
��������	�
����	�
�
����������

���������������������������
������������������ ��!�����"�������

�#"#�� $�%�%#��

�
����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 396

ISSN No. 0976-5697

IP MASQUERADING: A Network Address Translation Technique

Prashant P.J.
M.Tech. (CSE)

M.S.Ramaiah Institute of Technology
Bangalore, India

pras1011@yahoo.co.in

Chiranji Lal Chowdhary*
School of Information Technology and Engineering

VIT Universit
Vellore, India

chiranji.lal@vit.ac.in

Abstract: IP Masquerade, called "IPMASQ" or "MASQ" for short, is a form of Network Address Translation (NAT) which allows internally
connected computers that do not have one or more registered Internet IP addresses to communicate to the Internet via the server's Internet IP
address. Since IPMASQ is a generic technology, you can connect the server's internal and external to other computers through LAN
technologies like Ethernet, Token Ring, and FDDI, as well as dialup connections line PPP or SLIP links. In this paper/work we primarily used
Ethernet and PPP connections because it is most commonly used with DSL or Cable modems and dialup connections.

Keywords: Network Address Translation (NAT), Network Address Port Translation (NAPT), Simple Mail Transfer Protocol (SMTP), Internet
Service Provider (ISP), Point-to-Point Protocol (PPP), Digital Subscriber Line (DSL), Serial Line Internet Protocol (SLIP), Fiber Distributed
Data Interface (FDDI).

I. INTRODUCTION

Network Address Translation (NAT) was originally
developed as an interim solution to combat IPv4 address
depletion by allowing globally registered IP addresses to be
re user shared by several hosts. Although it can be used to
translate between any two address realms, NAT is most often
used to map IPs from the non routable private address spaces
shown below.

Table: I

These addresses were allocated for use by private

networks that either do not require external access or require
limited access to outside services. Enterprises can freely use
these addresses to avoid obtaining registered public
addresses. But, because private addresses can be used by
many, individually within their own realm, they are non
routable over a common infrastructure. When
communication between a privately addressed host and a
public network is needed, address translation is required.
This is where NAT comes in.

NAT routers sit on the border between private and
public networks, converting private addresses in each IP
packet into legally registered public ones. They also provide
transparent packet forwarding between addressing realms.
The packet sender and receiver should remain unaware that
NAT is taking place. Today, NAT is commonly supported by
WAN access routers and firewalls—devices situated at the
network edge.

NAT works by creating bindings between addresses. In
the simplest case, a one-to-one mapping may be defined
between public and private addresses. Known as static NAT,
this can be accomplished by a straightforward, stateless

implementation that transforms only the network part of the
address, leaving the host part intact. The payload of the
packet must also be considered during the translation
process. The IP checksum must, of course, be recalculated.
Because TCP checksums are computed from a pseudo-
header containing source and destination IP address
(prepended to the TCP payload), NAT must also regenerate
the TCP checksum.

Figure 1: Static NAT

More often, a pool of public IP addresses is shared by an
entire private IP subnet or dynamic NAT. Edge devices that
run dynamic NAT create bindings “on the fly,” building a
NAT Table. Connections initiated by private hosts are
assigned a public address from a pool. As long as the private
host has an outgoing connection, it can be reached by
incoming packets sent to this public address. After the
connection is terminated or a timeout is reached, the binding
expires, and the address is returned to the pool for reuse.
Dynamic NAT is more complex because state must be
maintained, and connections must be rejected when the pool
is exhausted. But, unlike static NAT, dynamic NAT enables

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 397

address reuse, reducing the demand for legally registered
public addresses.

A variation of dynamic NAT known as Network
Address Port Translation (NAPT) may be used to allow
many hosts to share a single IP address by multiplexing
streams differentiated by TCP/UDP port number. For
example, suppose private hosts 192.168.0.2 and 192.168.0.3
both send packets from source port 1108. A NAPT router
might translate these to a single public IP address
206.245.160.1 and two different source ports, say 61001 and
61002. Response traffic received for port 61001 is routed
back to 192.168.0.2:1108, while port 61002 traffic is routed
back to 192.168.0.3:1108.

Figure 2: Dynamic NAT

NAPT or IP masquerading is commonly implemented
on small Office/ Home Office routers to enable shared
Internet access for an entire LAN through a single public
address. Because NAPT maps individual ports, it is not
possible to “reverse map” incoming connections for other
ports unless another table is configured. A virtual server table
can make a server on a privately addressed DMZ reachable
from the Internet via the public address of the NAPT router
(one server per port). This is really a limited form of static
NAT, applied to incoming requests.

Figure 3: NAPT

In some cases, static NAT, dynamic NAT, NAPT, and
even bi directional NAT or NAPT may be used together. For
example, an enterprise may locate public Web servers
outside of the firewall, on a DMZ, while placing a mail
server and clients on the private inside network, behind a
NAT-ing firewall. Furthermore, suppose there are
applications within the private network that periodically
connect to the Internet for long periods of time.

In this case:
[a] Web servers can be reached from the Internet without

NAT, because they live in public address space.
[b] Simple Mail Transfer Protocol (SMTP) sent to the private

mail server from the Internet requires incoming
translation. Because this server must be continuously
accessible through a public address associated with its
Domain Name System (DNS) entry, the mail server
requires static mapping.

[c] For most clients, public address sharing is usually
practical through dynamically acquired addresses (either
dynamic NAT with a correctly sized address pool, or
NAPT).

[d] Applications that hold onto dynamically acquired
addresses for long periods could exhaust a dynamic NAT
address pool and block access by other clients. To
prevent this, long-running applications may use NAPT
because it enables higher concurrency (thousands of port
mappings per IP address).

