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Abstract: Artificial Neural networks have seen an flare-up of attention over the most recent years and are being productively functional across an 
astonishing variety of problem domains, varied as science, finance, medicine, engineering, physics and biology. The exhilaration track from the 
fact that these networks are cracked to model with the competence of the human brain. From a statistical viewpoint artificial neural networks are 
fascinating because of their prospective use in prediction, regression and classification tribulations. This paper advocates the significance of 
Artificial Neural Networks by highlighting its advancements, trends and challenges. In addition, this study aims to magnetize research appetizers 
with a road map towards application solving and psychiatry in a methodical approach. 
 
Keywords: Artificial Neural Networks; Supervised learning; Unsupervised learning; Workflow Sequencing; Real-time datasets 

I. INTRODUCTION  

Recent developments in science and technology have 
enabled the growth and availability of raw data to occur at an 
explosive rate. This has created an immense opportunity for 
knowledge discovery and data engineering research to play 
an essential role in a wide range of applications. The study of 
Artificial neural networks (ANNs) [1] has aroused great 
interest as they are universal function approximations 
capable of mapping any linear or nonlinear function.  ANNs 
flexibility in function approximation make them very useful 
in tasks involving pattern classification, estimating 
continuous variables, forecasting, and business surveys etc 
[2], [3].  

Artificial intelligence, neural computing, and pattern 
recognition share a common knowledge base comprising of 
multiple disciplines. Contemporary neurocomputing takes its 
models from the biological system. Human brain is the basic 
motivation in the endeavor to building intelligent machine in 
the field of artificial intelligence. The idea of creating a 
network of neurons got a boost when McCulloch and Pitts 
presented their model of the artificial neuron laying the 
foundations [4]. Much work was done in the field to a point 
where simulations of the net could be performed on 
computers. 

ANNs models capitalize on properties of biological gene 
networks that other kinds of models do not. ANNs naturally 
take advantage of patterns of absence, as well as presence, of 
factor binding associated with specific expression output. 
ANNs are easily subjected to in silico ‘‘mutation’’ to 
uncover biological redundancies, and can use the full range 
of factor binding values [5]. ANNs are structural 
computational models with a long history in pattern 
recognition. A general reason for thinking ANNs could be 
effective for this task is that they have some natural 
similarities with transcription networks, including the ability 
to create nonlinear sparse interactions between 
transcriptional regulators and target genes [6].  

ANNs have been most famously used in machine 
learning as ‘‘black boxes’’ to perform classification tasks, in 

which the goal is to build a network based on a training 
dataset that will subsequently be used to perform similar 
classifications on new data of similar structure. In these 
classical ANNs applications, the weights within the network 
are of no particular interest, as long as the trained network 
performs the desired classification task successfully when 
extrapolating to new data [7].  

The number of types of ANNs and their uses is very 
high. Since the first neural model by McCulloch and Pitts 
there have been developed hundreds of different models 
considered as ANNs. The differences in them might be the 
functions, the accepted values, the topology, the learning 
algorithms, etc. In addition, there are many hybrid models 
where each neuron has more properties for engineering 
purposes, such as pattern recognition, forecasting, and data 
compression [8]. ANNs posses a number of properties for 
modeling processes or systems with universal function 
approximation capability, learning from experimental data, 
tolerance to noisy or missing data, and good generalization 
capability [9].  

The backpropagation algorithm proposed by Rumelhart 
and McClelland [10] uses a layered feed-forward ANNs. 
This means that the artificial neurons are organized in layers, 
and send their signals forward, and then the errors are 
propagated backwards. The network receives inputs by 
neurons in the input layer, and the output of the network is 
given by the neurons on an output layer. There may be one or 
more intermediate hidden layers. The back propagation 
algorithm uses supervised learning, which means the 
algorithm with examples of the inputs and outputs we want 
the network to compute, and then the error (difference 
between actual and expected results) is calculated. The idea 
of the back propagation algorithm is to reduce this error, until 
the ANN learns the training data. The training begins with 
random weights, and the goal is to adjust them so that the 
error will be minimal.  

The overall organization of the paper is as follows. 
Section I Introduction, presents the fundamental of ANNs, 
issues and outlines the general stages, task decomposition 
strategies etc. Section II Workflow analysis inducts the 
roadmap to solve the practical problems with a systematic 
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approach in seven stages. This section provokes a quick 
reference to major attempts in theoretical issues of learning 
and generalization in classification of ANNs, transfer, 
activation, output functions etc. Section III Experimental 
analysis is worthwhile with comparisons, impressions on 
diverse applications and implementations of ANNs models 
over real-time datasets. Finally, Section IV concludes the 
paper with general recommendations for future designs and 
learning performances. 

