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Abstract: In this paper, different types of interconnection networks are investigated and some of their properties are analyzed to summarize the 
differences in their network cost. The various properties of the interconnection networks such as connectivity, routing algorithm, diameter and 
broadcasting technology are investigated. This analysis gives a framework for the construction of more efficient interconnection networks in 
future. 
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I. INTRODUTION 

In Parallel computing, to achieve parallelism various 
techniques can be employed. One technique of achieving 
parallelism is using MIMD (Multiple Instruction Multiple 
Data stream). Machines using MIMD have a number of 
processor that functions asynchronously and independently. 
At any time, different processors may be executing different 
instructions on different pieces of data. MIMD architectures 
may be used in a number of application areas such 
as computer aided design/computer-aided 
manufacturing, simulation, modeling, and as communication 
switches. MIMD machines can be of either shared memory 
or distributed memory categories. These classifications are 
based on how MIMD processors access memory. Shared 
memory machines may be of the bus-based, extended, 
or hierarchical type. Distributed memory machines may 
have hypercube or mesh interconnection schemes.  

An interconnection network system which can be used 
to link multicomputer processors together greatly influences 
performance and scalability of the whole system. Based on 
the number of nodes, Interconnection networks are 
classified into meshes (n×k), hypercube (2n) and star (n!), 
and network scales to evaluate interconnection networks are 
degree, connectivity, scalability, diameter, network cost [4-
10]. 

In an interconnection network, degree related to 
hardware cost and diameter related to message passing time 
is correlated with each other. In general, as degree of an 
interconnection network is increased, diameter is decreased, 
which can increase throughput in the interconnection 
network, however, it increases hardware cost with the 
increased number of pins of the processor when a parallel 
computer is designed. An interconnection network with less 
degree reduces hardware cost but increases message passing 
time, which adversely affects latency or throughput of an 

interconnection network. Network scales being typically 
used for comparative evaluation of an interconnection 
network due to the said characteristic include network cost 
[4-10] defined as degree x diameter of an interconnection 
network. By virtue of its merit of easily providing a 
communication network system required in applications of 
all kinds. Hypercube is node-symmetric and edge-
symmetric, has a simple routing algorithm with maximal 
fault tolerance and a simple reflexive system, and also has a 
merit that it may be readily embedded with the proposed 
interconnection networks [11,12]. However, it involves 
weak points that network cost increases due to increase of 
degree with the increased number of nodes, and that a mean 
distance between diameter and node is not short as 
compared with degree.  

To improve such weak points, Reduced Hypercube[13] 
that reduced the number of edges of a hypercube 
interconnection network, Gaussian Hypercube[14], and 
Exchanged Hypercube[15] have been suggested, and in 
addition, Crossed Cube[5] that improved diameter of a 
hypercube interconnection network, Folded Hypercube[6], 
MRH[7], HFN[4], MRH[1] etc. have been proposed. Many 
interconnection networks that have been proposed until now 
demonstrated that they have superior network cost to 
hypercube by reducing just one network scale of degree or 
diameter of hypercube. Also, this paper demonstrates that 
network cost of MRH (n) is superior through comparative 
analysis of network cost between the hypercube-class 
interconnection networks and MRH (n).  

This paper is composed as follows: Section 2 Different 
types of Hypercube interconnection networks, Section 3 
analyzes the properties of interconnection networks, Section 
4 Results and discussions and finally, conclusion is given.  
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II. TYPES OF INTERCONNECTION 
NETWORKS 

We have different types of interconnection 
networks. Some of them are given below: 

a. Hypercube Network. 
b. Folded Hypercube Network. 
c. Multiply Twisted Hypercube Network. 
d. Recursive Circulant Hypercube Network. 
e. Multiple Reduced Hypercube Network. 

A. Hypercube Network: 
Hypercube system interconnection network contains 

four processors; a processor and a memory module are 
placed at each vertex of a square. The diameter of the 
system is the minimum number of steps it takes for one 
processor to send a message to the other processor that is the 
farthest away. So, for example, the diameter of a 2-cube is 1. 
In a hypercube system with eight processors and each 
processor and memory module being placed in the vertex of 
a cube, the diameter is 3. In general, a system that contains 
2^N processors with each processor directly connected to N 
other processors, the diameter of the system is N. One 
disadvantage of a hypercube system is that it must be 
configured in powers of two, so a machine must be built that 
could potentially have many more processors than is really 
needed for the application.  

