
Volume 5, No. 2, March 2014 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 5

ISSN No. 0976-5697

CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

A System for Personal Information Management using an Efficient Multidimensional
Fuzzy Search

A.Seenu
Department of Computer Science and Engineering

SVECW Bhimavaram, India
cnuaaluri@gmail.com

M.R.Narasinga Rao
Department of Computer Science and Engineering

K L University India
Ramanarasingarao@kluniversity

U.S.S.Padma Jyothi

Department of Computer Science and Engineering
SVECW Bhimavaram, India
padmajyothi64@gmail.com

Abstract: Users access a large amount data and store in personal information management systems, There is a need to retrieve disparate data in a
simple and efficient way using some search tools. IR-style ranking is supported by existing tools, but structure(path of a file) and
metadata(includes name,author,title,date) are considered as filtering conditions in this approach. Normal search is performed based on keyword
conditions but the multidimensional search allows search using structure and metadata. It integrates the three dimension score into unified score
where each score belongs to a dimension. In order to identify the relevant files which matches with the given query we make use of indexes and
algorithms. We can improve ranking accuracy by performing the experiments for our approach. By using query processing strategies , the fuzzy
search approach can be used in every day of our life.

Keywords: Multidimensional search, personal information management system, query processing

I. INTRODUCTION

The data which is to be stored in personal information
management systems is rapidly increasing, This explosion
of information needs a powerful search tools to access often
very disparate data in a simple and efficient manner. Such
tools should provide both high-quality scoring mechanisms
and efficient query processing capabilities.

Inorder to perform keyword search and locate personal
information stored in file there are numerous search tools
such as the commercial tools Google Desktop Search [1]
and Spotlight [19]. However, these tools usually support
textual part of the query for searching a file—similar to
what has been done in the Information Retrieval (IR)
community,but only consider structure (e.g., file path) and
metadata (e.g.,filetype, title, author) as filtering conditions.

Recently, the research community has turned its focus
on search over to Personal Information and Dataspaces
[10], [12], [14], which consist of different data collections.
However, in this search tools, these works focus on IR-style
keyword queries and use other system information only to
guide the keyword-based search.

Keyword only searches are often insufficient, as
illustrated by the following example: Consider a user stores
his personal information in the file system of a personal
computing device. In addition to the actual file content,
location information (e.g., directory structure) and a
metadata information (e.g., access time, date) are also
stored by the file system.

In such a scenario, the user might want to ask the
query:
[file type = *.pdf AND accesstime = 12/03/2014 AND
content = “Fuzzy search” AND structure =
/docs/find/search]

Current tools would answer this query by returning all
files of type *.pdf created on 12/03/2014 under the directory
/docs/find/search (as filtering conditions) that have content
similar to “Fuzzy search” (ranking expression), ranked
based on how close the content matches “Fuzzy search”
using some underlying text scoring mechanism. Because all
information except the content are used as filtering
conditions, files that are very relevant to the query, but
which do not satisfy these exact conditions would be
ignored. For example, *.txt docu-ments created on
12/03/2014 and files in the directory /arc/search/fuzzy
containing the terms “Fuzzy Search” would not be returned.

We argue that allowing flexible conditions on structure
and metadata can significantly increase the quality and
usefulness of search results in many search scenarios. For
instance, in Eg 1, the user might not remember the exact
creation date of the file but remembers that it was created
around 21/03/2014. Similarly, the user might be interested
in files of type *.pdf but might also want to consider
relevant files of different but related types (e.g., *.tex or
*.txt). Finally, the user might misremember the directory
path under which the file was stored. In this case, by using
the date, size, title and structure conditions not as filtering
conditions but as part of the ranking conditions of the
query.

The challenge is then to score answers by taking not
only textual components alone but together with flexibility
in the structural and metadata components of the query.
Efficient algorithms are need to identify the best query
results, without considering all the information in the file
system.

We propose a novel approach that allows users to
perform fuzzy searches across three different dimensions:
structure content, and metadata. Then for each dimension an
IDF based scoring is provided and a unified scoring

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 6 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

framework for multi-dimensional queries over personal
information file-systems. In this we present new data
structures and index construction optimizations to make
finding and scoring fuzzy matches efficient.

Our work could be extended to a variety of dataspace
applications and queries, and this paper focus on a file
search. we consider the granularity of the search results to
be a single file in the personal information system. Of
course, our techniques could be extended to a more flexible
query model where pieces of data within files could be
returned as results.