II. WORKFLOW ANALYSIS AND SEQUENCING 

A. Data Collection: 
Data is specific to its application domain and is 

preprocessing.  Neural network training can be more 
efficient if certain preprocessing steps are applied on the 
network inputs and targets. Generally, the normalization 
step is applied to both the input vectors, the target vectors in 
the data set, and the network output always falls into a 
normalized range. The network output can then be reverse 
transformed back into the units of the original target data 
when the network is put to use in the field. Real time dataset 
are available at the UCI Machine Learning Repository 
http://mlearn.ics.uci.edu/MLRepository.html. These datasets 
are originated from the StatLib library, which is maintained 
at Carnegie Mellon University [11].  

The most Popular datasets considered from UCI 
Machine Learning Repository are cancer, iris and glass 
datasets. The extracted data is preprocessed and divided into 
subsets before it is supplied into network as input. Since it is 
generally difficult to incorporate prior knowledge into a 
neural network, therefore the network can only be as 
accurate as the data that are used to train the network.  It is 
important that the data cover the range of inputs for which 
the network will be used [12]. Multilayer networks can be 
trained to generalize well within the range of inputs for 
which they have been trained. However, they do not have 
the ability to accurately the extrapolate beyond this range, so 
it is important that the training data span the full range of the 
input space [13].  

When training multilayer networks, the general practice 
is to first divide the data into three subsets. The first subset 
is the training set, which is used for computing the gradient 
and updating the network weights and biases. The second 
subset is the validation set. The error on the validation set is 
monitored during the training process. The validation error 
normally decreases during the initial phase of training, as 
does the training set error. However, when the network 
begins to overfit the data, the error on the validation set 
typically begins to rise. The network weights and biases are 
saved at the minimum of the validation set error [14]. 

B. Network Creation: 
After the data has been preprocessed, the next step is to 

create a network object and train the network. The ANNs 
can be created and trained with supervised and unsupervised 
learning methods [15].  

a. Feed forward backpropagation (FB) Model: 
FB artificial intelligence model [16] consists of input, 

hidden and output layers. Backpropagation learning 
algorithm is used for learning these networks. During 
training FB network, calculations were carried out from 

input layer of network toward output layer, and error values 
were then propagated to prior layers. Feedforward networks 
often have one or more hidden layers of sigmoid neurons 
followed by an output layer of linear neurons. Multiple 
layers of neurons with nonlinear transfer functions allow the 
network to learn nonlinear and linear relationships between 
input and output vectors. The linear output layer lets the 
network produce values outside the range –1 to +1. Thus the 
output layer in order to produce values between 0 and 1uses 
a sigmoid transfer function [17]. 

b. Cascade forward (CF) Model: 
CF models are similar to feed-forward networks [18], 

but include a weight connection from the input to each layer 
and from each layer to the successive layers. While two-
layer feedforward networks can potentially learn virtually 
any input-output relationship, feed-forward networks with 
more layers might learn complex relationships more 
quickly. CF artificial intelligence model is similar to FB  
model in using the backpropagation algorithm for weights 
updating, but the main symptom of this network is that each 
layer of neurons related to all previous layer of neurons. 
Tan-sigmoid transfer function [19], log - sigmoid transfer 
function [20] and pure linear threshold functions were used 
to reach the optimized status [21]. 

c. Competitive Network Model” 
A competitive learning network comprises the feed 

forward excitatory network and the lateral inhibitory 
networks [22]. The feedforward network usually implements 
an excitatory Hebbian learning rule [23]. It consist of an 
input cell persistently participates in firing an output cell, 
the input cell's influence firing that output cell is increased. 
The lateral competitive network is inhibitory in nature. The 
network serves the important role of selecting the winner, 
often via a competitive learning process, highlighting 
the "winner-take-all" schema. In a winner-take-all circuit, 
the output unit receiving the largest input is assigned a full 
value i.e. 1, whereas all other units are suppressed to a 0 
value. 

d. ELMan Neural Network (ENN) Model: 
ENN [24] is one type of the partial recurrent neural 

networks, which consists of a two-layer back propagation 
network with an additional feedback connection from the 
output of the hidden layer to its input. The advantage of this 
feedback path is that it allows the ENN to recognize and 
generate temporal patterns and spatial patterns. This means 
that after training, interrelations between the current input 
and internal states are processed to produce the output and 
to represent the relevant past information in the internal 
states. As a result, the ENN has been widely used in various 
fields which includes classification, prediction and dynamic 
system identification, etc. The overall structure of ENN is 
shown in Fig. 1. 

