. Each of them has a number of concrete
realizations. OpenMP uses a shared-memory (or shared
address space) programming model. In this model, as its
name implies, that programs will be executed on one or
more processors that share some or all of the available
memory. Shared-memory programs are executed by
multiple independent threads (execution states that are able
to process an instruction stream); the threads share data but
may also have some additional, private data. A different
programming model has been proposed for distributed-
memory systems[6].

Generically referred to as “message passing,” this
model assumes that programs will be executed by one or
more processes, each of which has its own private address
space. Message-passing approaches to parallel programming
must provide a means to initiate and manage the
participating processes, along with operations for sending
and receiving messages, and possibly for performing special
operations across data distributed among the different
processes. The pure message passing model assumes that
processes cooperate to exchange messages whenever one of
them needs data produced by another one. However, some
recent models are based on “single-sided communication.”
These assume that a process may directly interacted with
memory across a network to read and write data anywhere
on a machine.

Various realizations of both shared-memory and
distributed-memory programming models have been defined
and deployed. An ideal API for parallel programming is
enough to permit the specification of many parallel
algorithms, is easy to use, and leads to efficient programs.
Moreover, the more transparent its implementation is, the
easier it is likely to be for the programmer to understand
how to obtain good performance. Some are a collection of
library routines with which the programmer may specify
some or all of the details of parallel execution (e.g., GA and
Pthreads for shared-memory programming and MPI for
MPPs), while others such as OpenMP and HPF take the
form of additional instructions to the compiler, which is
assumed to utilize them to generate the parallel code.

B. Automatic parallelization:
Many compilers provide a flag, or option, for automatic

parallelization of a program. When this is selected, the
compiler analyzes the program and search for independent
sets of instructions, in particular for loops whose iterations
are independent of one another. And It then uses this
information to generate explicitly parallel code. OpenMP
directives enable the programmer to view and possibly
improve the resulting code. The difficulty with relying on
the compiler to detect and exploit parallelism in an
application is that it may lack the necessary information to
do a good job. For programs which are having simple
structure, it may be worth trying this option.

C. MPI:[Message Passing Interface]:
The Message Passing Interface [MPI] was developed to

facilitate portable programming for distributed-memory
architectures (MPPs), where multiple processes execute
independently and communicate data as needed by
exchanging messages[3]. The API was designed to enable
the creation of efficient parallel code, as well as to be
broadly implementable. As a result of its success, it is the
most widely used API for parallel programming in the high-
end technical computing community, where MPPs and
clusters are common. Since most vendors of shared-memory
systems also provide MPI implementations that leverage the
shared address space[1,10].

IV. CONCLUSION

This paper envisages that the multicore programming
models increasingly bring difference in desktop computing
through multicore processors. The threading at software as
well as hardware level boost the performance of computing.

Thatikonda Venkatesh et al, International Journal of Advanced Research in Computer Science, 5 (2), March 2014 (Special Issue),110-113

© 2010-14, IJARCS All Rights Reserved 113 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

The scheduling of the process in the multicore environment
gives its able impact to computing performance and efficient
memory management with various API’s like OpenMP,
MPI etc.

V. REFERENCES

[1] Programming Massively Parallel Processors. A
Hands-on Approach David B.Kirk and Wen-mei W.
Hwu

[2] Parallel Programming in C with MPI and OpenMP:
Michael J.Quinn Oregon State University

[3] Hybrid Programming with MPI: B.Estrade
[4] W-C. Feng and P. Balaji, “Tools and Environments

for Multicore and Many-core Architecture,”
Computer, vol. 42, no. 12, pp. 26-27, Dec.2009.

[5] J.Dongara, I.Foster, G.Fox, W.Gropp,K.Kennedy,
L. Torczon and A.White, The Sourcebook of Parallel
Computing.Morgan Kaufmann Publishers, 2003.

[6] H. Kasim, V. March, R. Zhang, and S. See,
“Survey on Parallel Programming Model, “Proc.IFIP
Int’l Conf.Network and ParallelComputing , Vol
5245, pp. 266-275, Oct.2008

[7] M.J. Sottile, T.G Mattson, and C.E..
Rasmussen,Introduction to Concurrency in
Programming Languages. CRC Press, 2010.

[8] G.R. Andrews, Foundations of Multithreaded,
Parallel, and Distributed Programming Addison
wesley, 1999.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing Design and
Analysis Algorithms. Benjamin/Cummings
Publishing Company 1994.

[10] W. Gropp, E. Lusk, and A. Skjellum, Using
MPI: Portable Parallel Programming with the
Message-Passing Interface, second ed.MIT Press,
1999.

	REFERENCES