A. Masquerading

To complete this dynamic NAT section one example for
masquerading as it is widely used these days. We have a
small office- or home-network consisting of two hosts and a
Linux-server. The Linux server possibly provides print- and
file services, and it also serves as a NAT-router to the
Internet for the other hosts. All internal IPs are translated
using the official IP given by the ISP, this IP is the Linux
router's IP on the network interface to the ISP.

Figure: 4

Linux masquerading is extremely popular and many
application specific modules have been written, that (among
other things) take care of translating IPs transmitted in the
data part of IP packets.

II. IP MASQUERADE NAT FUNCTIONS

Masquerade NAT is used to allow your private network
to hide behind, as well as be represented by, the address
bound to the public interface. In many situations, this is the
address that has been assigned by an Internet Service
Provider (ISP), and the address may be dynamic in the case
of a Point-to-Point Protocol (PPP) connection. This type of
translation can only be used for connections originating
within the private network destined for the outside public

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 398

network. Each outbound connection is maintained by using a
different source IP port number.

Masquerade NAT allows workstations with private IP
addresses to communicate with hosts on the Internet using
iSeries server. iSeries server has an IP address assigned by
the local ISP as its Internet gateway. The term locally
attached machine is used to refer to all machines on an
internal network regardless of the method of attachment
(LAN or WAN) and regardless of the distance of the
connection.

The term external machines is used to refer to machines
located on the In To the Internet, all of your workstations
appear to be contained within your iSeries server; that is,
only one IP address is associated with both your iSeries
server and your workstations. When a router receives a
packet intended for your workstation, it attempts to
determine what address on the internal LAN should receive
the packet and sends it there. Each workstation must be set
up so that iSeries server is its gateway and also its default
destination. The correspondence between a particular
communication connection (port) and a workstation is set up
when one of your workstations sends a packet to iSeries
server to be sent to the Internet. The masquerade NAT
function saves the port number so that when it receives
responses to your workstation's packet over that connection,
it can send the response to the correct workstation.

 The following figure illustrates how Masquerade NAT
works.

Figure: 5

A record of active port connections and the last access
time by either end of the connection is created and
maintained by masquerade NAT. These records are
periodically purged of all connections that are idle for a
predetermined amount of time based on the assumption that
an idle link is no longer in use.

All communication between your workstation and the
Internet must be initiated by locally attached machines. This
is an effective security firewall; the Internet knows nothing
of the existence of your workstations, and it cannot broadcast
those addresses to the Internet. A key to masquerade NAT
implementation is the use of logical ports, issued by
masquerade NAT to distinguish between the various
communication streams. TCP contains a source and a
destination port number. To these designations, NAT adds a
logical port number.

A. Outbound masquerade NAT processing

The outbound message in the figure above is a packet
from the private LAN to the Internet. An outbound message
(local to external) contains the source port used by the
originating workstation. NAT saves this number and replaces
it in the transport header with a unique logical port number.
For outbound datagrams, the source port number is the local
port number.
[a] Outbound masquerade NAT processing assumes that all

IP packets it receives are bound for external IP
addresses, and therefore does not check to determine
whether a packet should be routed locally.

[b] The set of logical port numbers searches for a match on
the transport layer as well as a source IP address and
source port. If found, the corresponding logical port
number is substituted for the source port. If no matching
port number is found, a new one is created, and a new
logical port number is selected and substituted for the
source port.

[c] The source IP address is translated.
[d] The packet is then processed as usual by IP and is sent to

the correct external system.

B. Inbound masquerade NAT processing (response &

other)

The inbound message in the figure above is a packet
from the Internet to your private LAN. For inbound data
grams, the destination port number is the local port number.
(For inbound messages, the source port number is the
external port number. For outbound messages, the
destination port number is the external port number.)
Response messages returning from the Internet bound for a
locally attached machine have a masquerade-assigned logical
port number as the destination port number in the transport
layer header. The masquerade NAT inbound processing steps
are:
[a] Masquerade NAT searches its database for this logical

port number (source port). If it is not found, the packet is
assumed to be an unsolicited packet, and the packet is
returned to the caller unchanged. It is then handled as a
normal unknown destination.

[b] If a matching logical port number is found, a further
check is made to determine that the source IP address
matches the destination IP address of the existing logical
port number table entry. If it matches, the original local
machine's port number replaces the source port in the IP
header. If the check fails, the packet is returned
unchanged.

[c] The local matching IP addresses are placed in the packet
IP destination.

[d] The packet is then processed, as usual by IP or TCP, and
ends up at the correct locally attached machine. Because
masquerade NAT requires a logical port number to
determine the correct source and destination port
addresses, masquerade NAT is incapable of handling
unsolicited datagrams from the Internet.
Another IP Masquerading Example
PPP/ETH/etc.
+------------+ +-------------+ to ISP provider
| Linux #1 | PPP/ETH/etc. | Anybox |
| | | |
<---------- modem1| |modem2 ----------- modem3| |
| | | |
111.222.121.212 | | 192.168.0.100 | |
+------------+ +-------------+

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 399

In the above drawing, a Linux box with
IP_MASQUERADING is installed as Linux #1 and is
connected to the Internet via PPP, Ethernet, etc. It has an
assigned public IP address of 111.222.121.212. It also has
another network interface (e.g. modem2) connected to allow
incoming network traffic be it from a PPP connection,
Ethernet connection, etc. The second system which does not
need to be Linux connects into the Linux #1 box and starts its
network traffic to the Internet. This second machine does
NOT have a publicly assigned IP address from the Internet,
say 192.168.0.100. With IP Masquerade and the routing
configured properly, this second machine "Any box" can
interact with the Internet as if it was directly connected to the
Internet with a few small exceptions.