 
Figure 1. Structure of Elman Neural Network 
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e. Generalized Regression Neural Network (GRNN): 
GRNN [25] is often used for function approximation. It 

has a radial basis layer and a special linear layer. This 
GRNN is a one-pass learning algorithm with a parallel 
structure. Even with sparse data in a multidimensional 
measurement space, the algorithm provides smooth 
transitions from one observed value to another. This 
algorithmic form can be used for any regression problem in 
which an assumption of linearity is not justified.  

This network like other probabilistic neural networks 
[26] needs only a fraction of the training samples a back 
propagation neural network. Therefore, the use of a 
probabilistic neural network is especially advantageous due 
to its ability to converge to the underlying function of the 
data with only few training samples available. This makes 
GRNN a very useful tool to perform predictions and 
comparisons of system performance in practice. 

f. Hopfield Neural Network (HNN) Model: 
John Hopfield of the California Institute of Technology 

proposed the Hopfield model during the early 1980s 
[27]. The HNN is perhaps the simplest of ANN; it is a fully 
connected single layer auto associative network. This means 
it has one single layer, with each neuron connected to every 
other neuron. Hopfield networks are a special kind of 
recurrent neural networks that can be used as associative 
memory.  

Associative memory is often addressed through its 
contents i.e. if a pattern is presented to an associative 
memory, it returns whether this pattern coincides with a 
stored pattern. The coincidence need not be perfect, though. 
An associative memory may also return a stored pattern that 
is similar to the presented one, so that noisy input can also 
be recognized [28]. Neurons are pixels and can take the 
values of -1 or +1. The network has stored a certain number 
of pixel patterns. During a retrieval phase, the network is 
started with some initial configuration and the network 
dynamics evolves towards the stored pattern, which is 
closest to the initial configuration. 

 
Figure 2. Structure of Layer Recurrent Neural Network 

g. Layer Recurrent Neural Network (LRNN) Model: 
The fundamental feature of a LRNN is that the network 

contains at least one feed-back connection, so that activation 
can flow round in a loop [29]. That enables the networks to 
do temporal processing and learn sequences. The 
architectures of recurrent neural networks can take many 
different forms, but they all share two important common 
features i.e. to incorporate some form of MLP as a sub-
system and to exploit the powerful non-linear mapping 

capabilities of the MLP with some form of memory [30]. 
The relevant areas where LRNN seem to be very promising 
for modeling and simulation includes are neuro 
identification, neuro control, diagnosis and forecasting, the 
overall structure of LRNN is shown in Fig. 2.  

h. Learning Vector Quantization (LVQ) Network 
Model: 

LVQ is a supervised version of vector quantization that 
can be used when we have labeled input data [31]. This 
learning technique uses the class information to reposition 
the Voronoi vectors slightly, to improve the quality of the 
classifier decision regions. LVQ has a two stage process i.e. 
Self-Organizing Map (SOM) followed by LVQ. This model 
is particularly useful for pattern classification problems. The 
first step is feature selection i.e. the unsupervised 
identification of a reasonably small set of features in which 
the essential information content of the input data is 
concentrated. The second step is the classification where the 
feature domains are assigned to individual classes.  

LVQ model first has a competitive layer and is 
followed by a linear layer. The competitive layer learns to 
classify input vectors in much the same way as the 
competitive layers of Cluster with SOM. The linear layer 
transforms the competitive layer's classes into target 
classifications defined by the user. The classes learned by 
the competitive layer are referred to as subclasses and the 
classes of the linear layer as target classes. Both the 
competitive and linear layers have one neuron per (sub or 
target) class.  

i. Probabilistic Neural Networks (PNN) Model: 
PNN are used for classification problems [32]. When an 

input is presented, the first layer computes distances from 
the input vector to the training input vectors and produces a 
vector whose elements indicate how close the input is to a 
training input. The second layer sums these contributions for 
each class of inputs to produce as its net output a vector of 
probabilities. Finally, a compete transfer function on the 
output of the second layer picks the maximum of these 
probabilities, and produces 1 for that class and a 0 for the 
other classes.  

j. Radial Basis Function (RBF): 
RBF Networks [33] take a slightly different approach of 

MLP. RBF is a two-layer feed-forward networks. The 
hidden node is implemented with a set of radial basis 
functions (e.g. Gaussian functions), the output nodes are 
implemented as a linear summation functions as in an MLP. 
The network training is divided into two stages i.e. the 
weights from the input to hidden layer are first determined, 
and then the weights from the hidden to output layer are 
determined. 