II. UNIFIED MULTI-DIMENSIONAL SCORING

In this section, we present our unified framework we
can assign the scores to the files for closely mapped query
condition of different query dimnesions. There are three
scoring dimensions: content defines the textual content of
the files, metadata defines the system information related to
the files, and structure defines the directory path to access
the file.

We represent files and their associated metadata and
structure information as XML documents. Metadata and
structure conditions in addition to keyword-based content
conditions are explained by using simplied version of
XQuery

Any file that is related to one or more of the query
conditions is correct answer for the query.Each file will be
assigned a score for each dimension on how close it
matches the corresponding query condition. Scores across
multiple dimensions are filtered into a single overall score
for ranking of answers.

Our scoring strategy is based on an IDF based
interpretation of scores. For each query condition, we rank
files based on the least relaxed form of the condition that
each file matches. Scoring along all dimensions is
uniformly IDF based which helps us to meaningfully
combine multiple single-dimensional scores into a unified
multi-dimensional score.

A. Scoring Content:
We use standard IR relaxation and scoring techniques

for content query conditions. Specifically, we adopt the
TF·IDF scoring formulas from Lucene [6], a state-of-the-art
keyword search tool. These formulas are as follows:

Figure:1

Where Q is the content query condition, f is the file
score given to a file, N is the total sum of files, N is the
number of files containing the term t, and NormLength(f) is
a normalizing factor that is a function of f ’s length. 2 Note
that relaxation is an integral part of the above formulas since
they score all files that contain a subset of the terms in the
query condition.

B. Score of Metadata:
We introduce a hierarchical relaxation approach for

each type of searchable metadata to support scoring. For
example, Figure 1 shows the relaxation levels for file types,
represented as a Direct Acyclic Graph3. Each leaf node of
graph represents a specific file type (e.g., pdf files). Each
internal node represents a more general file type that is the
union of the types of its children (e.g., Media is the union of
Video, Image, and Music) and thus is a relaxation of its
descendants. The set of files matching a node must be equal
to or sub-sum of files matching each of its children nodes.
This enable that the score of a file matching a more relaxed
form of a query condition is always less than or equal to the
score of a file matching a less than relaxed form (see
Equation 4 below).

For example, a file type query condition specifying a
file type “*.cpp” would match the nodes representing files
type “Code”, files type “Document”, etc. A query condition
on the creation date of a file would match different levels of
time granularity, e.g., month, week or day. The nodes on the
path from the deepest (most restrictive) node to the root of
the DAG then represent all of the relaxations that we can
score for that query condition. Similarly, each file matches
all nodes in the DAG that is equal to or subsum of the file’s
metadata value.

Finally, given a query Q represents a single metadata
condition M, the metadata score of a file f with respect to Q
is computed as:

Where N is the total sum of files, nM is the deepest

node that matches M , nf is the deepest DAG node that
matches f , commonAnc(x, y) returns the closest common
ancestor of nodes x and y in the relaxation hierarchy, and
nFiles(x) returns the number of files that match node x. The
score is normalized by log(N) so that a single perfect match
would have the highest possible score of 1.

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 7 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

C. Score of a Structure:
To organize their files most of users use a hierarchical

directory structure. When searching for a particular file, a
user may often remember only some components of the
containing directory path and approximate ordering than the
exact path itself. Thus, allowing for some approximation on
structure query conditions is required because it allows
users to leverage their partial memory to help the search
engine locate the required file.

Our structure scoring strategy extends initial work on
XML structural query relaxations [4], [5]. Specifically, the
node inversion relaxation introduced here is novel and
introduced to handle possible mis-ordering of pathname
components when specifying structure query conditions in
personal file systems. Assuming that structure query
conditions are given as non-cyclic paths (i.e., path queries),
these relaxations are:

Figure 2

Generalization of an Edge is used to relax a parent-
child relationship to an ancestor-descendant relationship.
For example, applying edge generalization to /c/d would
result in /c//d.

Path Extension is used to extend a path P such that all
files within the directory subtree rooted at P can be
considered as result. For example, applying path extension
to /c/d would result in /c/d//∗.

Inversion Node is used to permute nodes within a path
query P. To represent possible permutations, we introduce
the notion of node group as a path where the placement of
edges are fixed and (labeled) nodes may permute.
Permutations can be applied to any adjacent nodes or node
groups which have an exception for the root and *nodes. A
permutation combines adjacent nodes, or node groups, into
a single node group while preserving the relative order of
edges in P . For example, applying node inversion on c and
d from /c/d/e would result in /c/(d/e), allowing for both the
original query condition as well as /a/c/b. The (b/c) part of
the relaxed condition /c/(d/e) is called a node group.