Dimension –2: If one moves this line segment its length 
in a 

Construction and different types of Hypercube are 
shown in Figure 1 [1].  

Figure 1 shows below how to create a tesseract from a 
point. 

Dimension – 0: A point is a hypercube of dimension 
zero. 

Dimension –1: If one moves this point one unit length, 
it will sweep out a line segment, which is a unit hypercube 
of dimension one. 

perpendicular direction from itself; it sweeps out a 2-
dimensional square. 

Dimension – 3: If one moves the square one unit length 
in the direction perpendicular to the plane it lies on, it will 
generate a 3-dimensional cube. 

Dimension – 4: If one moves the cube one unit length 
into the fourth dimension, it generates a 4-dimensional unit 
hypercube (a unit tesseract). 

This can be generalized to any number of dimensions. 
This process of sweeping out volumes can be formalized 
mathematically as a Minkowski sum: the d-dimensional 
hypercube is the Minkowski sum of d mutually 
perpendicular unit-length line segments, and is therefore an 
example of a zonotope. The 1-skeleton of a hypercube is 
a hypercube graph. 

In H(n), for degree ‘n’ and if number of nodes is ‘n’, 
diameter ‘n’, and network cost will be ‘n2

B. Folded Hypercube Network: 

’. 

Folded Hypercube is an undirected graph formed from a 
hypercube graph by adding to it perfect matching edges that 
connects opposite pairs of hypercube vertices. The folded 
cube graph of order k (containing 2k − 1 vertices) may be 
formed by adding edges between opposite pairs of vertices 
in a hypercube graph of order k − 1. (In a hypercube with 2n

identifying

 
vertices, a pair of vertices are opposite if the shortest path 
between them has length n.) It can, equivalently, be formed 

from a hypercube graph (also) of order k, which has twice as 
many vertices, by  together (or contracting) every 
opposite pair of vertices. An order-k folded cube graph is k-
regular with 2k − 1 vertices and 2k − 2k edges. The chromatic 
number of the order-k folded cube graph is two when k is 
even (that is, in this case, the graph is bipartite) and four 
when k is odd. The odd girth of a folded cube of odd order is 
k, so for odd k greater than three the folded cube graphs 
provide a class of triangle-free graphs with chromatic 
number four and arbitrarily large odd girth. As a distance-
regular graph with odd girth k and diameter (k − 1)/2, the 
folded cubes of odd order are examples of generalized odd 
graphs [9]. When k is odd, the bipartite double cover of the 
order-k folded cube is the order-k cube from which it was 
formed.  

When k is even, the order-k cube is a 
Construction of Folded Hypercube is shown in Fig. 2. 

double cover but 
not the bipartite double cover. In this case, the folded cube 
is itself already bipartite. Folded cube graphs inherit from 
their hypercube sub-graphs the property of having 
a Hamiltonian cycle, and from the hypercubes that double 
cover them the property of being a distance-transitive graph. 
When k is odd, the order-k folded cube contains as a sub-
graph a complete binary tree with 2k

C. Multiply Twisted Cube Network: 

 − 1 nodes. However, 
when k is even, this is not possible, because in this case the 
folded cube is a bipartite graph with equal numbers of 
vertices on each side of the bipartition, very different from 
the nearly two-to-one ratio for the bipartition of a complete 
binary tree. 

