
Volume 5, No. 2, March 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 66

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Exemplifying Workflow Sequencing and Analysis in Artificial Neural Networks

Ramachandra Rao Kurada
Asst. Prof., Department of Computer Applications

Shri Vishnu Engineering College for Women
Vishnupur - Bhimavaram

ramachandrarao.kurada@gmail.com

Dr. Karteeka Pavan Kanadam
Professor, Department of IT

RVR & JC College of Engineering
Chowdavaram- Guntur

kanadamkarteeka@gmail.com

Abstract: Artificial Neural networks have seen an flare-up of attention over the most recent years and are being productively functional across an
astonishing variety of problem domains, varied as science, finance, medicine, engineering, physics and biology. The exhilaration track from the
fact that these networks are cracked to model with the competence of the human brain. From a statistical viewpoint artificial neural networks are
fascinating because of their prospective use in prediction, regression and classification tribulations. This paper advocates the significance of
Artificial Neural Networks by highlighting its advancements, trends and challenges. In addition, this study aims to magnetize research appetizers
with a road map towards application solving and psychiatry in a methodical approach.

Keywords: Artificial Neural Networks; Supervised learning; Unsupervised learning; Workflow Sequencing; Real-time datasets

I. INTRODUCTION

Recent developments in science and technology have
enabled the growth and availability of raw data to occur at an
explosive rate. This has created an immense opportunity for
knowledge discovery and data engineering research to play
an essential role in a wide range of applications. The study of
Artificial neural networks (ANNs) [1] has aroused great
interest as they are universal function approximations
capable of mapping any linear or nonlinear function. ANNs
flexibility in function approximation make them very useful
in tasks involving pattern classification, estimating
continuous variables, forecasting, and business surveys etc
[2], [3].

Artificial intelligence, neural computing, and pattern
recognition share a common knowledge base comprising of
multiple disciplines. Contemporary neurocomputing takes its
models from the biological system. Human brain is the basic
motivation in the endeavor to building intelligent machine in
the field of artificial intelligence. The idea of creating a
network of neurons got a boost when McCulloch and Pitts
presented their model of the artificial neuron laying the
foundations [4]. Much work was done in the field to a point
where simulations of the net could be performed on
computers.

ANNs models capitalize on properties of biological gene
networks that other kinds of models do not. ANNs naturally
take advantage of patterns of absence, as well as presence, of
factor binding associated with specific expression output.
ANNs are easily subjected to in silico ‘‘mutation’’ to
uncover biological redundancies, and can use the full range
of factor binding values [5]. ANNs are structural
computational models with a long history in pattern
recognition. A general reason for thinking ANNs could be
effective for this task is that they have some natural
similarities with transcription networks, including the ability
to create nonlinear sparse interactions between
transcriptional regulators and target genes [6].

ANNs have been most famously used in machine
learning as ‘‘black boxes’’ to perform classification tasks, in

which the goal is to build a network based on a training
dataset that will subsequently be used to perform similar
classifications on new data of similar structure. In these
classical ANNs applications, the weights within the network
are of no particular interest, as long as the trained network
performs the desired classification task successfully when
extrapolating to new data [7].

The number of types of ANNs and their uses is very
high. Since the first neural model by McCulloch and Pitts
there have been developed hundreds of different models
considered as ANNs. The differences in them might be the
functions, the accepted values, the topology, the learning
algorithms, etc. In addition, there are many hybrid models
where each neuron has more properties for engineering
purposes, such as pattern recognition, forecasting, and data
compression [8]. ANNs posses a number of properties for
modeling processes or systems with universal function
approximation capability, learning from experimental data,
tolerance to noisy or missing data, and good generalization
capability [9].

The backpropagation algorithm proposed by Rumelhart
and McClelland [10] uses a layered feed-forward ANNs.
This means that the artificial neurons are organized in layers,
and send their signals forward, and then the errors are
propagated backwards. The network receives inputs by
neurons in the input layer, and the output of the network is
given by the neurons on an output layer. There may be one or
more intermediate hidden layers. The back propagation
algorithm uses supervised learning, which means the
algorithm with examples of the inputs and outputs we want
the network to compute, and then the error (difference
between actual and expected results) is calculated. The idea
of the back propagation algorithm is to reduce this error, until
the ANN learns the training data. The training begins with
random weights, and the goal is to adjust them so that the
error will be minimal.

The overall organization of the paper is as follows.
Section I Introduction, presents the fundamental of ANNs,
issues and outlines the general stages, task decomposition
strategies etc. Section II Workflow analysis inducts the
roadmap to solve the practical problems with a systematic

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 67 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

approach in seven stages. This section provokes a quick
reference to major attempts in theoretical issues of learning
and generalization in classification of ANNs, transfer,
activation, output functions etc. Section III Experimental
analysis is worthwhile with comparisons, impressions on
diverse applications and implementations of ANNs models
over real-time datasets. Finally, Section IV concludes the
paper with general recommendations for future designs and
learning performances.

II. WORKFLOW ANALYSIS AND SEQUENCING

A. Data Collection:
Data is specific to its application domain and is

preprocessing. Neural network training can be more
efficient if certain preprocessing steps are applied on the
network inputs and targets. Generally, the normalization
step is applied to both the input vectors, the target vectors in
the data set, and the network output always falls into a
normalized range. The network output can then be reverse
transformed back into the units of the original target data
when the network is put to use in the field. Real time dataset
are available at the UCI Machine Learning Repository
http://mlearn.ics.uci.edu/MLRepository.html. These datasets
are originated from the StatLib library, which is maintained
at Carnegie Mellon University [11].