Deletion Node is used to delete a node from a path.
Node deletion can be applied to any path query or node
group but cannot be used to drop the root node or the ∗
node.

To delete a node n1 in a path query P:
a. If n1 is a leaf node, n1 is deleted from P and P –

n1 is extended with //∗. This is to ensure

containment of the exact answers to P in the set
of answers to P’

b. If n is an internal node, n1 is dropped from P and
parent(n) and child(n) are connected in P with //.
For example, deleting node c from c/d/e results in
c/d//∗ because c/d//∗ is the most specific relaxed
path query containing a/b/c that does not contain c.
Similarly, deleting c from c/d/e//∗ results in
c//d//∗.To delete a node n1 that is within a node
group N in a path query P , the following steps are
required to ensure answer containment and
monotonicity of scores:

, and monotonicity of scores.

c. n1 and one of its adjacent edge in N are dropped
from N . Every edge within N becomes an
ancestor-descendant edge. If n1 is the only node
left in N , N is replaced by that node in P .

d. Within P the surrounding edges of N are replaced
by ancestor-descendant edges.

e. If N is a leaf node group, the result query is

extended with //∗.
For example, deleting node a in x/(c/d//e/f)/y results in

x//(f//g//h)//y because the extension set of x/(e/f//g/h)/y
contains 24 path queries, which include x/c/d//e/f/y and
x/d/e/f/c/y; after deleting node c, these two path queries be-
come x//d//e/f/y and x/d/e//f//y. Therefore, x// (d//e//f)//y is
the only most specific path query which contains the
complete extension set and does not contain c.

D. Score Aggregation:
We cumulate the above single-dimensional scores into

a filtered multi-dimensional score to provide a fused
ranking of files relevant to a multi-dimensional query. To
do this, we construct a query vector,

VQ having a value of 1 (exact match) for each
dimension and a file vector, VF, consisting of the single-
dimensional scores of file F with respect to query Q. (Scores
for the content dimension is normalized against the highest
score for that query condition to get values in the range [0,
1].) We then compute the projection of VF onto VQ

III. QUERY PROCESSING

 and the
length of the resulting vector is used as the cumulative score
of file F . In its current form, this is simply a linear
combination of the component scores with equal weighting.
The vector projection method, however, provides a
framework for future investigation of more complex
aggregations.

We adapt an existing algorithm called the Threshold
Algorithm [13] to make query processing. Threshold
Algorithm uses a threshold condition which avoids
evaluating the possible matches to a query, focusing on
identifying the k best answers. It takes several sorted lists as
a input , each containing the system’s objects such as files
(in our scenario) sorted in descending order according to
their relevance scores for a particular attribute as dimension
(in our scenario), and dynamically they can accesses sorted
lists until the threshold condition is met to find the k best
answers.

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 8 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Critically, TA relies on sorted and random accesses to
retrieve individual required attribute scores. Sorted accesses,
that is, accesses to the sorted lists mentioned above, which is
used to return the required files in descending order of their
scores for a particular dimension. Random accesses require
the sum of a score for a particular dimension for any given
file. Random accesses occur when Threshold Algorithm
chooses a file from a particular list corresponding to some
dimension, and then needs the scores for the file in all the
other dimensions to compute its united score. To use
Threshold Algorithm in our scenario, our indexing
structures and algorithms need to support the sorted and
random access for each of the three dimensions.

We will now present these indexing structures and
algorithms.

A. Evaluation of Content Scores:
As mentioned in Section 2.1, we use existing TF·IDF

methods to score the content dimension. By using Random
accesses we can find the term frequency in the entire file
system as well as in a particular file. we keep the file in a
sorted order according to their Term-Frequency scores,
normalized by file size, for that term. 4 We then use the
Threshold Algorithm recursively to return files in sorted
manner according to their content scores for queries that
having more than one term.

B. Evaluation of Metadata Scores:
Sorted access for a metadata condition is implemented

using the appropriate relaxation DirectAcyclicGraph index.
First, exact matches are identified by identifying the deepest
Direct Acyclic Graph node that matches the given metadata
condition (see Section 2.2). Once all exact matches have
been retrieved from N’s leaf descendants, approximate
matches are produced by traversing up the Direct Acyclic
Graph to consider more approximate matches. Each parent
contains a bigger range of values than its child nodes, which
ensures the matched nodes are returned in decreasing order
of metadata scores. For content dimension, we can use the
Threshold Algorithm recursively to return files in sorted
order for queries that contain multiple metadata conditions.