An n -dimensional multiply-twisted hypercube Qn has 
the same structural complexity as n-dimensional hypercube 
Q. That is, it has the same number of nodes and links, and 
each node has the same degree n, as Qn

An n -dimensional multiply twisted cube has the same 
structural complexity as n -dimensional hypercube. That is 
they have the same number of nodes and links, and each 
node has the same degree n. However, previous 
investigations indicate that the multiply-twisted hypercube 
has some properties better than that of hypercube. The 
multiply-twisted hypercube is recursively defined, and it has 
a relative structure. It has observed that the diameter of Q is 
[n+1]/2 which is about half of the diameter n of the n-
dimensional hypercube Q. In addition, the average distance 
between nodes in Q is about 3/4 of the average distance 
between nodes in Q. In conjunction with the regularity, 
these properties can be used to design simple data 
communication algorithms for Q

. However, previous 
investigations indicate that due to some of its properties 
better than hypercube, the multiply-twisted hypercube is a 
good alternative for constructing multiprocessor systems. It 
is known that hypercube machines can simulate many 
multiprocessor systems based on other topologies such as 
trees, meshes, linear arrays and rings.  

n that are more efficient 
than those for conventional hypercube Q. It is known that 
the n-dimensional hypercube can be embedded onto the n-
dimensional hypercube, and vice-versa, with dilation and 
congestion. Also, many efficient hypercube algorithms can 
be directly modified to fit the twisted-hypercube without 
simulations by embedding so that undesirable overheads in 
such simulations can be avoided. It has been conjectured 
that the (2" -1)-node complete binary tree is a sub-graph of 
n -dimensional multiply-twisted hypercube (which has 2" 

http://en.wikipedia.org/wiki/Hypercube�
http://en.wikipedia.org/wiki/Perpendicular�
http://en.wikipedia.org/wiki/Tesseract�
http://en.wikipedia.org/wiki/Minkowski_sum�
http://en.wikipedia.org/wiki/Zonotope�
http://en.wikipedia.org/wiki/Skeleton_%28topology%29�
http://en.wikipedia.org/wiki/Hypercube_graph�
http://en.wikipedia.org/wiki/Undirected_graph�
http://en.wikipedia.org/wiki/Hypercube_graph�
http://en.wikipedia.org/wiki/Perfect_matching�
http://en.wikipedia.org/wiki/Vertex_identification�
http://en.wikipedia.org/wiki/Regular_graph�
http://en.wikipedia.org/wiki/Chromatic_number�
http://en.wikipedia.org/wiki/Chromatic_number�
http://en.wikipedia.org/wiki/Chromatic_number�
http://en.wikipedia.org/wiki/Bipartite_graph�
http://en.wikipedia.org/wiki/Odd_girth�
http://en.wikipedia.org/wiki/Triangle-free_graph�
http://en.wikipedia.org/wiki/Distance-regular_graph�
http://en.wikipedia.org/wiki/Distance-regular_graph�
http://en.wikipedia.org/wiki/Odd_graph�
http://en.wikipedia.org/wiki/Odd_graph�
http://en.wikipedia.org/wiki/Odd_graph�
http://en.wikipedia.org/wiki/Bipartite_double_cover�
http://en.wikipedia.org/wiki/Covering_graph�
http://en.wikipedia.org/wiki/Bipartite_graph�
http://en.wikipedia.org/wiki/Hamiltonian_cycle�
http://en.wikipedia.org/wiki/Distance-transitive_graph�
http://en.wikipedia.org/wiki/Complete_binary_tree�


K. Karthik et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue),21-25 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                 23 

nodes); but this is not true for the n dimensional hypercube. 
Since there is more and more evidence that multiply-twisted 
hypercube is a good alternative for the hypercube, it is 
important to further investigate the combinatorial structure 
and computational aspect of this architecture [1]. 

D. Recursive Circulant Hypercube Network: 
Recursive Circulant Hypercube Network considered in 

this paper is the recursive circulant graph G(N, d) proposed 
by Park and Chwa [19 ]\Definition: For two positive 
integers N and d, the recursive circulant graph G(N, d) has 
the vertex set V = {0, 1, . . .,N − 1}, and two vertices u and v 
are adjacent if and only if u−v =±di (mod N) for some 
0≤i≤[logd N]-1. The family of recursive circulant graphs is 
proposed as a network topology for multicomputer systems 
[17].  Recursive circulant graph G(N, d) is known to have a 
recursive structure for N = dm, m≥1 and N = cdm, 2 ≤ c < d, 
m≥ 0 [18]. induced by vertices {v | v ≡ j (mod d)}. Then, for 
very 0 ≤j < d, Gj (cdm , d) is isomorphic to G(cdm-1 , d), that 
is, G(cdm, d) contains d disjoint copies of  (cdm-1, d). 
Furthermore, the edges not contained in any Gj form a 
Hamiltonian cycle. We call the Hamiltonian cycle with the 
edges of the form {i, i + 1}, i = 0, 1, . cdm-1, the basic cycle.  