k. Self Organized Map (SOM) Model: 
SOMs [34] are used both to cluster data and to reduce 

the dimensionality of data. They are inspired by the sensory 
and motor mappings in the mammal brain, which also 
appear to automatically organizing information 
topologically. The principal goal of an SOM is to transform 
an incoming signal pattern of arbitrary dimension into a one 
or two-dimensional discrete map, and to perform this 
transformation adaptively in a topologically ordered fashion. 

http://www.mathworks.in/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html�


Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5  (2), March  2014 (Special Issue),66-75 

© 2010-14, IJARCS All Rights Reserved                                                                                                       69 CONFERENCE PAPER 
Two day National Conference on Advanced Trends and Challenges  

in Computer Science and Applications 
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P. 

Schedule: 18-19 March 2014 

Kohonon's SOMs are a type of unsupervised learning and it 
is used to discover some underlying structure of the data.  

Kohonen's SOM is called a topology-preserving map 
because there is a topological structure imposed on the 
nodes in the network [35]. A topological map is simply a 
mapping that preserves neighborhood relations. Therefore 
SOM is setup by placing neurons at the nodes of a one or 
two dimensional lattice. Higher dimensional maps are also 
possible, but not so common. The neurons become 
selectively tuned to various input patterns (stimuli) or 
classes of input patterns during the course of the competitive 
learning. The locations of the neurons so tuned (i.e. the 
winning neurons) become ordered and a meaningful 
coordinate system for the input features is created on the 
lattice. The SOM thus forms the required topographic map 
of the input patterns. 

SOM consists of a competitive layer which can classify 
a dataset of vectors with any number of dimensions into as 
many classes as the layer has neurons. The neurons are 
arranged in a 2D topology, which allows the layer to form a 
representation of the distribution and a two-dimensional 
approximation of the topology of the dataset.  The network 
is trained with the SOM batch algorithm (trainbu, 
learnsomb). SOM is a vector quantization method, which 
places the prototype vectors on a regular low-dimensional 
grid in an ordered fashion. This makes the SOM a powerful 
visualization tool. 

The feed forward structure of Kohenon SOM is 
illustrated in Fig. 3. The SOM has a feed-forward structure 
with a single computational layer arranged in rows and 
columns. Each neuron is fully connected to all the source 
nodes in the input layer. A clear understanding from Fig. 3 
was a one dimensional map will just have a single row (or a 
single column) in the computational layer.  

 

 
Figure 3. Feed-forward structure of Kohenon SOM network 

The self-organization process involves four major 
stages: 

a. Initialization: All the connection weights are 
initialized with small random values. 

b. Competition: For each input pattern, the neurons 
compute their respective values of a discriminated 
function that provides the basis for competition. The 
particular neuron with the smallest value of the 
discriminated functions is declared the winner. 

c. Cooperation: The winning neuron determines the 
spatial location of a topological neighborhood of 

excited neurons, thereby providing the basis for 
cooperation among neighboring neurons. 

d. Adaptation: The excited neurons decrease their 
individual values of the discriminated function in 
relation to the input pattern through suitable 
adjustment of the associated connection weights, such 
that the response of the winning neuron to the 
subsequent application of a similar input pattern is 
enhanced.  

There are two identifiable phases of this adaptive 
process: 
a) Ordering or self-organizing phase– here the 

topological ordering of the weight vectors takes 
place. Typically, this will take as many as 1000 
iterations of the SOM algorithm, and careful 
consideration needs to be given to the choice of 
neighborhood and learning rate parameters.  

b) Convergence phase– during which the feature map is 
fine tuned and comes to provide an accurate statistical 
quantification of the input space. Typically, the 
number of iterations in this phase will be at least 500 
times the number of neurons in the network, and 
again the parameters must be chosen carefully.  

The stages of the SOM algorithm can be summarized as 
follows: 
i. Initialization – Choose random values for the initial 

weight vectors w
ii. Sampling – Draw a sample training input vector x from 

the input space. 

j 

iii. Matching – Find the winning neuron I(x) with weight 
vector closest to input vector. 

iv. Updating – Apply the weight update equation  
∆Wij=η(t), I(x)(t)(xi-Wji

v. Continuation – keep returning to step 2 until the feature 
map stops changing. 