The most Popular datasets considered from UCI
Machine Learning Repository are cancer, iris and glass
datasets. The extracted data is preprocessed and divided into
subsets before it is supplied into network as input. Since it is
generally difficult to incorporate prior knowledge into a
neural network, therefore the network can only be as
accurate as the data that are used to train the network. It is
important that the data cover the range of inputs for which
the network will be used [12]. Multilayer networks can be
trained to generalize well within the range of inputs for
which they have been trained. However, they do not have
the ability to accurately the extrapolate beyond this range, so
it is important that the training data span the full range of the
input space [13].

When training multilayer networks, the general practice
is to first divide the data into three subsets. The first subset
is the training set, which is used for computing the gradient
and updating the network weights and biases. The second
subset is the validation set. The error on the validation set is
monitored during the training process. The validation error
normally decreases during the initial phase of training, as
does the training set error. However, when the network
begins to overfit the data, the error on the validation set
typically begins to rise. The network weights and biases are
saved at the minimum of the validation set error [14].

B. Network Creation:
After the data has been preprocessed, the next step is to

create a network object and train the network. The ANNs
can be created and trained with supervised and unsupervised
learning methods [15].

a. Feed forward backpropagation (FB) Model:
FB artificial intelligence model [16] consists of input,

hidden and output layers. Backpropagation learning
algorithm is used for learning these networks. During
training FB network, calculations were carried out from

input layer of network toward output layer, and error values
were then propagated to prior layers. Feedforward networks
often have one or more hidden layers of sigmoid neurons
followed by an output layer of linear neurons. Multiple
layers of neurons with nonlinear transfer functions allow the
network to learn nonlinear and linear relationships between
input and output vectors. The linear output layer lets the
network produce values outside the range –1 to +1. Thus the
output layer in order to produce values between 0 and 1uses
a sigmoid transfer function [17].

b. Cascade forward (CF) Model:
CF models are similar to feed-forward networks [18],

but include a weight connection from the input to each layer
and from each layer to the successive layers. While two-
layer feedforward networks can potentially learn virtually
any input-output relationship, feed-forward networks with
more layers might learn complex relationships more
quickly. CF artificial intelligence model is similar to FB
model in using the backpropagation algorithm for weights
updating, but the main symptom of this network is that each
layer of neurons related to all previous layer of neurons.
Tan-sigmoid transfer function [19], log - sigmoid transfer
function [20] and pure linear threshold functions were used
to reach the optimized status [21].

c. Competitive Network Model”
A competitive learning network comprises the feed

forward excitatory network and the lateral inhibitory
networks [22]. The feedforward network usually implements
an excitatory Hebbian learning rule [23]. It consist of an
input cell persistently participates in firing an output cell,
the input cell's influence firing that output cell is increased.
The lateral competitive network is inhibitory in nature. The
network serves the important role of selecting the winner,
often via a competitive learning process, highlighting
the "winner-take-all" schema. In a winner-take-all circuit,
the output unit receiving the largest input is assigned a full
value i.e. 1, whereas all other units are suppressed to a 0
value.

d. ELMan Neural Network (ENN) Model:
ENN [24] is one type of the partial recurrent neural

networks, which consists of a two-layer back propagation
network with an additional feedback connection from the
output of the hidden layer to its input. The advantage of this
feedback path is that it allows the ENN to recognize and
generate temporal patterns and spatial patterns. This means
that after training, interrelations between the current input
and internal states are processed to produce the output and
to represent the relevant past information in the internal
states. As a result, the ENN has been widely used in various
fields which includes classification, prediction and dynamic
system identification, etc. The overall structure of ENN is
shown in Fig. 1.

Figure 1. Structure of Elman Neural Network

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 68 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

e. Generalized Regression Neural Network (GRNN):
GRNN [25] is often used for function approximation. It

has a radial basis layer and a special linear layer. This
GRNN is a one-pass learning algorithm with a parallel
structure. Even with sparse data in a multidimensional
measurement space, the algorithm provides smooth
transitions from one observed value to another. This
algorithmic form can be used for any regression problem in
which an assumption of linearity is not justified.

This network like other probabilistic neural networks
[26] needs only a fraction of the training samples a back
propagation neural network. Therefore, the use of a
probabilistic neural network is especially advantageous due
to its ability to converge to the underlying function of the
data with only few training samples available. This makes
GRNN a very useful tool to perform predictions and
comparisons of system performance in practice.

f. Hopfield Neural Network (HNN) Model:
John Hopfield of the California Institute of Technology

proposed the Hopfield model during the early 1980s
[27]. The HNN is perhaps the simplest of ANN; it is a fully
connected single layer auto associative network. This means
it has one single layer, with each neuron connected to every
other neuron. Hopfield networks are a special kind of
recurrent neural networks that can be used as associative
memory.

Associative memory is often addressed through its
contents i.e. if a pattern is presented to an associative
memory, it returns whether this pattern coincides with a
stored pattern. The coincidence need not be perfect, though.
An associative memory may also return a stored pattern that
is similar to the presented one, so that noisy input can also
be recognized [28]. Neurons are pixels and can take the
values of -1 or +1. The network has stored a certain number
of pixel patterns. During a retrieval phase, the network is
started with some initial configuration and the network
dynamics evolves towards the stored pattern, which is
closest to the initial configuration.