Hence, G(cdm, d) is constructed recursively from d 
copies of G(cdm-1, d) and the basic cycle. G(cd0, d), c≥3, and 
G(d, d) are isomorphic to the cycle of length c and d, 
respectively. For c = 2, G(2d0, d) is K2. Cycles in networks 
are useful in applications such as embedding linear arrays 
and rings. We call a graph G with n vertices pancyclic if G 
contains cycles of every length k, 3≤ k≤n. Since bipartite 
graphs have no odd cycles, a bipartite graph G is called 
bipancyclic if G has cycles of every even length. It is easy to 
see that n-dimensional hypercube is bipancyclic for n≥2. 
Pancyclic properties on cube-connected cycles, arrangement 
graphs and butterfly graphs have been investigated. It is 
known that G(2m, 4), a special case of recursive circulant 
graphs, is pancyclic [18]. We study in this paper the 
existence of cycles of given length in G(cdm, d), and prove a 
necessary and sufficient condition for G(cdm

E. Multiple Reduced Hypercube Network: 

, d) to be 
pancyclic or bipancyclic [19]. 

According to [1], the nodes of a Multiple Reduced 
Hypercube MRH(n) are expressed as n bit strings sn sn-

1...si...s2 s1 consisting of binary numbers {0,1} (1≤i≤n). The 
edges of MRH(n) are expressed in three forms according to 
connection method, they are called hypercube edge, 
exchange edge, and complement edge, respectively, and are 
indicated as h-edge, x-edge, and c-edge, respectively ([n / 
2]+1≤h≤n). Each edge is defined into when n is an even 
number and n is an odd number. 

Case 1: When n is an even number, it is assumed that 
for edge definition, sn sn-1 ...si+1  is α and a bit string si ...s2 
s1  is β in the bit string of a node U(=sn sn-1 ..si ...s2 s1). 
Therefore the bit string of a node U(=sn sn-1 ..si ...s2 s1

a. Hypercube edge : This edge indicates an edge linking 
two nodes U(=s

) can 
be simply expressed as αβ. Assuming that the nodes U and 
V are adjacent with each other, adjacent edges are as 
follows.  

n sn-1 ..si ...s2 s1) and V(=sn sn-1 
.......si+1 si ...s2 s1

b. Exchange edge : This edge indicates an edge linking 
two nodes U(=αβ ) and V(=βα) of MRH(n) if α≠β in 
the bit string of the nodes.  

) of MRH(n) (n/2≤j≤n).  

c. Complement edge : This edge indicates an edge 
linking two nodes U(=sn α'β') and V(=sn

Case 2: When n is an odd number. It is assumed that for 
edge definition, s

 α'β' ) of 
MRH(n) if α≠β in the bit string of the nodes.  

n-1...si+1 is α’ and a bit string si...s2 s1 is β’ 
in the bit string of a node U(=sn sn-1...si...s2 s1). Then the 
number of bit strings of α’ and β’ is eachn / 2. Therefore 
a node U can be indicated as U (=sn
a. Hypercube edge: This edge indicates an edge linking 

two nodes U (=snsn-1....sj...si+1si...s2s1) and V(=s

 α'β')  

n 
sn-1... sj ....si+1 si...s2 s1

b. Exchange edge: This edge indicates an edge linking 
two nodes U(=s

) of MRH(n) 

n α'β') and V(=sn

c. Complement edge: This edge indicates an edge linking 
two nodes U(=s

 β’α’) of MRH(n) in 
the bit string of a node. 

n α'β') and V(=sn

Node (edge) connectivity is the least number of nodes 
(edges) that are required to be eliminated to divide an 
interconnection network into two or more parts without 
common nodes. Even if k-1 or less nodes are eliminated 
from a given interconnection network, an interconnection 
network is linked, and once the interconnection network is 
separated when proper k nodes are eliminated, connectivity 
of the interconnection network is called k. An 
interconnection network having the same node connectivity 
and degree means that it has maximal fault tolerance [2]. It 
is known that node connectivity, edge connectivity, and 
degree of an interconnection network G are called k(G), 
λ(G), and d(G), respectively, and k(G)=λ(G)=d(G) [2]. This 
paper demonstrates that node connectivity and degree of 
MRH(n) are same in order to prove that MRH(n) has 
maximal fault tolerance, and based on the result, MRH(n) 
has maximal fault tolerance. 