"Do not forget to mention that the "ANYBOX" machine
should have the Linux #1 box configured as its default
gateway (whether it be the default route or just a subnet is no
matter). If the "ANYBOX" machine is connected via a PPP
or SLIP connection, the Linux #1 machine should be
configured to support proxy arp for all routed addresses.

I tell machine ANYBOX that my PPP or Ethernet
connected Linux box is its gateway.

When a packet comes into the Linux box from
ANYBOX, it will assign the packet to a new TCP/IP source
port number and insert its own IP address inside the packet
header, saving the originals. The MASQ server will then
send the modified packet over the PPP/ETH interface onto
the Internet.

When a packet returns from the Internet into the Linux
box, Linux examines if the port number is one of those ports
that was assigned above. If so, the MASQ server will then
take the original port and IP address, put them back in the
returned packet header, and send the packet to ANYBOX.

The host that sent the packet will never know the
difference.

IP Masquerade, called "IPMASQ" or "MASQ" for short,
is a form of Network Address Translation (NAT) which
allows internally connected computers that do not have one
or more registered Internet IP addresses to communicate to
the Internet via the server's Internet IP address. Since
IPMASQ is a generic technology, you can connect the
server's internal and external to other computers through
LAN technologies like Ethernet, Token Ring, and FDDI, as
well as dialup connections line PPP or SLIP links. This
project primarily uses Ethernet and PPP connections in
examples because it is most commonly used with DSL or
Cable modems and dialup connections.

IP Masquerade is a networking function in Linux similar
to the one-to-many (1: Many) NAT or Network Address
Translation servers found in many commercial firewalls and
network routers. For example, if the host is connected to the
Internet via PPP, Ethernet, etc., the IP Masquerade feature
allows other "internal" computers connected to this box (via
PPP, Ethernet, etc.) to also reach the Internet as well. IP
Masquerading allows for this functionality even though these
internal machines don't have an officially assigned IP
address. MASQ allows a set of machines to invisibly access
the Internet via the MASQ gateway. To other machines on
the Internet, the outgoing traffic will appear to be from the IP
MASQ server itself. In addition to the added functionality,
IP Masquerade provides the foundation to create a
HEAVILY secured networking environment. With a well
built firewall.

C. Current Status

IP Masquerade has been in the Linux kernels for several
years now and is quite mature as the kernel enters the 2.4.x
stage. Kernels since Linux 1.3.x have had MASQ support
built-in. Today, many individuals and commercial businesses
are using it with excellent results.

2.4.x kernel users: The 2.4.x kernel hosts which is both
far superior, faster, and more secure than any previous
versions written for Linux. Unfortunately, several kernel
modules that were written for the 2.2.x kernel to support
things like UDP-based RealAudio, etc. have not been ported
to 2.4.x yet. Because of this, some people should consider
NOT upgrading if these network applications are critical to
them. But, at the same time, some of these programs have
been updated and now use different, NAT-friendly protocols.
Thus special NAT treatment is no longer required. Common
network functionalities like Web browsing, telnet, ssh, ping,
traceroute, etc. work well over stock IP Masquerade setups.

Other network applications such as ftp, irc, and Real
Audio work well with the appropriate additional IP MASQ
modules loaded into the kernel as modules. Other network-
specific programs like streaming audio (MP3s, True Speech,
etc) should work too without any special module. Some users
on the mailing list also had good results with video
conferencing software.

It should be noted that running IP Masquerade with only
ONE network card to MASQ between internal and external
Ethernet networks is NOT recommended. IP Masquerade
works well as a server to other 'client machines' running
various operating systems and hardware platforms.

D. Who Can Benefit From IP Masquerade?

If you have a Linux host connected to the Internet and if
you have internal computers running TCP/IP connected that
are connected to this Linux box via on a network, and if your
Linux host has more than one modem and acts as a PPP or
SLIP server connected to other computers, and these
machines do not have official or public assigned IP addresses
(i.e. addressed with private TCP/IP numbers). If you want
those other machines to communicate to the Internet without
spending extra money to acquire additional Public or Official
TCP/IP addresses from your ISP, then you should either
configure Linux to be a router or purchase an external router.

E. Who Doesn't Need IP Masquerade?

If your machine is a stand-alone Linux host connected to
the Internet (setting up a firewall is a good idea though), or if
you already have multiple assigned public addresses for your
other machines, and if you don't like the idea of a 'free ride'
using Linux and feel more comfortable using expensive
commercial tools to perform the exact same functionalities.

III. SYSTEM SPECIFICATION

- What are the minimum hardware requirements?
A 486/66 box with 16MB of RAM was more than

sufficient to fill a 1.54Mb/s MASQ has also been known to
run quite well on 386SX-16s with 8MB of RAM. Yet, it
should be noted that IP Masquerade starts thrashing the
system with more than 500 MASQ entries.

The only application that I know which can temporarily
break IP Masquerade, is Game Spy. Why? When it refreshes
its lists, it creates 10,000s of quick connections in a VERY
short period of time. Until these sessions timeout, the MASQ
tables become "FULL". There is a hard limit of 4096
concurrent connections each for TCP & UDP. If you want to

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 400

change the limit - you need to change the
PORT_MASQ_BEGIN & PORT_MASQ_END values to get
an appropriately sized range above 32K and below 64K.