Figure 2. Structure of Layer Recurrent Neural Network

g. Layer Recurrent Neural Network (LRNN) Model:
The fundamental feature of a LRNN is that the network

contains at least one feed-back connection, so that activation
can flow round in a loop [29]. That enables the networks to
do temporal processing and learn sequences. The
architectures of recurrent neural networks can take many
different forms, but they all share two important common
features i.e. to incorporate some form of MLP as a sub-
system and to exploit the powerful non-linear mapping

capabilities of the MLP with some form of memory [30].
The relevant areas where LRNN seem to be very promising
for modeling and simulation includes are neuro
identification, neuro control, diagnosis and forecasting, the
overall structure of LRNN is shown in Fig. 2.

h. Learning Vector Quantization (LVQ) Network
Model:

LVQ is a supervised version of vector quantization that
can be used when we have labeled input data [31]. This
learning technique uses the class information to reposition
the Voronoi vectors slightly, to improve the quality of the
classifier decision regions. LVQ has a two stage process i.e.
Self-Organizing Map (SOM) followed by LVQ. This model
is particularly useful for pattern classification problems. The
first step is feature selection i.e. the unsupervised
identification of a reasonably small set of features in which
the essential information content of the input data is
concentrated. The second step is the classification where the
feature domains are assigned to individual classes.

LVQ model first has a competitive layer and is
followed by a linear layer. The competitive layer learns to
classify input vectors in much the same way as the
competitive layers of Cluster with SOM. The linear layer
transforms the competitive layer's classes into target
classifications defined by the user. The classes learned by
the competitive layer are referred to as subclasses and the
classes of the linear layer as target classes. Both the
competitive and linear layers have one neuron per (sub or
target) class.

i. Probabilistic Neural Networks (PNN) Model:
PNN are used for classification problems [32]. When an

input is presented, the first layer computes distances from
the input vector to the training input vectors and produces a
vector whose elements indicate how close the input is to a
training input. The second layer sums these contributions for
each class of inputs to produce as its net output a vector of
probabilities. Finally, a compete transfer function on the
output of the second layer picks the maximum of these
probabilities, and produces 1 for that class and a 0 for the
other classes.

j. Radial Basis Function (RBF):
RBF Networks [33] take a slightly different approach of

MLP. RBF is a two-layer feed-forward networks. The
hidden node is implemented with a set of radial basis
functions (e.g. Gaussian functions), the output nodes are
implemented as a linear summation functions as in an MLP.
The network training is divided into two stages i.e. the
weights from the input to hidden layer are first determined,
and then the weights from the hidden to output layer are
determined.

k. Self Organized Map (SOM) Model:
SOMs [34] are used both to cluster data and to reduce

the dimensionality of data. They are inspired by the sensory
and motor mappings in the mammal brain, which also
appear to automatically organizing information
topologically. The principal goal of an SOM is to transform
an incoming signal pattern of arbitrary dimension into a one
or two-dimensional discrete map, and to perform this
transformation adaptively in a topologically ordered fashion.

http://www.mathworks.in/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html�

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 69 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Kohonon's SOMs are a type of unsupervised learning and it
is used to discover some underlying structure of the data.

Kohonen's SOM is called a topology-preserving map
because there is a topological structure imposed on the
nodes in the network [35]. A topological map is simply a
mapping that preserves neighborhood relations. Therefore
SOM is setup by placing neurons at the nodes of a one or
two dimensional lattice. Higher dimensional maps are also
possible, but not so common. The neurons become
selectively tuned to various input patterns (stimuli) or
classes of input patterns during the course of the competitive
learning. The locations of the neurons so tuned (i.e. the
winning neurons) become ordered and a meaningful
coordinate system for the input features is created on the
lattice. The SOM thus forms the required topographic map
of the input patterns.

SOM consists of a competitive layer which can classify
a dataset of vectors with any number of dimensions into as
many classes as the layer has neurons. The neurons are
arranged in a 2D topology, which allows the layer to form a
representation of the distribution and a two-dimensional
approximation of the topology of the dataset. The network
is trained with the SOM batch algorithm (trainbu,
learnsomb). SOM is a vector quantization method, which
places the prototype vectors on a regular low-dimensional
grid in an ordered fashion. This makes the SOM a powerful
visualization tool.

The feed forward structure of Kohenon SOM is
illustrated in Fig. 3. The SOM has a feed-forward structure
with a single computational layer arranged in rows and
columns. Each neuron is fully connected to all the source
nodes in the input layer. A clear understanding from Fig. 3
was a one dimensional map will just have a single row (or a
single column) in the computational layer.

Figure 3. Feed-forward structure of Kohenon SOM network

The self-organization process involves four major
stages:

a. Initialization: All the connection weights are
initialized with small random values.

b. Competition: For each input pattern, the neurons
compute their respective values of a discriminated
function that provides the basis for competition. The
particular neuron with the smallest value of the
discriminated functions is declared the winner.

c. Cooperation: The winning neuron determines the
spatial location of a topological neighborhood of

excited neurons, thereby providing the basis for
cooperation among neighboring neurons.

d. Adaptation: The excited neurons decrease their
individual values of the discriminated function in
relation to the input pattern through suitable
adjustment of the associated connection weights, such
that the response of the winning neuron to the
subsequent application of a similar input pattern is
enhanced.

There are two identifiable phases of this adaptive
process:
a) Ordering or self-organizing phase– here the

topological ordering of the weight vectors takes
place. Typically, this will take as many as 1000
iterations of the SOM algorithm, and careful
consideration needs to be given to the choice of
neighborhood and learning rate parameters.

b) Convergence phase– during which the feature map is
fine tuned and comes to provide an accurate statistical
quantification of the input space. Typically, the
number of iterations in this phase will be at least 500
times the number of neurons in the network, and
again the parameters must be chosen carefully.