Random accesses for a metadata condition require
positioning in the appropriate Direct Acyclic Graph index
the closest common ancestor of the deepest node that
matches the condition and the deepest node that matches the
file’s metadata attribute (see Section 2.2). This is
implemented as an efficient Direct Acyclic Graph traversal
algorithm.

IV. EVALUATION OF STRUCTURE SCORES

The structure score of a file for a query condition
depends on how close the directory in which the file is
associated

To compute the structure score of a file f in a directory
d1 that matches the (exact or relaxed) structure condition P
of a given query, we have to determine all the directory
paths, including d1 that match P. We will then sum the
number of files contained in all the directories matching P
to compute the structure score of these files for the query
using Equation 6. The score computation step is
straightforward; the complexity resides in the directory
matching step. Node inversions complicate matching query
paths with different directories, as required possible

permutations have to be measured. Particular techniques
and their supporting index structures required to be
developed.

Figure: 3

We use a two-phase algorithm to identify all the
required directories that match a query path. First, we
identify a set of candidate directories using the observation
that for a directory d1 to match a query path P , it is
necessary for all the components in P to appear in d1. For
example, the directory/docs/proposals/final/Wayfinder is a
potential match for the query path
/docs/(Wayfinder//proposals) since the directory contains
all three components docs, Wayfinder, and proposals. We
implement an inverted index mapping components to
directories to support this step (see Figure 3).

In the second phase, we extract from the query path:
(1) The set of node groups representing possible
permutations of components, and (2) a sequence of logical
conditions representing the left to right parent-child or
ancestor-descendant relationship between each component-
component or component-node group pairs. For example,
we would extract the node group (Wayfinder//proposals)
and the sequence (/docs, docs/(Wayfinder//proposals)) from
the query path /docs/(Wayfinder//proposals). Then, to
compute whether a directory matches a query path, we
would first identify parts of the directory that match the
node groups. Finally, we would attempt to find an ordering
of components and node groups that would match the
generated sequence of conditions. If we can find such an
ordering, then the directory matches the query path;
otherwise, it does not.

Given the above index, suppose that we want to
compute whether the candidate directory /docs
/proposals/final/Wayfinder matches the query path /docs
/(Wayfinder//proposals). The index would tell us that /,
docs, Wayfinder, and proposals appear at positions 0, 1, 4,
and 2, respectively. We would then compute that the
components proposals and Wayfinder appearing at positions
4 and 2 represents a valid match for the node group
(Wayfinder//proposals) of the query path; we say that this
node group component spans positions 2-4 for the candidate
directory. We then compute that the ordering 0, 1, (2-4) of /,
docs, (Wayfinder//proposals) satisfies the left-to-right re-

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 9 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

lationships extracted for the query path and thus concludes
that the candidate directory is a valid match for the query
path. For a path query P with |P|components, our query
matching algorithm has worst-case I/O complexity linear in
the sum of sizes of the |P | inverted lists, and CPU time
complexity linear in the length of the smallest of the |P |
inverted lists. The worst-case space complexity does not
exceed the maximum length of directory pathnames. Details
of the algorithm and complexity analysis can be found in
[29].

Obviously, we also need to be able to efficiently find
the files residing in any given directory to support scoring.
The file system itself supports this functionality.

Given the above matching algorithm, we can then
support TA in the structure dimension by dynamically
building the DAG and populating its nodes with score
information. (Building a static structural index is not a
realistic option as this would entail enumerating all possible
query conditions (paths) and all of their relaxations, a
prohibitively expensive task.) A naive implementation of
sorted access could then be a Direct Acyclic Graph traversal
in decreasing order of structure scores. Similarly, random
access could be implemented as a Direct Acyclic Graph
traversal to locate the least relaxed query that a file
matches. However, complete expansion and scoring of the
Direct Acyclic Graph would be too expensive. Thus, in the
next section, we present optimizations to minimize the
expansion and scoring of the Direct Acyclic Graph.