Software Requirements

The newest Linux kernel 2.6 are now using both a
completely new TCP/IP network stack as well as a new NAT
sub-system called Net Filter. Within this Net Filter suite of
tools, we now have a tool called IPTABLES for the Linux
kernel 2.6 much like there was IPCHAINS for the Linux and
IPFWADM for the Linux kernels. The new IPTABLES
system is far more powerful (combines several functions into
one place like true NAT functionality), offers better security
(state ful inspection), and better performance with the new
Linux TCP/IP stack. But this new suite of tools can be a bit
complicated in comparison to older generation Linux kernels
2.6.

Unlike the migration to IPCHAINS from IPFWADM,
the new Net Filter tool has Linux kernel modules that can
actually support, It basically means that if you want to use
IPMASQ or PORTFW functionality under a kernel 2.6, you
shouldn't use IPCHAINS rules but IPTABLES ones instead.
Please also keep in mind that there might be several benefits
in performing a full rule set re-write to take advantage of the
newer IPTABLES features like state ful tracking, etc. but
that is dependant upon how much time you have to migrate
your old rule sets.

Some new Linux kernel 2.6 functionalities include the
following:

PROs:
Lots of new protocols modules like: amanda, eggdrop,

ipsec, ipv6, portscan, pptp, quota, rsh, talk, and tftp.
TRUE 1:1 NAT functionality for those who have

TCP/IP addresses and subnets to use (no more iproute2
commands).

Stateful application level (FTP, IRC, etc.) and stateful
protocol level (TCP/UDP/ICMP) network traffic inspection.

This supports for both external and internal traffic. This
means that users that have PORTFW for external traffic and
REDIR for internal port redirection do not need to use two
tools any more.

PORT Forwarding of FTP traffic to internal hosts is now
completely supported and is handled in the conn_trak_ftp
module.

Full Policy-Based routing features (source-based TCP/IP
address routing).

Compatibility with Linux's Fast Route feature for
significantly faster packet forwarding (a.k.a Linux network
switching).

Fully supports TCP/IP v4, v6, and even DECnet (ack!)
Supports wildcard interface names like "ppp*" for serial

interfaces like ppp0, ppp1, etc
Supports filtering on both input and output

INTERFACES (not just IP addresses)
Source Ethernet MAC filtering
Other features like traffic mirroring, securing traffic per

login, etc.
Net filter is an entirely new architecture thus most of the

older 2.2 kernel modules written to make non-NAT friendly
network applications work through IPMASQ need to be re-
written for the 2.6 kernels. Because of this, if you specifically
need functionality from some of these modules , you should
stay with a 2.2 kernel until these modules have been either
ported or the application has been updated to use NAT-
friendly protocol.

IV. ADDRESS TRANSLATION TECHNIQUES

Speaking about NAT we must know that address
translation can be done statically or dynamically. In the first
case the assignment of NAT-IPs to original IPs is
unambiguous, in the latter case it is not. In static NAT a
certain fixed original IP is always translated to the same
NAT IP at all times, and no other IP gets translated to the
same NAT-IP, while in dynamic NAT the NAT IP depends
on various runtime conditions and may be a completely
different one for each single connection.

In the following sections m,n are defined as follows:
m: number of IPs that need to be translated (original IPs)
n: number of IPs available for translation (NAT IPs)

A. Static Network Address Translation

m:n-Translation, m,n>=1 and m=n (m,n in N)
With static address translation we can translate between

IP networks that have the same size (contain the same
number of IPs). A special case is when both networks
contain just one IP, i.e. the netmask is 255.255.255.255. This
NAT strategy is easy to implement, since the entire
translation process can be written as one line containing a
few simple logic transformations:

new-address = new-network OR (old-address AND
(NOT netmask))

In addition, no information about the state of
connections that are being translated needs to be kept,
looking at each IP packet individually is sufficient.
Connections from outside the network to inside hosts are no
problem, they just appear to have a different IP than on the
inside, so static NAT is (almost) completely transparent.

Example:
NAT rule: translate all IPs in network 138.201.148 to

IPs in network 94.64.15, netmask is 255.255.255.0 for both
now 138.201.148.27 is translated to 94.64.15.27, and so

on

Figure : 6

B. Dynamic Address Translation

m:n-Translation, m>=1 and m>=n (m,n in N)
Dynamic address translation is necessary when the

number of IPs to translate does not equal the number of IPs
to translate to, or they are equal but for some reason it is not
desirable to have a static mapping. The number of hosts
communicating is generally limited by the number of NAT
IPs available. When all NAT IPs are being used then no other
connections can be translated and must therefore be rejected
by the NAT router, for example by sending back 'host
unreachable'. Dynamic NAT is more complex than static
NAT, since we must keep track of communicating hosts and
possibly even of connections which requires looking at TCP
information in packets.

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 401

As mentioned above, dynamic NAT may also be useful
when there are enough NAT IPs, i.e. when m=n. Some
people use this as a security measure: it is impossible for
someone outside a network to get useful IP numbers to
connect to of hosts behind a NAT router doing dynamic
address translation by looking at connections that take place,
since next time the same host may connect using a
completely different IP. In this special case even having
more NAT IPs than IPs to be translated (m<n) may make
some sense.