The stages of the SOM algorithm can be summarized as
follows:
i. Initialization – Choose random values for the initial

weight vectors w
ii. Sampling – Draw a sample training input vector x from

the input space.

j

iii. Matching – Find the winning neuron I(x) with weight
vector closest to input vector.

iv. Updating – Apply the weight update equation
∆Wij=η(t), I(x)(t)(xi-Wji

v. Continuation – keep returning to step 2 until the feature
map stops changing.

)

C. Network Design:
The configuration of network is done by selecting the

number of hidden layers, number of neurons in each hidden
layers and transfer functions. In backpropagation it is
important to be able to calculate the derivatives of any
transfer functions used. Feedforward networks often have
one or more hidden layers of sigmoid neurons followed by
an output layer of linear neurons. Multiple layers of neurons
with nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between input and output
vectors. The linear output layer lets the network produce
values outside the range -1 to +1. Each of the transfer
functions logsig, tansig, and purelin, calculate their own
derivative. The function logsig generates outputs between
zero and one as the neuron's net input goes from negative to
positive infinity. If the last layer of a multilayer network has
sigmoid neurons, then the outputs of the network are limited
to a small range. If linear output neurons are used the
network outputs can take on any value.

D. Determinationof Weights and Biases:
Once the network is chosen and configured with input,

hidden and output layers, the training function, adaptation
learning function [36] and performance learning functions
[37] are also to be constituted. Few networks training
function available in matlab software are trainbfg which
updates weight and bias values according to the BFGS
quasi-Newton method [38], traingdm, traingd functions that

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 70 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

updates weight and bias values according to gradient
descent with momentum, trainlm function which updates
weight and bias values according to Levenberg-Marquardt
optimization [39]. It is often the fastest backpropagation
algorithm and is highly recommended as a first-choice
supervised algorithm.

The other training functions like traincgb updates
weight and bias values according to the conjugate gradient
backpropagation with Powell-Beale [40] restarts, traincgf
updates weight and bias values according to conjugate
gradient backpropagation. The adaptation learning functions
like learngd, learngdm uses gradient descent with
momentum weight and bias learning function. The Network
performance function like MSE is used to measure the
network's performance according to the mean of squared
errors. The Mean squared error with regularization
performance function, msereg is used to measures network
performance as the weight sum of two factors i.e. the mean
squared error and the mean squared weight and bias values.

E. Training the Neural Network:
When the network weights and biases are initialized,

the network is ready for training. The multilayer feed
forward network can be trained for function approximation
(nonlinear regression) or pattern recognition. The process of
training a neural network involves tuning the values of the
weights and biases of the network to optimize network
performance.

There are two different ways in which training can be
implemented: incremental mode and batch mode [41]. In
incremental mode, the gradient is computed and the weights
are updated after each input is applied to the network. In
batch mode, all the inputs in the training set are applied to
the network before the weights are updated. The fastest
training function is generally trainlm, and it is the default
training function for feedforward network. The quasi-
Newton method, trainbfg, is also relatively quite faster
method as a training function. In addition, trainlm performs
better on function fitting (nonlinear regression) problems
than on pattern recognition problems. When training large
networks, and when training pattern recognition networks,
trainscg and trainrp are good choices. Their memory
requirements are relatively small, and yet they are much
faster than standard gradient descent. Transfer functions
calculate a layer's output from its net input. Hyperbolic
tangent sigmoid transfer function tansig is one amongst it.
This function calculate a layer's output from its net input and
it is a good tradeoff for neural networks, where speed is
important and the exact shape of the transfer function is not.
Once the training process is completed, the network must be
able to classify or predict from new inputs.

The network will determine the entire coefficient by
back-propagation of errors, which will try to maximize the
sum of squares of the difference (errors) between the
expected and the actual computed output. This process
usually takes hundreds or thousands of iterations. The rate
of convergence is faster in earlier iterations and becomes
slower as the iteration number increases. If a reasonable
degree of convergence is considered, the network is trained
and can be imposed on real world applications, domains etc.

F. Network Validation:
One of the major advantages of ANNs is their ability to

generalize. This means that a trained net could classify data

from the same class as the learning data that it has never
seen before. In real world applications, developers normally
have only a small part of all possible patterns for the
generation of a neural net. To reach the best generalization,
the dataset is split into three parts:

i. Training Set: It is used to train a neural net. The error
of this dataset is minimized during training.

ii. Validation set: It is used to determine the performance
of a neural network on patterns that are not trained
during learning.

iii. Testing set: It is used for finally checking the overall
performance of a neural net.
The learning stops when it produces a minimum of the

validation set error. At this point the ANN generalizes the
best. When learning is not stopped, overtraining occurs and
the performance of the net overall data decreases, despite
the fact that the error on the training data still gets smaller.
After finishing the learning phase, the model should be
finally checked with the third data set, the test set.

The evaluation and validation of an ANNs prediction
model are based upon one or more selected error metrics
[42]. Generally, ANNs models, a function approximation
task that will use a continuous error metric such as mean
absolute error (MAE), mean squared error (MSE) or root
mean squared error (RMSE). These errors are summed over
the validation set of inputs and outputs, and then normalized
by the size of the validation set.