V. OPTIMIZING QUERY PROCESSING IN THE
STRUCTURE DIMENSION

In this section, we present our dynamic indexes and
algorithms for efficient processing of query conditions in
the structure dimension. This dimension brings the
following challenges:

a. The Direct Acyclic Graphs representing relaxations of
structure conditions [4], [17] are query-dependent and
so have to be built at query processing time. However,
since these DAGs grow exponentially with query size,
i.e., the number of components in the query, efficient
index building and traversal techniques are critical
issues.

b. The Threshold Algorithm requires efficient sorted and
random access to the single-dimension scores (Section
3).
We propose the following techniques and algorithms to

address the above demands. We incrementally build the
query dependent Direct Acyclic Graph structures at query
time, only materializing those Direct Acyclic Graph nodes
necessary to reply a query (Section 4.1). To improve sorted
access efficiency, we propose techniques to skip the scoring
of unnecessary Direct Acyclic Graph nodes by taking
advantage of the containment property of the Direct Acyclic
Graph (Section 4.2). We improve random accesses using a
novel algorithm that efficiently locates and evaluates only
the parts of the Direct Acyclic Graph that match the file
requested by each random access (Section 4.3).

A. Incremental Identification of Relaxed Matches:
As mentioned in Section 2.3, we represent all possible

relaxations of a query condition and corresponding IDF
scores using a Direct Acyclic Graph structure. Scoring an
entire query relaxation Direct Acyclic Graph can be

expensive as they grow exponentially with the size of the
query condition. For example, there are 5, 21, 94, 427, and
1946 nodes in the respective com-

plete Direct Acyclic Graph for query conditions /a, /a/b,
/a/b/c, /a/b/c/d, /a/b/c/d/e. However, in many cases, enough
query matches will be found near the top of the DAG, and a
large portion of the Direct Acyclic Graph will not need to be
scored. Thus, we use a lazy evaluation approach to
incrementally build the DAG, expanding and scoring DAG
nodes to produce additional matches when needed in a
greedy fashion [29]. The partial evaluation should
nevertheless ensures that directories (and therefore files) are
returned in the order of their scores.

For a simple top-k evaluation on the structure
condition, our lazy Direct Acyclic Graph building algorithm
is applied and stops when k matches are identified. For
complex queries involving multiple dimensions, the
algorithm can be used.Random accesses are more
problematic as they may access any node in the DAG. The
Direct Acyclic Graph building algorithm can be used for
random access, but any random access may lead to the
materialization and scoring of a large part of the DAG.5

B. Improving Sorted Accesses:
Evaluating queries with structure conditions using the

lazy DAG building algorithm can lead to significant query
evaluation times as it is common for multi-dimensional top-
k processing to access very relaxed structure matches, to
compute the top-k answers.

Not every possible relaxation leads to the discovery of
new matches. For example, in Fig2, the query paths
/docs/Wayfinder/proposals, //docs/Wayfinder/proposals, and
//docs//Wayfinder/proposals have exactly the same scores of
1, which means that no additional files were retrieved after
relaxing /docs/Wayfinder/proposals to either
//docs/Wayfinder/proposals or //docs//Wayfinder/proposals
(Equation 6). By extension, if two DAG nodes share the
same score, then all the nodes in the paths between the two
DAG nodes must share the same score as well per the DAG
definition. This is formalized in Theorem 1

Theorem 1: Given the structural scoreidf function
defined in Eq 6, if a query path P’ is a relaxed version of
another query path P, and scoreidf (P’) = scoreidf (P) in the
structure DAG, any node P’’ on any path from P to P’has the
same structure score as scoreidf (P), andF(P’) = F(P’’

Proof: (Sketch) If score

) = F(P),
where F(P) is the set of files matching query path P.

idf (P’) = scoreidf (P), then by
definition NP’= NP (Equation 6). Because of the
containment condition, for any node P’’on any path from P
to P’, we have F(P’) or F(P’’

NP
) or F(P) and

’≥ NP’’ ≥ NP . Th u s, NP’= NP’’= NP and F(P’) =
F(P’’) = F(P), since otherwise there exists at least one file
which belongs to F(P’) (or F(P’’)) but does not belongs to
F(P) and NP’’= NP (or NP’’’=NP), contradicting our
assumption NP’= NP (and NP’’

Theorem 1 can be used to speed up sorted access
processing on the DAG by skipping the score evaluation of
DAG nodes that will not contribute to the answer, since the
score evaluation of DAG nodes can be expensive. We
propose Algorithm 1, DAG-Jump.

= NP).

It includes two steps: (a) starting at a node
corresponding to a query path P, the algorithm performs a
depth-first traversal and scoring of the DAG until it finds a

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 10 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

parentchild pair, P’ and child(P’), where scoreidf (child(P’))
< scoreidf (P); and (b) score each node P’’

at the same

Depth (distance from the root) as P’ if scoreidf (P’’)
=scoreidf (P), then traverse all paths from P’’ back toward the
root; on each path, it can reach a previously scored node P *,
where scoreidf (P*) = scoreidf (P); all nodes on all paths from
P’’to P* can be dropped since they have the same score as
P’’

An example execution of DAG Jump for our query
condition /docs/Wayfinder/proposals is given in Figure 4.
The two steps from Algorithm 1 are performed as follows:
(a) starting at the root with a score of 1, DAG Jump
performs a DFT and scores the DAG nodes until it finds a
node with a smaller score than 1 (//d//w//p); and (b)
DAGJump traverses each node at the same depth as //d//w/p

.