 α'β') of MRH(n) if 
α'= β' in the bit string of a node. 

 
Figure 1. Construction and Different types of Hypercube 

 

Figure2. Different types Folded Hypercubes 

 

Figure3. Multiple Reduced Hypercube (MRH(n)) 
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III. ANALYSIS OF PROPERTIES OF 
INTERCONNECTION NETWORKS: 

Assuming that in MRH(n), a certain node of the initial 
node U(=unun-1....uj...ui+1ui...u2u1

IV. RESULTS AND DISCUSSIONS 

) is having the same node 
connectivity and degree [1]. It means that it has maximal 
fault tolerance [2]. It is known that node connectivity, edge 
connectivity, and degree of an interconnection network G 
are called k(G), λ(G), and d(G), respectively, and 
k(G)=λ(G)=d(G)[1]. In paper [1], it is considered that node 
connectivity and degree of MRH(n) are same in order to 
prove that MRH(n) has maximal fault tolerance, and based 
on the result of the theorem, it is proved that MRH(n) has 
maximal fault tolerance.  

Network cost is indicated by a multiple of diameter and 
degree. Diameter indicates a maximum distance of the 
shortest route linking two nodes. 

Table1. Hypercube variants vs Modified Hypercubes Interconnection 
Network Diameter and Network Costs 

Interconnection Network Node
s 

Degre
e 

Diameter Network 
Cost 

Hypercube Network (H(n)) 2 n n n n2 

Folded Hypercube (FH(n)) 2 n n [n/2] ≈n2/2 

Multiply Twisted Cube 
(MTC) 

2 n n [(n+1)/2] ≈n2/2 

Recursive Circulant (RC) 2 n n [3n/4] ≈3n2/4 
Multiple Reduced 

Hypercube (MRH(n)) 
2 n n [n/2+1] ≈n2/3 

 
MRH(n) gives best performance then other networks, 

which can be an effective reference to measure message 
passing as a lower limit of latency required to disseminate 
information in the whole interconnection network. 
 
 
 
 
Hypercube class network comparative gives better analy 
 
 
 
 
 
 
 
 
 

 
Figure 5. Hypercube Class Comparative for Node vs Network Cost 

In the above figures 4 & 5, it gives the analysis for 
network cots and network diameter interconnection network 
as a factor to determine the complexity of routing control 
logic, which is a reference to measure the cost of hardware 
used to implement an interconnection network and degree is 
the number of pins composing the processor when a parallel 
computer is designed with a Therefore network cost is the 
most critical factor to measure an interconnection network.  

MRH(n) based on the results of previous studies is 
suitable for implementation of a large scale system for 
parallel processing, it is proven to be superior to the 
previously proposed hypercube classes of Hypercube H(n), 
Folded Hypercube FH(n), Multiply twisted Cube, and 
Recursive Circulant class in terms of network cost as 
mentioned in above discussion  and Table 1. For analysis of 
network cost for an interconnection network, cases of the 
same number of nodes are compared. 

V. CONCLUSION 

In this paper, different types of interconnection 
networks such as Hypercube H(n), Folded Hypercube 
FH(n), Multiply twisted Cube, and Recursive Circulant are 
investigated and some of their properties are analyzed to 
summarize the differences in their network cost. It has been 
observed that MRH(n) is a more superior interconnection 
network than the other mentioned hypercube networks 
through comparative analysis of network cost if hypercube 
classes have the same number of nodes. MRH(n) is a more 
superior interconnection network through comparative 
analysis of network cost if hypercube classes have the same 
number of nodes. 
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