Connections from outside are only possible when the
host that shall be reached still has a NAT-IP assigned, i.e. if
it still has an entry in the dynamic NAT table, where the
NAT router keeps track of which internal IP is mapped to
which NAT IP. For instance, non-passive FTP sessions,
where the server attempts to establish the data-channel, are
no problem, since when the server sends its packets to the
FTP-client there is already an entry for the client in the NAT-
table, and it is extremely likely it still contains the same
client-IP to NAT-IP mapping that were there when the client
started the FTP-control channel, unless the FTP session has
been idle for longer than the timeout of the entry. However,
if an outsider wants to establish a connection to a certain host
on the inside at an arbitrary time there are two possibilities:
the inside host does not have an entry in the NAT-table and
is therefore unreachable, or it has an entry, but which NAT-
IP must be used is unknown, except, of course, the IP to
connect to is known because the internal host is
communicating with the outside. In the latter case, however,
only the NAT-IP is known but not the internal IP of the host,
and this knowledge is valid only while the communication of
the internal host takes place plus the timeout of the entry in
the NAT routers table.
Example:

NAT rule: dynamically translate all IPs in (class B)
network 138.201 to IPs in (class C) network 178.201.112

each new connection from the inside gets assigned an IP
from the pool of class C addresses, as long as there are
unused addresses left

if a mapping already exists for the internal host this one
is used instead

as long as the mapping exists the internal host can be
reached via the IP that has been (temporarily) assigned to it

Figure: 7

C. Masquerading (NAPT)

m:n-Translation, m>=1 and n=1 (m,n in N)
A very special case of dynamic NAT is m:1-translation,

a.k.a. masquerading which became famous under that name

because Linux can do it. It is probably the kind of NAT-
technique that is used most often these days. Here many IP
numbers are hidden behind a single one. In contrast to the
original dynamic NAT this does not mean there can be only
one connection at a time. In masquerading an almost
arbitrary number of connections is multiplexed using TCP
port information. The number of simultaneous connections is
limited only by the number of TCP-ports available.

A special problem of masquerading is that some services
on certain hosts only accept connections coming from
privileged ports in order to ensure that it does not come from
an ordinary user. The assumption that only the super user can
access those ports is not valid, since on DOS or Windows
machines everybody can use them, nether the less, some
programs rely on this and cannot be used over a masqueraded
connection. The Linux implementation uses no privileged
ports for masquerading to avoid interfering with 'regular'
connections to these ports. Masquerading usually uses ports
in the upper range, in Linux this range starts at port 2000 and
ends at 2000+4096, This also shows that the Linux
implementation by default only allows 4096 concurrent
connections. To allow masqueraded connections on ports
outside of such a port range requires keeping and managing
even more information about the state of connections. Linux,
for example, simply treats all packets with destination IP =
local IP and destination port is inside the range used for
masquerading , as packets that have to be demasqueraded,
i.e. they are answers to packets that have been masqueraded
on their way out.

Incoming connections are impossible with
masquerading, since even when a host has an entry in the
masquerading table of the NAT device this entry is only
valid for the connection being active. Even ICMP-replies that
belong to connections (host/port unreachable) do not get
through to the sender automatically but must be filtered and
relayed by the NAT-routers software. While it is true that
incoming connections are impossible we can take additional
measures to enable them, but they are not part of the
masquerading code. We could, for an example, set up the
NAT-device so that it relays all connections coming in from
the outside to the telnet-port to a host on the inside. However,
since we have just one IP that is visible outside for enabling
incoming connections for the same service but for different
hosts on the inside we must listen on different ports on the
NAT-device, one for each service and internal IP. Since most
applications listen on well-known ports that cannot be easily
(and transparently!) changed, this is quite inconvenient and
often no option, especially not for public services. The only
solution is to have as many (external) IPs as the number of
services that shall be provided. An external IP can still be
shared by different services, and then be remapped to
different internal IPs using NAT, but that is not part of
masquerading.
Example:

NAT rule: masquerade the internal network 138.201
using the NAT routers own address

for each outgoing packet the source IP is replaced by the
routers (external) IP, and the source port is exchanged
against an unused port from the range reserved exclusively
for masquerading on the router

if the destination IP of an incoming packet is the local
router IP and the destination port is inside the range of ports
used for masquerading on the router, the NAT router checks
its masquerading table if the packet belongs to a
masqueraded session; if this is the case, the destination IP

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 402

and port of the internal host is inserted and the packet is sent
to the internal host.

Figure: 8

The greatest advantage of masquerading for many
people is that they only need one official IP-address but the
entire internal network can still directly access the Internet.
This is so important because IP addresses have become quite
expensive. As long as there are application level gateways
we do not need any IPs or any kind of NAT and one IP is
still enough, but for some protocols, e.g. all UDP based
services, there is just no gateway so direct IP connectivity is
necessary.

At the time of this writing there existed an Internet Draft
(which I should not reference here, since it is just a draft)
from the same people who wrote RFC 1631 (NAT). It
explains masquerading, that they call Network Address Port
Translation (NAPT), in great depth. There is no IETF-paper
(none that I could find, at least) on more recent forms of
NAT like the ones introduced in the following chapters,
although there are (commercial) implementations of them. It
seems like for the IETF NAT only exists for helping to solve
the classical Internet address space shortage problems
described above.

D. How does IP Masquerade differ from Proxy and NAT

PROXY:
Proxy servers are available for: Win95, NT, Linux,

Solaris, etc.
All applications behind the proxy server must both

SUPPORT proxy services (SOCKS) and be CONFIGURED
to use the Proxy server - Screws up WWW counters and
WWW statistics A proxy server uses only 1 public IP
address, like IP MASQ, and acts as a translator to clients on
the private LAN (WWW browser, etc.).