G. Network Exploitation:
There are numerous fields where neural system is being

used since they are good when dealing with abstract
problems, like those based on features and patterns. ANNs
are actively being used for applications as bankruptcy
prediction, predicting costs, forecast revenue, processing
documents and more. The other major benefits of ANN are
they are inherently multiprocessor-friendly architecture, and
have ability to do many things at once and provide vital
information for powerful decision-making [43]. Depending
on the nature of the application and the strength of the
internal data patterns, generally the network is expected to
train quite well. This applies to problems where the
relationships may be quite dynamic or non-linear. ANNs
provide an analytical alternative to conventional techniques,
which are often limited by strict assumptions of normality,
linearity, variable independence etc. Because an ANN can
capture many kinds of relationships it allows the user to
quickly and relatively easily model phenomena which
otherwise may have been very difficult or impossible to
explain otherwise. Neural networks are universal
approximations, and they work best if the system you are
using them to model has a high tolerance to error.

III. EXPERIMENAL ANALYSIS

Once a network model is customized and tailored to a
particular application, that network is ready to be trained.
The model is initialized with a weight randomly and learns
the content of the dataset. The two approaches to train a
model are the supervised and unsupervised.

http://www.mathworks.in/help/nnet/ref/trainlm.html�
http://www.mathworks.in/help/nnet/ref/feedforwardnet.html�
http://www.mathworks.in/help/nnet/ref/trainbfg.html�
http://www.mathworks.in/help/nnet/ref/trainlm.html�
http://www.mathworks.in/help/nnet/ref/trainscg.html�
http://www.mathworks.in/help/nnet/ref/trainrp.html�

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 71 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Table I: Experimental Analysis of Feed Forward Back Propagation Model

Dataset Epoch Time
(sec) Performance Gradient MU Validation

Checks MSE Regression

Iris 13 0.28 2.28e-09 7.92e-06 1.00e-09 6 9.87195e-3 9.77540e-1

Cancer 10 0.018 0.000770 0.0100 0.0182 6 1.50737e-2 9.69921e-1

Glass 13 0.01 0.0161 0.00811 0.100 5 7.89894e-0 9.52435e-1

Body fat 10 0.01 7.78 11.4 10 5 12.61533e-0 9.07788e-1

Building
Energy 35 0.11 0.00237 0.000386 0.0100 6 2.31464e-3 9.25453e-1

Housing 6 0.01 3.41 8.78 10.0 6 3.34751e-2 9.31548e-1

Supervised training involves a mechanism of providing

the network with the desired output either by manually
grading the network's performance or by providing the
desired outputs with the inputs. In the Unsupervised training
the network has to make sense of the inputs without outside
help. The vast bulk of networks utilize supervised training.
Unsupervised training is used to perform some initial
characterization on inputs. However, in the full-blown sense
of being truly self-learning, it is still just a shining promise
that is not fully understood.

A. Dataset Description:
a. house_dataset: It estimates the median value of owner

occupied homes in Boston suburbs given 13
neighborhood attributes. An estimator can be found by
Fitting the inputs and targets. This data set has 506
samples with 13 attributes each. The expected output is
a sample with median values of owner-occupied homes
in $1000's.

b. abalone_dataset: It estimates the number of rings of an
abalone shell with eight measurements. An estimator
can be found by Fitting the inputs and targets. The data
set consists of 4177 samples with 8 attributes per each
sample.

c. bodyfat_dataset: This dataset can be used to train a
neural network to estimate the bodyfat of someone from
13 measurements per sample out of 252.

d. building_dataset: This dataset can be used to train a
neural network to estimate the energy use of a building
from time and weather conditions. It is defined with 14
attributes from 4208 samples.

B. Evaluation Measures:
a. Mean Squared Error (MSE): MSE is the average

squared difference between outputs and targets. Lower
values are better. Zero means no error.

b. Regression (R): The Regression values R measure the
correlation between outputs and targets. R value is of 1
means a close relationship, 0 a random relationship.
Regression procedures are like correlation because they
are concerned with relationships among variables.
Correlation analyses serve as the part of the building
block for regression procedures.

C. Supervised LearningTechniques:
In supervised training, both the inputs and the outputs

are provided. The network then processes the inputs and
compares its resulting outputs against the desired outputs.
Errors are then propagated back through the system, causing
the system to adjust the weights, which control the network.
This process occurs repeatedly as the weights are
continually tweaked. The set of data, which enables the
training, is called the "training set." During the training of a
network the same set of data is processed many times as the
connection weights are ever refined.

Figure 4. Best Validation Performance on IRIS Dataset

The outcomes of experimental analysis on FBNN
model when applied over the real-time datasets are shown in
Table1. The MSE is relatively low for the cancer, building
energy, housing datasets when compared with the other
datasets like iris, glass, and body fat. The Regression
coefficient is almost near to one to all the comparing dataset,
which means a positive sign that training is almost
approximate. Building energy dataset consumes more
number of iterations due its huge number of samples in
training set. The glass and bodyfat datasets consume less
number of CPUs training time and it reflects by consuming
less number of validation checks. The overall performance
of FB model is optimum in Building dataset and reflects the
same in MU. The best validation performance of iris dataset
at epoch 7 is shown as Fig. 4. All the iterations are assumed
in x-axis and are corresponded with MSE in y-axis. The
three divisions of dataset training, validation and testing sets
are also depicted in the Fig 4.