) 

C. Network Design: 
The configuration of network is done by selecting the 

number of hidden layers, number of neurons in each hidden 
layers and transfer functions. In backpropagation it is 
important to be able to calculate the derivatives of any 
transfer functions used. Feedforward networks often have 
one or more hidden layers of sigmoid neurons followed by 
an output layer of linear neurons. Multiple layers of neurons 
with nonlinear transfer functions allow the network to learn 
nonlinear and linear relationships between input and output 
vectors. The linear output layer lets the network produce 
values outside the range -1 to +1. Each of the transfer 
functions logsig, tansig, and purelin, calculate their own 
derivative. The function logsig generates outputs between 
zero and one as the neuron's net input goes from negative to 
positive infinity. If the last layer of a multilayer network has 
sigmoid neurons, then the outputs of the network are limited 
to a small range. If linear output neurons are used the 
network outputs can take on any value.  

D. Determinationof Weights and Biases: 
Once the network is chosen and configured with input, 

hidden and output layers, the training function, adaptation 
learning function [36] and performance learning functions 
[37] are also to be constituted. Few networks training 
function available in matlab software are trainbfg which 
updates weight and bias values according to the BFGS 
quasi-Newton method [38], traingdm, traingd functions that 
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updates weight and bias values according to gradient 
descent with momentum, trainlm function which updates 
weight and bias values according to Levenberg-Marquardt 
optimization [39]. It is often the fastest backpropagation 
algorithm and is highly recommended as a first-choice 
supervised algorithm.  

The other training functions like traincgb updates 
weight and bias values according to the conjugate gradient 
backpropagation with Powell-Beale [40] restarts, traincgf 
updates weight and bias values according to conjugate 
gradient backpropagation. The adaptation learning functions 
like learngd, learngdm uses gradient descent with 
momentum weight and bias learning function. The Network 
performance function like MSE is used to measure the 
network's performance according to the mean of squared 
errors. The Mean squared error with regularization 
performance function, msereg is used to measures network 
performance as the weight sum of two factors i.e. the mean 
squared error and the mean squared weight and bias values.  

E. Training the Neural Network: 
When the network weights and biases are initialized, 

the network is ready for training. The multilayer feed 
forward network can be trained for function approximation 
(nonlinear regression) or pattern recognition. The process of 
training a neural network involves tuning the values of the 
weights and biases of the network to optimize network 
performance.  

There are two different ways in which training can be 
implemented: incremental mode and batch mode [41]. In 
incremental mode, the gradient is computed and the weights 
are updated after each input is applied to the network. In 
batch mode, all the inputs in the training set are applied to 
the network before the weights are updated. The fastest 
training function is generally trainlm, and it is the default 
training function for feedforward network. The quasi-
Newton method, trainbfg, is also relatively quite faster 
method as a training function. In addition, trainlm performs 
better on function fitting (nonlinear regression) problems 
than on pattern recognition problems. When training large 
networks, and when training pattern recognition networks, 
trainscg and trainrp are good choices. Their memory 
requirements are relatively small, and yet they are much 
faster than standard gradient descent.  Transfer functions 
calculate a layer's output from its net input. Hyperbolic 
tangent sigmoid transfer function tansig is one amongst it. 
This function calculate a layer's output from its net input and 
it is a good tradeoff for neural networks, where speed is 
important and the exact shape of the transfer function is not. 
Once the training process is completed, the network must be 
able to classify or predict from new inputs.  

The network will determine the entire coefficient by 
back-propagation of errors, which will try to maximize the 
sum of squares of the difference (errors) between the 
expected and the actual computed output. This process 
usually takes hundreds or thousands of iterations. The rate 
of convergence is faster in earlier iterations and becomes 
slower as the iteration number increases. If a reasonable 
degree of convergence is considered, the network is trained 
and can be imposed on real world applications, domains etc. 

F. Network Validation: 
One of the major advantages of ANNs is their ability to 

generalize. This means that a trained net could classify data 

from the same class as the learning data that it has never 
seen before. In real world applications, developers normally 
have only a small part of all possible patterns for the 
generation of a neural net. To reach the best generalization, 
the dataset is split into three parts:  

i. Training Set: It is used to train a neural net. The error 
of this dataset is minimized during training.  

ii. Validation set: It is used to determine the performance 
of a neural network on patterns that are not trained 
during learning.  

iii. Testing set: It is used for finally checking the overall 
performance of a neural net.  
The learning stops when it produces a minimum of the 

validation set error. At this point the ANN generalizes the 
best. When learning is not stopped, overtraining occurs and 
the performance of the net overall data decreases, despite 
the fact that the error on the training data still gets smaller. 
After finishing the learning phase, the model should be 
finally checked with the third data set, the test set.  