This proxy server receives requests like TELNET, FTP,
WWW, etc. from the private network on one interface. It
would then in turn, initiate these requests as if someone on
the local box was making the requests. Once the remote
Internet server sends back the requested information, it
would re-translate the TCP/IP addresses back to the internal
MASQ client and send traffic to the internal requesting host.
This is why it is called a PROXY server.

Note: ANY applications that you might want to use on
the internal machines *MUST* have proxy server support
like Netscape and some of the better TELNET and FTP
clients. Any clients that don't support proxy servers won't
work. Another nice thing about proxy servers is that some of
them can also do caching (Squid for WWW). So, imagine
that you have 50 proxied hosts all loading Netscape at once.
If they were installed with the default homepage URL, you

would have 50 copies of the same Netscape WWW page
coming over the WAN link for each respective computer.
With a caching proxy server, only one copy would be
downloaded by the proxy server and then the proxied
machines would get the WWW page from the cache. Not
only does this save bandwidth on the Internet connection, it
will be MUCH MUCH faster for the internal proxied
machines.

E. IP MASQUERADING :

IP Masq is available on Linux and a few ISDN routers
such or as the Zytel Prestige128, Cisco 770, NetGear ISDN
routers , etc.

Functions :
Only 1 IP address needed.
 Doesn't require special application support.
 Uses firewall software so your network can become

more secure.

Incoming traffic cannot access your internal LAN unless

the internal LAN initiates the traffic or specific port
forwarding software is installed. Many NAT servers
CANNOT provide this functionality.

Special protocols need to be uniquely handled by
firewall redirectors, etc. Linux has full support for this (FTP,
IRC, etc.) capability but many routers do NOT (Net Gear
DOES). Masq or 1: Many NAT is similar to a proxy server in
the sense that the server will perform IP address translation
and fake out the remote server (WWW for example) as if the
MASQ server made the request instead of an internal
machine.

The major difference between a MASQ and PROXY
server is that MASQ servers don't need any configuration
changes to all the client machines. Just configure them to use
the linux box as their default gateway and everything will
work fine. You WILL need to install special Linux modules
for things like RealAudio, FTP, etc. to work) Also, many
users operate IP MASQ for TELNET, FTP, etc. and also
setup a caching proxy on the same Linux box for WWW
traffic for the additional performance.

F. NAT:

NAT servers are available on Windows 95/NT, Linux,
Solaris, and some of the better ISDN routers.

Very configurable and No special application software
needed ,Requires a subnet from your ISP Network Address
Translation is the name for a box that would have a pool of
valid IP addresses on the Internet interface which it can use.
Whenever the Internal network wanted to go to the Internet,
it associates an available VALID IP address from the Internet
interface to the original requesting PRIVATE IP address.
After that, all traffic is re-written from the NAT public IP
address to the NAT private address. Once the associated
PUBLIC NAT address becomes idle for some pre-
determined amount of time, the PUBLIC IP address is
returned back into the public NAT pool. The major problem
with NAT is, once all of the free public IP addresses are
used, any additional private users requesting Internet service
are out of luck until a public NAT address becomes free.

V. DESIGN

IP Masquerading multiple internal networks

Masquerading more than one internal network is fairly
simple. You need to first make sure that all of your networks
are running correctly (both internal and external). You then

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 403

need to enable traffic to pass to both the other internal
interfaces and to be MASQed to the Internet. Next, you need
to enable Masquerading on the INTERNAL interfaces. This
example uses a total of THREE interfaces: EXTIF stands for
the eth0 interface which is the EXTERNAL connection to
the Internet. INTIF stands for the eth1 interface and is the
192.168.0.0 network. Finally, INTIF2 stands for the eth2
interface and is the 192.168.1.0 network. Both INTIF and
INTIF2 will be MASQed out of interface eth0 or EXTIF. In
your rc.firewall-* ruleset next to the existing MASQ at the
very end of the ruleset, add

The following:

A. iptables support for multiple internal lans

l
2.6.x and 2.4.x kernels with IPTABLES

The following rules build upon the rc.firewall-iptables-

stronger ruleset.
Please see that ruleset in Section 6 for how all

variables get set, etc.
#Enable internal interfaces to communication between

each other

$IPTABLES -A FORWARD -i $EXTIF -o $INTIF2 -m

state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -A FORWARD -i $INTIF -o $INTIF2 -m

state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -A FORWARD -i $INTIF2 -o $INTIF -m

state --state ESTABLISHED,RELATED \
-j ACCEPT
$IPTABLES -t nat -A POSTROUTING -o $EXTIF -j

SNAT --to $EXTIP

B. ipchains support for multiple internal lans

2.2.x kernels with IPCHAINS

The following rules build upon the rc.firewall-

ipchains-stronger ruleset.
Please see that ruleset in Section 6 for how all

variables get set, etc.
#Enable internal interfaces to communication between

each other
$IPCHAINS -A forward -i eth1 -d 192.168.0.0/24 -j

ACCEPT
$IPCHAINS -A forward -i eth2 -d 192.168.1.0/24 -j

ACCEPT
#Enable internal interfaces to MASQ out to the Internet
$IPCHAINS -A forward -j MASQ -i eth0 -s

192.168.0.0/24 -d 0.0.0.0/0
$IPCHAINS -A forward -j MASQ -i eth0 -s

192.168.1.0/24 -d 0.0.0.0/0

C. Port Forwarding with IPMASQ

The programs offer generic TCP and/or UDP port
forwarding for IP Masquerade. This project is typically used
with or as a replacement for specific IP MASQ modules to
get a specific network traffic through the MASQ server.