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 72 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Figure 5. Regression values of Training, Validation, Testing and overall sets on iris dataset

Table 2. Experimental analysis of Cascade forward Model

Dataset Epoch Time (sec) Performance Gradient MU Validations

Iris 15 0.01 0.0114 0.0279 0.0100 6

Cancer 11 0.02 1.15e-07 2.43e-06 1.00e-08 5

Glass 16 0.01 0.00440 0.000725 0.00100 6

Housing 14 0.13 3.93 32.7 10 6

Body fat 11 0.01 7.09 9.89 10 6

Abalone 5 0.10 90.1 4.07e-08 0.00100 0

Table 3. Experimental analysis of Elman Neural Network Model

Dataset Epoch Time (sec) Performance Gradient MU Validations

Iris 11 0 0.126 0.0107 0.00100 6

Cancer 13 0 0.00870 0.0509 0.0100 6

Glass 17 0 0.00333 1.60e-05 1.00e-07 6

An important observation from Fig. 4 was the best

validation performance value 0.01495 is clearly visible at
iteration7. Similarly, the Regression value showing the close
and random relationship on iris data set in training, testing,
validation and overall data is shown as Fig. 5.

Table 2 projects the experimental outcome over the
datasets using the CF model. The CF model has tremendous
training performance on iris, glass and cancer datasets, but
the performance on housing and abalone dataset is high due
to more number of samples, but important observation was
the number of epoch and validation checks are more or less

same to all the dataset. This is again justified by the values
in Gradient and Mu column. The gradient and Mu values are
low to iris, glass dataset and high to housing, abalone
datasets.

Table 3 projects the experimental outcome over the
datasets using the Elman Neural Network model. Since the
experiments were carried out on relatively small size
datasets they do not consume much CPU time, the
performance of glass dataset is better than the comparing
datasets even though it consumes more number of iterations
and gradient value.

Table IV. Experimental analysis of Layer Recurrent Neural Network Model

Dataset Epoch Time (sec) Performance Gradient MU Validations

Iris 14 0.06 0.00609 0.00684 0.100 6

Cancer 10 0.07 0.00229 0.00262 0.0010 6

Glass 9 0.04 0.00140 0.0309 0.0100 6

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 73 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Table V. Experimental analysis of Self-Organized Maps

Dataset Epoch SOM
Size

Time
(Sec)

No. of
Samples

No. of
Misclassifications Classes SSE MAE RMSE RAE RASE

Iris 200 10 0.01 150 4 3 7.81 0.0327 0.1291 1.35 0.37

Cancer 200 10 0.03 699 19 2 14.51 0.2911 0.4215 9.01 8.42

Glass 200 10 0.01 214 21 2 8.20 0.1114 0.2627 2.59 0.95

Body fat 200 10 0.01 252 12 2 9.22 0.0982 0.2144 3.25 1.46

Abalone 200 10 0.17 4177 2

Table 4 projects the experimental outcome over the

datasets using the Layer Recurrent Neural Network model.
The datasets iris and cancer consumes more number of
iterations when compared with glass dataset and hence the
same is justified in the total time put away by the CPU in
executing the LRNN model. The same was justified by the
performance indicators and gradient values that glass dataset
hold the optimum values in these columns.

D. Unsupervised LearningTechniques:
ANNs that attempt unsupervised learning have no target

outputs. The system itself must then decide what features it
will use to group the input data. This paper referrers the
SOM model for learning patterns in datasets. During the
learning process, the units (weight values) of ANNs network
are arranged inside a certain range, depending on given
input values. The goal is to group similar units close
together in certain areas of the value range. Table 5 projects
the experimental outcome of SOM over real time datasets.
The annotations from Table 5 were SOM categorizes the
150 samples of iris into three classes, experimentally and the
same trend prolong to the comparing datasets. Another
important footnote was the learning time of CPU is almost
minimal to all the datasets, which have less than 700
samples and quite a appreciable time to abalone dataset.

The other quantifiers used in Table 5 to evaluate the
cluster quality and model SSE, MAE, RMSE, RAE, RASE.
Sum of Squared Error (SSE), is used to measure the
differences between each sample observation, and its
group's mean. A tremendous fall in SSE is recorded when
SOM is imposed on datasets. A general impression on SOM
was the misclassifications rate is very low despite the
number of CPU cycles and iterations. The Mean Absolute
Error (MAE) is used measure the closeness between the
actual and predicted sample in the dataset. The error rate
raised is very low for all the comparing datasets over the
SOM model, this justifies lead to a positive sign that this
unsupervised model can used for prediction.

Root Mean Square Error (RMSE) is used to find the
accuracy of grouping by finding the differences between
values predicted by a model and the values actually
observed; also, this measure aggregates the values of
residuals. An affirmative symptom was RMSE is always
phosphorus towards the lower threshold values in all
comparing datasets. Relative Absolute Error (RAE) is the
total absolute error made relative to what the error would
have been if the prediction simply had been the average of
the actual values. This precise model is statistically
depicting towards zero in all the comparing datasets. The
Relative Squared Error (RSE) takes the total squared error
and normalizes it by dividing by the total squared error of
the simple predictor. This exaggerates the prediction error

was slightly greater than actual than the mean error in all
comparing cases.

Figure 6. SOM weight positions in iris dataset

Fig. 6 and Fig. 7 illustrates the spread of SOM weight
positions between attributes in iris and cancer datasets. The
positions and relations are composed with the location of
data points and weight vector. The neighbor weight
distances of cancer and iris datasets are visualized using
SOM in Fig. 8 and Fig. 9. The input space is visualized by
the set of neurons, connection between neighbor neurons
including the small and large distance between the neurons.
Grouping is observed at the light and dark segments in the
SOM to indicate that the network has clustered data into
groups. Hence, it is justified that SOM learn to classify input
vectors according to how they are grouped in the input
space. In addition, SOM learn both the distribution and
topology of the input vectors they are trained on.