The evaluation and validation of an ANNs prediction 
model are based upon one or more selected error metrics 
[42]. Generally, ANNs models, a function approximation 
task that will use a continuous error metric such as mean 
absolute error (MAE), mean squared error (MSE) or root 
mean squared error (RMSE). These errors are summed over 
the validation set of inputs and outputs, and then normalized 
by the size of the validation set.  

G. Network Exploitation: 
There are numerous fields where neural system is being 

used since they are good when dealing with abstract 
problems, like those based on features and patterns. ANNs 
are actively being used for applications as bankruptcy 
prediction, predicting costs, forecast revenue, processing 
documents and more. The other major benefits of ANN are 
they are inherently multiprocessor-friendly architecture, and 
have ability to do many things at once and provide vital 
information for powerful decision-making [43]. Depending 
on the nature of the application and the strength of the 
internal data patterns, generally the network is expected to 
train quite well. This applies to problems where the 
relationships may be quite dynamic or non-linear. ANNs 
provide an analytical alternative to conventional techniques, 
which are often limited by strict assumptions of normality, 
linearity, variable independence etc. Because an ANN can 
capture many kinds of relationships it allows the user to 
quickly and relatively easily model phenomena which 
otherwise may have been very difficult or impossible to 
explain otherwise. Neural networks are universal 
approximations, and they work best if the system you are 
using them to model has a high tolerance to error. 

III. EXPERIMENAL ANALYSIS 

Once a network model is customized and tailored to a 
particular application, that network is ready to be trained. 
The model is initialized with a weight randomly and learns 
the content of the dataset. The two approaches to train a 
model are the supervised and unsupervised. 
 
 

 
 
 

http://www.mathworks.in/help/nnet/ref/trainlm.html�
http://www.mathworks.in/help/nnet/ref/feedforwardnet.html�
http://www.mathworks.in/help/nnet/ref/trainbfg.html�
http://www.mathworks.in/help/nnet/ref/trainlm.html�
http://www.mathworks.in/help/nnet/ref/trainscg.html�
http://www.mathworks.in/help/nnet/ref/trainrp.html�
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Table I: Experimental Analysis of Feed Forward Back Propagation Model 

Dataset Epoch Time 
(sec) Performance Gradient MU Validation 

Checks MSE Regression 

Iris 13 0.28 2.28e-09 7.92e-06 1.00e-09 6 9.87195e-3 9.77540e-1 

Cancer 10 0.018 0.000770 0.0100 0.0182 6 1.50737e-2 9.69921e-1 

Glass 13 0.01 0.0161 0.00811 0.100 5 7.89894e-0 9.52435e-1 

Body fat 10 0.01 7.78 11.4 10 5 12.61533e-0 9.07788e-1 

Building 
Energy 35 0.11 0.00237 0.000386 0.0100 6 2.31464e-3 9.25453e-1 

Housing 6 0.01 3.41 8.78 10.0 6 3.34751e-2 9.31548e-1 

 
Supervised training involves a mechanism of providing 

the network with the desired output either by manually 
grading the network's performance or by providing the 
desired outputs with the inputs. In the Unsupervised training 
the network has to make sense of the inputs without outside 
help. The vast bulk of networks utilize supervised training. 
Unsupervised training is used to perform some initial 
characterization on inputs. However, in the full-blown sense 
of being truly self-learning, it is still just a shining promise 
that is not fully understood.  

A. Dataset Description: 
a. house_dataset: It estimates the median value of owner 

occupied homes in Boston suburbs given 13 
neighborhood attributes. An estimator can be found by 
Fitting the inputs and targets. This data set has 506 
samples with 13 attributes each. The expected output is 
a sample with median values of owner-occupied homes 
in $1000's.  

b. abalone_dataset: It estimates the number of rings of an 
abalone shell with eight measurements. An estimator 
can be found by Fitting the inputs and targets. The data 
set consists of 4177 samples with 8 attributes per each 
sample.  

c. bodyfat_dataset: This dataset can be used to train a 
neural network to estimate the bodyfat of someone from 
13 measurements per sample out of 252. 

d. building_dataset: This dataset can be used to train a 
neural network to estimate the energy use of a building 
from time and weather conditions. It is defined with 14 
attributes from 4208 samples.  

B. Evaluation Measures: 
a. Mean Squared Error (MSE): MSE is the average 

squared difference between outputs and targets. Lower 
values are better. Zero means no error.  

b. Regression (R): The Regression values R measure the 
correlation between outputs and targets. R value is of 1 
means a close relationship, 0 a random relationship. 
Regression procedures are like correlation because they 
are concerned with relationships among variables. 
Correlation analyses serve as the part of the building 
block for regression procedures. 