With port forwarders, you can redirect data connections
from the Internet to an internal, privately addressed machine
behind your IP MASQ server. This forwarding ability
includes network protocols such as TELNET, WWW, and
SMTP. Protocols such as FTP, legacy ICQ.

internal machines typically CANNOT use the same
"external" PORTFWed IP address to access a given internal"
machine. To put it another way, PORTFW was only intended
to be used with "external" computers on the Internet. If this is
an issue

for you, you can also use the REDIR tool for older 2.2.x
and 2.0.x kernels to let internal machines get redirected to the
internal servers too.

The forwarding of non-NAT friendly traffic such as FTP
server traffic to an internal MASQed FTP server, known as

PORTFW FTP,
"Port Forwarding is only called within masquerading

functions so it fits inside the same IPFWADM/IPCHAINS
rules. Masquerading is an extension to IP forwarding.
Therefore, ipportfw only sees a packet if it fits both the input
and masquerading ipfwadm rule sets."

What that means in English is that if you have a strong
packet firewall running, PORTFW doesn't directly bypass
any of that security.

l 2.0.x users will need to apply a simple kernel option
patch to have access to then enable this via the normal kernel
"make"

procedures.

D. IPMASQADM-based PORTFWD'ing

First, make sure you have the newest 2.2.x kernel
uncompressed into /usr/src/kernel/linux. If you haven't
already done this,

Next, you'll need to compile the 2.2.x kernel as shown in
Section 3.2.2 section. Be sure to say "YES" to the
IPPORTFW option when

you configure the kernel. Once the kernel compile is
complete and you have rebooted, return to this section.

Now, compile and install the IPMASQADM tool:
cd /usr/src
tar xzvf ipmasqadm-x.tgz
cd ipmasqadm-x
make
make install
Now, for this example, we are going to allow ALL

WWW Internet traffic (port 80) hitting your Internet TCP/IP
address to be

forwarded to the internal Masqueraded machine at IP
address 192.168.0.10.

PORTFW FTP: As mentioned above, there are two
solutions for forwarding FTP server traffic to an internal
MASQed PC. The first

solution *IS* a BETA level IP_MASQ_FTP module for
2.2.x kernels to PORT Forward FTP connections to an
internal MASQed

FTP server. It should also be noted that the FTP kernel
module also supports the adding of additional PORTFW

FTP ports on the fly without the requirement of unloading
and reloading the

IP_MASQ_FTP module and thus breaking any existing
FTP transfers. There are also examples and some additional
information about PORTFWed FTP

connection below in the 2.0.x. kernel section.
NOTE: Once you enable a port forwarder on port 80,

that port can no longer be used by the Linux IP Masquerade
server. To be

more specific, if you have a WWW server already
running on the MASQ server, a port forward will now give
all Internet users the

WWW pages from the -INTERNAL- WWW server and
not the pages on your IP MASQ server.

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 404

Anyway, to enable port forwarding for HTTPd:
l Edit the /etc/rc.d/rc.firewall-* ruleset and ENABLE the

"Optional" "HTTP" sections in both the INPUT and
OUTPUT

subsections.
l Add the following lines shown below JUST BELOW

the "ipchains -P forward DENY" rule (in the "Optional
FORWARD section"). Be sure to replace the "$EXTIP"

variable's contents with your EXTERNAL Internet IP
address on the

IPMASQ server.
NOTE #2: If you get a dynamically assigned TCP/IP

address from your ISP (PPP, DSL, Cable modems, etc.), you
CANNOT load

this strong ruleset upon booting. You will either need to
reload this firewall ruleset EVERY TIME you get a new IP
address or make

your /etc/rc.d/rc.firewall-ipchains-stronger ruleset more
intelligent. To do this for various types of connections such
as PPP or DHCP

users,
/etc/rc.d/rc.firewall-*
http://www.ecst.csuchico.edu/~dranch/LINUX/ipmasq/

m-html/ipmasq-HOWTO-m.html (119 of 179)11/16/2005
5:51:53 PM

Linux IP Masquerade HOWTO
#echo "Enabling IPPORTFW Redirection on the

external LAN.."

This will forward ALL port 80 traffic from the

external IP address
to port 80 on the 192.168.0.10 machine

PORTFWIP="192.168.0.10"
/usr/sbin/ipmasqadm portfw -f
/usr/sbin/ipmasqadm portfw -a -P tcp -L $EXTIP 80 -R

$PORTFWIP 80
That's it! Just re-run your /etc/rc.d/rc.firewall-* ruleset

and test it out!
If you get the error message "ipchains: setsockopt failed:

Protocol not available", you AREN'T running your new
IPPORTFW

enabled kernel. Make sure that you moved the new
kernel over, re-run LILO, and then reboot again. If you are
sure you are running

your new kernel, run the command "ls
/proc/net/ip_masq" and make sure the "portfw" file exists. If
it doesn't, you must have made

an error when configuring your kernel. Try again.
PORTFW Redirection of Internal requests:
It should be mention that this IPMASQ HOWTO

currently does *NOT* provide any explination or examples
on how to use the

REDIR tool. If you need help setting it up for 2.2.x
kernels, send me an email. For those who want to understand
why PORTFW

cannot redirect traffic for both external and internal
interfaces (what the REDIR tool fixes), here is an email from
Juanjo that better

explains it.
From Juanjo Ciarlante
--
>If I use:
>
> ipmasqadm portfw -a -P tcp -L 1.2.3.4 80 -R