(the parent node of //d//w//p); for the four such nodes that
have a score 1, DAGJump marks as skippable all nodes that
are on their path to the root node.

Algorithm 1. DAG-JUMP(srcNode)
a. S ← getScore(srcNode)
b. currentNode ← srcNode
c. loop
d. targetDepth ← getDepth(currentNode)
e. childNode ← firstChild(currentNode)
f. If getScore(childNode) ≠ s or
g. hasNoChildNodes(childNode) then
h. exit loop
i. currentNode ← childNode
j. for each n getDepth(n) = targetDepth and

 getScore(n) = s do
 Evaluate bottom-up from n and identify ancestor
 node set S s.t. getScore(m)=s, ∀m€ S

k. for each m€ S do
l. for each n’

m. setScore(n
 on path p € getPaths(n,m) do

’

n. setSkippable(n
,s)

’

o. if notSkippable(m) then
)

p. setSkippable(m)

C. Improving Random Accesses:
Random accesses is required for top-k query processing

in DAG. Using sorted access to emulate random access

tends to be very inefficient as it is likely the top-k algorithm
will access a file that is in a directory that only matches a
very relaxed version of the structure condition.

While the DAG-Jump algorithm somewhat alleviates
this problem by reducing the number of nodes that need to
be scored, efficient random access remains a critical
problem for efficient top-k evaluations. We present the
RandomDAG algorithm to optimize random accesses over
our structure DAG. The key idea behind RandomDAG is to
skip to a node P in the DAG that is either a close ancestor of
the actual least relaxed node P’ that matches the random
access file’s parent (containing) directory d or P’ itself and
only materialize and score the sub-DAG rooted at P as
necessary to score P

The intuition is that we can identify P by comparing d
and the original query condition. In particular, we compute
the intersection between the query condition’s components
and d. P is then computed by dropping all components in the
query condition that is not in the intersection, replacing
parent-child with ancestor-descendant relationships as
necessary. The computed P is then guaranteed to be equal
to or an ancestor of P

’ .

’

Algorithm 2 Random-DAG (root, DAG, F)

. As DAG nodes are scored, the score
together with matching directories are cached to speed up
future random accesses.

a. P ← getDirPath(F)
b. if p € DAGCache then
c. return getScoreFromCache(DAGCache ,p)
d. droppedComponents ←

 extractComponents(root) -
extractComponents(p)

e. p’

f. for each component € droppedComponents do
←root

g. p’ ← nodeDeletion(p’

h. loop
,component)

i. n ← getNextNodeFromDAG(p’

 {getNextNodeFromDAG incrementally build
a

)

 sub-DAG rooted at p’

 node in decreasing order of score.}

and returns the next
DAG

j. fileMatches ← matchDirectory(getQuery(n))
k. dirPaths ← getDirpaths(fileMatches)
l. addToCache(DAGCache,dirPaths,getScore(n))
m. if p € dirPaths then
n. return getScore(n)
As an example, for our query condition

/docs/Wayfinder/proposals in Figure 2, if the top-k
algorithm wants to perform a random access to evaluate the
structure score of a file that is in the directory
/archive/proposals/Planetp, RandomDAG will first compute
the close ancestor to the node that matches
/archive/proposals/Planetp as the intersection between the
query condition and the file directory, i.e., //proposals, and
will jump to the sub-DAG rooted at this node. The file’s
directory does not match this query path, but does match its
child //proposals//* with a structure score of 0.197. This is
illustrated in Figure 5 which shows the parts of the DAG
from Figure 2 that would need to be accessed for a random
access to the score of a file that is in the directory
/archive/proposals/Planetp.

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 11 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

Figure: 5

VI. EXPERIMENTAL RESULTS

We now experimentally evaluate the potential for our
multidimensional fuzzy search approach to improve ranking
accuracy. We also report on search performance achievable
using our index structures, scoring algorithms, and also top-
k adaptation.