Figure 7. SOM weight positions in cancer dataset

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 74 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Figure 8. SOM neighbor weight distances in cancer dataset

Figure 9. SOM neighbor weight distances in iris dataset

E. Overall Impression:
The ENN model outperforms all the comparing model

over the iris, glass and cancer dataset with respect to cpu
learning time, but performance wise of the supervised
learning models LRNN prevails its supremacist over the
datasets. In the body fat dataset the learning time is same
both at FB and CFN models but a minor performance
variation of value is observed. In housing dataset, the FBNN
dominance is observed both at CPUs training time and
performance.

IV. CONCLUSION

The computing world has a lot to gain from ANNs.
Their ability to learn by example makes them very flexible
and powerful. Furthermore, there is no need to devise an
algorithm in order to perform a specific task. ANNs are very
well suited for real time systems because of their fast
response and computational times.

In this paper, a systematic approach to solve critical
problem sequentially in knowledge discovery and data
engineering fields using supervised and unsupervised
models of ANNs was endeavored. Several major assessment
techniques in ANNs used to evaluate the fundamental nature
of the real time datasets. The results and impressions after
using these techniques forecasted the accuracy of ANNs.

These results parody ANNs will serve as a
comprehensive resource for existing practitioners and future
researches with potential research directions and insights to
many opportunities and challenges in ANNs, in their field.

V. REFERENCES

[1] McCulloch, Warren S., and Walter Pitts, “A logical
calculus of the ideas immanent in nervous activity.” The
Bulletin of Mathematical Biophysics , vol 5, no. 4 , pp.
115-133, 1943.

[2] Hebb, Donald Olding, The organization of behavior: A
neuropsychological theory , Psychology Press, 2002.

[3] Zhang, Guoqiang, B. Eddy Patuwo, and Michael Y Hu.
“Forecasting with artificial neural networks:: The state of
the art.” International journal of forecasting vol. 14, no. 1,
pp: 35-62, 1998.

[4] McCulloch, W. and W. Pitts, A Logical Calculus of the
Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[5] Sutton, Richard S., and Andrew G. Barto, Reinforcement
learning: An introduction. vol. 1, no. 1. Cambridge: MIT
press, 1998.

[6] Wasserman, P. D, Neural computing: Theory and practice.
Van Nostrand Reinhold, New York, 1989.

[7] R.A. Chayjan.” Modeling of sesame seed dehydration
energy requirements by a soft-computing”. Australian
journal of crop science,vol. 4, no.3, pp.180-184,2010

[8] Carpenter, Gail A. "Neural network models for pattern
recognition and associative memory." Neural networks vol.
2, no. 4, pp: 243-257, 1989.

[9] Cybenko G, “Approximation by superpositions of a
sigmoidal function.”, Mathematical Control, Signal and
Systems, vol 2, pp: 303-314, 1989.

[10] Rumelhart, D. and J. McClelland, Parallel Distributed
Processing. MIT Press, Cambridge, Mass, 1986.

[11] Murphy,P.M., Aha, D.W, UCI Repository of machine
learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science, 1994.

[12] Funahashi, K, On the approximate realization of continuous
mappings by neural networks. Neural Networks vol.2, pp:
183-192, 1989.

[13] Hornik, K., Stinchcombe, M. and White, H, “Multilayer
feedforward networks are universal approximations.”,
Neural Networks , vol 2. pp: 359-366, 1989.

[14] Golbraikh, Alexander, Min Shen, Zhiyan Xiao, Yun-De
Xiao, Kuo-Hsiung Lee, and Alexander Tropsha, “Rational
selection of training and test sets for the development of
validated QSAR models”, Journal of computer-aided
molecular design vol. 17, no. 2, pp: 241-253, 2003

[15] Karayiannis, Nicolaos B., and Glenn Weiqun Mi, “Growing
radial basis neural networks: merging supervised and
unsupervised learning with network growth techniques.”,
Neural Networks, IEEE Transactions, vol 8, no. 6, pp:
1492-1506, 1997.

Ramachandra Rao Kurada et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),66-75

© 2010-14, IJARCS All Rights Reserved 75 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

[16] Johansson, Erik M., Farid U. Dowla, and Dennis M.
Goodman, “Backpropagation learning for multilayer feed-
forward neural networks using the conjugate gradient
method”, International Journal of Neural Systems vol. 2,
no. 04, pp: 291-301. 1991

[17] Harrington, Peter de B, “Sigmoid transfer functions in
backpropagation neural networks”, Analytical Chemistry
vol. 65, no. 15. Pp: 2167-2168, 1993

[18] Goyal, Sumit, and Gyandera Kumar Goyal, “Cascade and
feedforward backpropagation artificial neural networks
models for prediction of sensory quality of instant coffee
flavoured sterilized drink”, Canadian Journal on Artificial
Intelligence, Machine Learning and Pattern Recognition
vol. 2, no. 6, pp: 78-82, 2011.

[19] Harrington, Peter de B, “Sigmoid transfer functions in
backpropagation neural networks”, Analytical Chemistry
vol. 65, no. 15, pp: 2167-2168, 1993

[20] Mihalakakou, G., M. Santamouris, and A. Tsangrassoulis.
“On the energy consumption in residential buildings”,
Energy and Buildings, Vol. 34, no. 7, pp: 727-736, 2002.