 

C. Supervised LearningTechniques: 
In supervised training, both the inputs and the outputs 

are provided. The network then processes the inputs and 
compares its resulting outputs against the desired outputs. 
Errors are then propagated back through the system, causing 
the system to adjust the weights, which control the network. 
This process occurs repeatedly as the weights are 
continually tweaked. The set of data, which enables the 
training, is called the "training set." During the training of a 
network the same set of data is processed many times as the 
connection weights are ever refined.  

 

Figure 4. Best Validation Performance on IRIS Dataset 

The outcomes of experimental analysis on FBNN 
model when applied over the real-time datasets are shown in 
Table1. The MSE is relatively low for the cancer, building 
energy, housing datasets when compared with the other 
datasets like iris, glass, and body fat. The Regression 
coefficient is almost near to one to all the comparing dataset, 
which means a positive sign that training is almost 
approximate. Building energy dataset consumes more 
number of iterations due its huge number of samples in 
training set. The glass and bodyfat datasets consume less 
number of CPUs training time and it reflects by consuming 
less number of validation checks. The overall performance 
of FB model is optimum in Building dataset and reflects the 
same in MU. The best validation performance of iris dataset 
at epoch 7 is shown as Fig. 4. All the iterations are assumed 
in x-axis and are corresponded with MSE in y-axis. The 
three divisions of dataset training, validation and testing sets 
are also depicted in the Fig 4.  
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Figure 5.  Regression values of Training, Validation, Testing and overall sets on iris dataset 

Table 2. Experimental analysis of Cascade forward Model 

Dataset Epoch Time (sec) Performance Gradient MU Validations 

Iris 15 0.01 0.0114 0.0279 0.0100 6 

Cancer 11 0.02 1.15e-07 2.43e-06 1.00e-08 5 

Glass 16 0.01 0.00440 0.000725 0.00100 6 

Housing 14 0.13 3.93 32.7 10 6 

Body fat 11 0.01 7.09 9.89 10 6 

Abalone 5 0.10 90.1 4.07e-08 0.00100 0 

Table 3. Experimental analysis of Elman Neural Network Model 

Dataset Epoch Time (sec) Performance Gradient MU Validations 

Iris 11 0 0.126 0.0107 0.00100 6 

Cancer 13 0 0.00870 0.0509 0.0100 6 

Glass 17 0 0.00333 1.60e-05 1.00e-07 6 

 
An important observation from Fig. 4 was the best 

validation performance value 0.01495 is clearly visible at 
iteration7. Similarly, the Regression value showing the close 
and random relationship on iris data set in training, testing, 
validation and overall data is shown as Fig. 5. 

Table 2 projects the experimental outcome over the 
datasets using the CF model. The CF model has tremendous 
training performance on iris, glass and cancer datasets, but 
the performance on housing and abalone dataset is high due 
to more number of samples, but important observation was 
the number of epoch and validation checks are more or less 

same to all the dataset. This is again justified by the values 
in Gradient and Mu column. The gradient and Mu values are 
low to iris, glass dataset and high to housing, abalone 
datasets.  

Table 3 projects the experimental outcome over the 
datasets using the Elman Neural Network model. Since the 
experiments were carried out on relatively small size 
datasets they do not consume much CPU time, the 
performance of glass dataset is better than the comparing 
datasets even though it consumes more number of iterations 
and gradient value.  

Table IV. Experimental analysis of Layer Recurrent Neural Network Model 

 
Dataset Epoch Time (sec) Performance Gradient MU Validations 

Iris 14 0.06 0.00609 0.00684 0.100 6 

Cancer 10 0.07 0.00229 0.00262 0.0010 6 

Glass 9 0.04 0.00140 0.0309 0.0100 6 
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Table V. Experimental analysis of Self-Organized Maps 

Dataset Epoch SOM 
Size 

Time 
(Sec) 

No. of 
Samples 

No. of 
Misclassifications Classes SSE MAE RMSE RAE RASE 

Iris 200 10 0.01 150 4 3 7.81 0.0327 0.1291 1.35 0.37 

Cancer 200 10 0.03 699 19 2 14.51 0.2911 0.4215 9.01 8.42 

Glass 200 10 0.01 214 21 2 8.20 0.1114 0.2627 2.59 0.95 

Body fat 200 10 0.01 252 12 2 9.22 0.0982 0.2144 3.25 1.46 

Abalone 200 10 0.17 4177  2      

 
 
Table 4 projects the experimental outcome over the 

datasets using the Layer Recurrent Neural Network model. 
The datasets iris and cancer consumes more number of 
iterations when compared with glass dataset and hence the 
same is justified in the total time put away by the CPU in 
executing the LRNN model. The same was justified by the 
performance indicators and gradient values that glass dataset 
hold the optimum values in these columns. 