A. Experimental Setup:
a. Experimental environment: All experiments were

performed using a prototype system implemented in
Java. We use the Berkeley DB [18] to persistently
store all indexes and Lucene to rank content.
Experiments were run on a PC with a 64-bit hyper-
threaded 2.8 GHz Intel Xeon processor, 2 GB of
memory, and a 10K RPM 70 GB SCSI disk, running
the Linux 2.6.16 kernel and Sun’s Java 1.4.2 JVM.
Reported query processing times are cummalation of
40 runs, after 40 warm up runs to avoid measurement
JIT effects. All caches (except for any Berkeley DB
internal caches) are flushed at the beginning of each
run.

b. Data set: As noted in [12], there is a large amount
data sets and benchmarks to evaluate search over
personal information management systems. Then a
data set contains files and directories from the working
environment of one of the authors. This data set
contains 14.3 GB of data from 24,926 files organized
in 2,338 directories; 24% of the files are multi-media
files (e.g., music and pictures), 17% document files
(e.g., pdf, text, and MS Office), 14% email messages,7
and 12% source code files. The average depth of a
directory was 3.4 with the longest being 9. On average,
each directory contains 11.6 subdirectories and files.
The system extracted 347,448 unique content terms.
File modification dates span 10 years. 75% of the files
are smaller than 177 KB.

B. Impact of Flexible Multi-Dimensional Search:
To improve ranking accuracy using two example search

scenarios. In each scenario, we initially construct a content

only query intended to retrieve a specific target file and then
expand that particular query is extended to other
dimensions. For each query, we consider the status of the
aimed file by our approach together with whether the target
file would be ranked at all by today’s typical filtering
approaches on non-content query conditions. An example of
results in Table 1. In the first example, the target file is the
novel “Time Machine” by H.G.Well, located in the directory
path /Personal/Ebooks/Novels/, and the set of query content
terms in our initial content-only query Q1 contains the two
terms time and machine.

While the query is quite reasonable, the terms are
common enough that they appear in many files, leading to a
ranking of 18 for the target file.Q2 augments Q1 with the
exact matching values for file type, modification date, and
containing directory. This helps in ranking the target file to
1. The left-s over queries look at what happens when we
provide an incorrect value for the non-content dimensions.
For example, in query Q10, a group of correct but wrongly
ordered components in the directory name still brings the
ranking up to 1. In comparisons, if such directories were
given as filtered results, the target file would be considered
mismatch to the query and not ranked at all; queries which
contain a “*” next to our technique’s rank result represent
those in which the target file would not be considered as a
relevant answer given today’s typical filtering approach.

Results for the second example, which is a search for an
email, are similar. This study also presents an opportunity
for gauging the potential impact of the node inversion
relaxation. Specifically, queries Q23 and Q26 in the second
example misplaced the structure conditions as /Java/Mail
and /Java/Code, respectively, compared to the real
pathname personal/Mail/Code/Java. Node inversion allow
these conditions to be relaxed to //(Java//Mail) and
//(Java//Code), so that the target file is still ranked 1.
Without node inversion, these conditions cannot match the
target until they both are relaxed to //Java/*, the matching
relaxation with the highest IDF score, using node deletion.
This leads to ranks of 9 and 21 since files under other
directories such as /Backup/CodeSnippet/Java and
/workspace/BookExample/Java now have the same structure
scores as the target file.

In another example scenario not shown here, a user is
searching for the file wayfinder cons.ppt stored in the
directory /Personal/publications/wayfinder/presentations.
The query with content condition wayfinder, availability,
paper and structure condition
Personal/wayfinder/presentations would rank wayfinder
cons.ppt 1. Though, structure condition is misplaced as
/Personal/presentations/wayfinder or
presentations/Personal/wayfinder, the rank of the target file
would fall to 17 and 28, respectively, without node
inversion. With node inversion, the conditions are relaxed to
/Personal//(presentations/wayfinder) and /(presentations//
Personal/wayfinder), respectively, and the target file is still
ranked 1.

A.Seenu et al, International Journal of Advanced Research In Computer Science, 5 (2), March 2014 (Special Issue), 05-12

© 2010-14, IJARCS All Rights Reserved 12 CONFERENCE PAPER
Two day National Conference on Advanced Trends and Challenges

in Computer Science and Applications
Organized by: Shree Vishnu Engineering College for Women, Bhimavaram A.P.

Schedule: 18-19 March 2014

C. Storage Cost:
We report the cumulative size of our static indexes of

Section 3 to show that our approach is practical with respect
to both space (storage cost) and time (query processing
performance). In total, our indexes require 246 MB of
storage, which is less than 2% of the data set size (14.3GB).
This storage is dominated by the content index, which
accounts for almost 92% of the 246 MB. The indexes are so
compact compared to the data set because of the large sound
(music) and video (movie) files. As future data sets will be
increasingly media rich, we expect that our indexes will
continue to require a relatively insignificant amount of
storage.