[21] Goyal, Gyanendra Kumar, and Sumit Goyal, “Cascade
Artificial Neural Network Models for Predicting Shelf Life
of Processed Cheese”, Journal of Advances in Information
Technology , vol. 4, no. 2, 2013.

[22] Jayasuriya, Suren, and Zachary P. Kilpatrick, “Effects of
Time-Dependent Stimuli in a Competitive Neural Network
Model of Perceptual Rivalry”, Bulletin of mathematical
biology, vol. 74, no. 6, pp: 1396-1426, 2012.

[23] Martinetz, Thomas, “Competitive Hebbian learning rule
forms perfectly topology preserving maps.”, CANN’93, pp.
427-434. Springer London, 1993.

[24] Mohamad, F. N., M. S. A. Megat Ali, A. H. Jahidin, M. F.
Saaid, and M. Z. H. Noor, “Principal component analysis
and arrhythmia recognition using Elman neural network”,
In Control and System Graduate Research Colloquium
(ICSGRC), 2013 IEEE 4th, pp. 141-146. 2013.

[25] Ding, Shuo, Xiao Heng Chang, and Qing Hui Wu, “A
Study on Approximation Performances of General
Regression Neural Network”, Applied Mechanics and
Materials. Vol. 441 pp: 713-716, 2014.

[26] Ding, Shuo, Xiao Heng Chang, and Qing Hui Wu,
“Application of Probabilistic Neural Networks in Fault
Diagnosis of Three-Phase Induction Motors”, Applied
Mechanics and Materials vol. 433, pp: 705-708, 2014.

[27] Hopfield, John J, “Neural networks and physical systems
with emergent collective computational abilities”,
Proceedings of the national academy of sciences 79, no. 8,
pp:2554-2558, 1982

[28] Samad, Tariq, “Neural network auto-associative memory
with two rules for varying the weights”, U.S. Patent
5,050,095, issued September 17, 1991.

[29] Maas, Andrew L., Tyler M. O’Neil, Awni Y. Hannun, and
Andrew Y. Ng, “Recurrent neural network feature
enhancement: The 2nd CHiME challenge” ,In Proceedings
The 2nd CHiME Workshop on Machine Listening in
Multisource Environments held in conjunction with
ICASSP, pp. 79-80. 2013.

[30] Kruse, Rudolf, Christian Borgelt, Frank Klawonn, Christian
Moewes, Matthias Steinbrecher, and Pascal Held, “Multi-
Layer Perceptrons”, In Computational Intelligence, pp. 47-
81. Springer London, 2013.

[31] Hammer, Barbara, Daniela Hofmann, Frank-Michael
Schleif, and Xibin Zhu, “Learning vector quantization for
(dis-) similarities”, Neurocomputing (2013).

[32] Specht, Donald F, “Probabilistic neural networks”, Neural
networks vol. 3, no. 1, pp: 109-118, 1990.

[33] Park, Jooyoung, and Irwin W. Sandberg, “Universal
approximation using radial-basis-function networks”,
Neural computation, vol. 3, no. 2, pp: 246-257, 1991.

[34] Kohonen, Teuvo, “Self-organized formation of
topologically correct feature maps”, Biological cybernetics,
vol. 43, no. 1, pp: 59-69, 1982.

[35] Kohonen, Teuvo, “The self-organizing map”, Proceedings
of the IEEE 78, no. 9, pp:1464-1480, 1990.

[36] Jacobs, Robert A, “Increased rates of convergence through
learning rate adaptation”, Neural networks vol. 1, no. 4, pp:
295-307, 1998.

[37] Shukla, Anupam, Ritu Tiwari, and Rahul Kala, Real life
applications of soft computing. Boca Raton: CRC Press,
2010.

[38] Reddy, I. Sathish, Shirish Shevade, and M. Narasimha
Murty. “A fast quasi-Newton method for semi-supervised
SVM”, Pattern Recognition, vol. 44, no. 10, pp: 2305-
2313, 2010.

[39] Marquardt, Donald W., “An algorithm for least-squares
estimation of nonlinear parameters”, Journal of the Society
for Industrial & Applied Mathematics, vol. 11, no. 2,
pp:431-441, 1963.

[40] Coskun, Nihan, and Tulay Yildirim, “The effects of training
algorithms in MLP network on image classification”, In
Neural Networks, 2003. Proceedings of the International
Joint Conference on, vol. 2, pp. 1223-1226. IEEE, 2003.

[41] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten, “The
WEKA data mining software: an update”, ACM SIGKDD
Explorations Newsletter 11, no. 1, pp:10-18, 2009.

[42] Hansen, Lars Kai, and Peter Salamon, “Neural network
ensembles”, Pattern Analysis and Machine Intelligence,
IEEE Transactions, vol. 12, no. 10, pp: 993-1001, 1990.

[43] Nakamura E, Inflation forecasting using a neural network.
Economics Letters , vol. 86, pp: 373- 378, 2005.

	INTRODUCTION
	WORKFLOW ANALYSIS AND SEQUENCING
	Data Collection:
	Network Creation:
	Network Design:
	Determinationof Weights and Biases:
	Training the Neural Network:
	Network Validation:
	Network Exploitation:

	EXPERIMENAL ANALYSIS
	Dataset Description:
	Evaluation Measures:
	Supervised LearningTechniques:
	Unsupervised LearningTechniques:
	Overall Impression:

	CONCLUSION
	REFERENCES