D. Unsupervised LearningTechniques: 
ANNs that attempt unsupervised learning have no target 

outputs.  The system itself must then decide what features it 
will use to group the input data. This paper referrers the 
SOM model for learning patterns in datasets. During the 
learning process, the units (weight values) of ANNs network 
are arranged inside a certain range, depending on given 
input values. The goal is to group similar units close 
together in certain areas of the value range. Table 5 projects 
the experimental outcome of SOM over real time datasets. 
The annotations from Table 5 were SOM categorizes the 
150 samples of iris into three classes, experimentally and the 
same trend prolong to the comparing datasets. Another 
important footnote was the learning time of CPU is almost 
minimal to all the datasets, which have less than 700 
samples and quite a appreciable time to abalone dataset.  

The other quantifiers used in Table 5 to evaluate the 
cluster quality and model SSE, MAE, RMSE, RAE, RASE. 
Sum of Squared Error (SSE), is used to measure the 
differences between each sample observation, and its 
group's mean. A tremendous fall in SSE is recorded when 
SOM is imposed on datasets. A general impression on SOM 
was the misclassifications rate is very low despite the 
number of CPU cycles and iterations. The Mean Absolute 
Error (MAE) is used measure the closeness between the 
actual and predicted sample in the dataset. The error rate 
raised is very low for all the comparing datasets over the 
SOM model, this justifies lead to a positive sign that this 
unsupervised model can used for prediction.  

Root Mean Square Error (RMSE) is used to find the 
accuracy of grouping by finding the differences between 
values predicted by a model and the values actually 
observed; also, this measure aggregates the values of 
residuals. An affirmative symptom was RMSE is always 
phosphorus towards the lower threshold values in all 
comparing datasets. Relative Absolute Error (RAE) is the 
total absolute error made relative to what the error would 
have been if the prediction simply had been the average of 
the actual values. This precise model is statistically 
depicting towards zero in all the comparing datasets. The 
Relative Squared Error (RSE) takes the total squared error 
and normalizes it by dividing by the total squared error of 
the simple predictor.  This exaggerates the prediction error 

was slightly greater than actual than the mean error in all 
comparing cases. 

 
Figure 6. SOM weight positions in iris dataset 

Fig. 6 and Fig. 7 illustrates the spread of SOM weight 
positions between attributes in iris and cancer datasets. The 
positions and relations are composed with the location of 
data points and weight vector. The neighbor weight 
distances of cancer and iris datasets are visualized using 
SOM in Fig. 8 and Fig. 9. The input space is visualized by 
the set of neurons, connection between neighbor neurons 
including the small and large distance between the neurons. 
Grouping is observed at the light and dark segments in the 
SOM to indicate that the network has clustered data into 
groups. Hence, it is justified that SOM learn to classify input 
vectors according to how they are grouped in the input 
space. In addition, SOM learn both the distribution and 
topology of the input vectors they are trained on. 

 

 
Figure 7. SOM weight positions in cancer dataset 
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Figure 8. SOM neighbor weight distances in cancer dataset 

 
Figure 9. SOM neighbor weight distances in iris dataset 

E. Overall Impression: 
The ENN model outperforms all the comparing model 

over the iris, glass and cancer dataset with respect to cpu 
learning time, but performance wise of the supervised 
learning models LRNN prevails its supremacist over the 
datasets. In the body fat dataset the learning time is same 
both at FB and CFN models but a minor performance 
variation of value is observed. In housing dataset, the FBNN 
dominance is observed both at CPUs training time and 
performance. 

IV. CONCLUSION 

The computing world has a lot to gain from ANNs. 
Their ability to learn by example makes them very flexible 
and powerful. Furthermore, there is no need to devise an 
algorithm in order to perform a specific task. ANNs are very 
well suited for real time systems because of their fast 
response and computational times.  

In this paper, a systematic approach to solve critical 
problem sequentially in knowledge discovery and data 
engineering fields using supervised and unsupervised 
models of ANNs was endeavored. Several major assessment 
techniques in ANNs used to evaluate the fundamental nature 
of the real time datasets. The results and impressions after 
using these techniques forecasted the accuracy of ANNs. 

These results parody ANNs will serve as a 
comprehensive resource for existing practitioners and future 
researches with potential research directions and insights to 
many opportunities and challenges in ANNs, in their field. 
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