VII. CONCLUSION

Multidimensional queries make use of the scoring
framework for personal information management systems.
Metadata and structure relaxations are defined and we
proposed structure,metadata and content query conditions
using a approach IDF based scoring . By using this unified
scores we can aggregate the scores easily. In order to
support efficient multidimensional queries we have designed
query processing optimizations, indexing structures and
construction.

The scoring framework and query processing
techniques are implemented and evaluated. By using this
evaluation the aggregation multidimensional score approach
preserves the properties of individual dimension scores and
ranking accuracy has been increased significantly. We can
make the multidimensional search efficient for daily usage
by making use of our indexes and optimizations, which
results in good query performance.

VIII. REFRENCES

[1]. Google desktop. http://desktop.google.com

[2]. Apple MAC OS X spotlight.
http://www.apple.com/macosx/features/spotlight.

[3]. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern
Relaxation. In Proc. of the Intl. Conference on Extending
Database Technology (EDBT), 2002.

[4]. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D.
Toman. Structure and Content Scoring for XML. In Proc. of
the Intl. Conference on Very Large Databases (VLDB),
2005.

[5]. S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.
FleXPath: Flexible Structure and Full-Text Querying for
XML. In Proc. of the ACM Intl. Conference on Management
of Data (SIGMOD), 2004.

[6]. Lucene. http://lucene.apache.org/.

[7]. R. A. Baeza-Yates and M. P. Consens. The continued saga of
DB-IR integration. In Proc. of the Intl. Conference on Very
Large Databases (VLDB), 2004.

[8]. C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and S.
Potti. A File System for Information Management. In Proc.
of the Intl. Conference on Intelligent Information
Management Systems (ISMM), 1994.

[9]. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig
Joins: Optimal XML Pattern Matching. In Proc. of the ACM
Intl. Conference on Management of Data (SIGMOD), 2002.

[10]. Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan.
Personal Information Management with SEMEX. In Proc. of
the ACM Intl. Conference on Management of Data
(SIGMOD), 2005.

[11]. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A.
Soffer. Searching XML Documents via XML Fragments. In
Proc. of the ACM Intl. Conference on Research and
Development in Information Retrieval (SIGIR), 2003.

[12]. J.-P. Dittrich and M. A. Vaz Salles. iDM: A Unified and
Versatile Data Model for Personal Dataspace Management.
In Proc. of the Intl. Conference on Very Large Databases
(VLDB), 2006.

[13]. R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. Journal of Computer and
System Sciences, 2003.

[14]. M. Franklin, A. Halevy, and D. Maier. From Databases to
Dataspaces: a New Abstraction for Information
Management. SIGMOD Record, 34(4), 2005.

[15]. C. Peery, W. Wang, A. Marian, and T. D. Nguyen. Multi-
Dimensional Search for Personal Information Management
Systems. In Proc. of the Intl. Conference on Extending
Database Technology(EDBT), 2008.

[16]. Sleepycat Software. Berkeley DB.
http://www.sleepycat.com/

[17]. S. Amer-Yahia, P. Case, T. R¨olleke, J. Shanmugasundaram,
and G. Weikum. Report on the DB/IR panel at SIGMOD
2005. SIGMOD Record, 34(4), 2005.

[18]. J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The
Perfect Search Engine is Not Enough: A Study of
Orienteering Behavior in Directed Search. In Proc. of the
Conference on Human Factors in Computing Systems
(SIGCHI), 2004.

[19]. M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G.
Weikum. TopX: Efficient and Versatile Top-k Query
Processing for Semistructured Data. VLDB Journal, 17(1),
2008.

	INTRODUCTION
	UNIFIED MULTI-DIMENSIONAL SCORING
	Scoring Content:
	Score of Metadata:
	Score of a Structure:
	Score Aggregation:

	QUERY PROCESSING
	Evaluation of Content Scores:
	Evaluation of Metadata Scores:

	EVALUATION OF STRUCTURE SCORES
	OPTIMIZING QUERY PROCESSING IN THE STRUCTURE DIMENSION
	Incremental Identification of Relaxed Matches:
	Improving Sorted Accesses:
	Improving Random Accesses:

	EXPERIMENTAL RESULTS
	Experimental Setup:
	Impact of Flexible Multi-Dimensional Search:
	Storage Cost:

	CONCLUSION
	REFRENCES