192.168.2.3 80

>
>Everything works great from the outside but internal

requests for the same
>1.2.3.4 address fail. Are there chains that will allow a

machine on
localnet
>192.168.2.0 to accesss www.periapt.com without using

a proxy?
Actually not.
I usually setup a ipmasqadm rule for outside, *AND* a

port
redirector for inside. This works because ipmasqadm

hooks before
redir will get the eventual outside connection, _but_

leaves things
ok if not (stated by APPROPIATE rules).
The actual "conceptual" problem comes from the TRUE

client (peer) IP
goal (thanks to masq) being in the same net as target

server.
The failing scenario for "local masq" is :
client: 192.168.2.100
masq: 192.168.2.1
serv: 192.168.2.10
1)client->server packet
http://www.ecst.csuchico.edu/~dranch/LINUX/ipmasq/

m-html/ipmasq-HOWTO-m.html (120 of 179)11/16/2005
5:51:53 PM

Linux IP Masquerade HOWTO
a) client: 192.168.2.100:1025 -> 192.168.2.1:80 [SYN]
b) (masq): 192.168.2.100:1025 -> 192.168.2.10:80

[SYN]
(and keep 192.168.2.1:61000 192.168.2.100:1025

related)
c) serv: gets masqed packet (1b)
2)server->client packet
a) serv: 192.168.2.10:80 -> 192.168.2.100:1025

[SYN,ACK]
b) client: 192.168.2.100:1025 -> 192.168.2.10:80 [RST]
Now take a moment to compare (1a) with (2a).
You see, the server replied DIRECTLY to client

bypassing masq (not
letting masq to UNDO the packet hacking) because it is

in SAME net, so
the client resets the connection.
hope I helped.
Warm regards
Juanjo

VI. TESTING IP MASQUERADE

Finally, it's time to give IP Masquerading an official try
after all this hard work. If you haven't already rebooted your
Linux box, do so to make sure the machines boots ok,
executes the /etc/rc.d/rc.firewall-* ruleset, etc. Next, make
sure that both the internal LAN connection and connection of
your Linux hosts to the Internet is okay.
Testing internal MASQ client PC connectivity
Step one : Testing internal MASQ client PC connectivity
From an internal MASQed computer, try pinging its local IP
address (i.e. ping 192.168.0.10). This will verify that TCP/IP
is correctly working on the local machine. Almost ALL
modern operating systems have built-in support for the
"ping" command. If this ping doesn't work, make sure that
TCP/IP is correctly configured on the MASQed PC .the

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 405

output should look something like the following (hit Control-
C to abort the ping):

masq- client# ping 192.168.0.10
PING 192.168.0.10 (192.168.0.10): 56 data bytes
64 bytes from 192.168.0.10: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 192.168.0.10: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 192.168.0.10: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 192.168.0.10 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms
Testing internal MASQ client to MASQ server

connectivity
Step Two: Testing internal MASQ client to MASQ

server connectivity

Next, from the same internal MASQed computer, try

pinging the the IP address of the Linux MASQ server's
INTERNAL interface (i.e. ping 192.168.0.1). This will
verify that TCP/IP is correctly working on both the local and
Linux MASQ machine. Almost ALL modern operating
systems have built-in support for the "ping" command. If this
ping doesn't work, make sure that TCP/IP is correctly
configured on the MASQed Server. The output should look
something like the following (hit Control-C to abort the
ping):masq-client# ping 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 data bytes
64 bytes from 192.168.0.1: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 192.168.0.1: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms

If the ping failed, check the network connection between

the MASQ server and the PC. If it's a DIRECT Ethernet
connection (no hub or switch), you MUST have a "Ethernet
cross-over cable". These cables are common and can be
found at any computer store. Without this cable, the NICs
(network cards) will not give you a "LINK" light. If you are
using a hub or switch, make sure the ports connected to the
MASQ server and MASQed client machine have a LINK
light. If they do and the pings STILL don't work or there is a
lot of packet loss, try different ports on the hub/switch (it not
all that uncommon to have hub/switch ports die). Finally, if
things still don't work perfectly, try replacing each of the
NICs in the machines.

Testing internal MASQ server connectivity
Step Three : Testing internal MASQ server connectivity
On the MASQ server, ping the internal IP address of the

MASQ server's network interface card (i.e. ping
192.168.0.1). If this ping doesn't work, make sure that

TCP/IP is correctly configured on the MASQed Server. The
output should look something like the following (hit Control-
C to abort the ping):

masq-server# ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1): 56 data bytes
64 bytes from 192.168.0.1: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 192.168.0.1: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms

 Testing internal MASQ server to MASQ client

connectivity
l Step Four : Testing internal MASQ server to MASQ

client connectivity
Next from MASQed server, try pinging the IP address of

one of the internal MASQ client computers (i.e. ping
192.168.0.10). This will verify that TCP/IP is correctly
working on both the local server machine and on the MASQ
client machine. If this ping doesn't work, make sure that
TCP/IP is correctly configured on the MASQed PC. If the
ping does work, the output should look something like the
following (hit Control-C to abort the ping):

masq-server# ping 192.168.0.10
PING 192.168.0.10 (192.168.0.10): 56 data bytes
64 bytes from 192.168.0.10: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 192.168.0.10: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 192.168.0.10: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 192.168.0.10 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms

 Testing External MASQ server Internet connectivity
Step Five : Testing external MASQ server to Internet

connectivity
From the MASQ server, ping the external IP address of

the MASQ server's EXTERNAL network interface that is
connected to the Internet. This address might be a Ethernet
interface, a PPP interface, etc. connection to your ISP. If you
don't know what this external IP address is, run the Linux
command "/sbin/ifconfig" on the MASQ server itself to get
the Internet address. The output should look something like
the following (we are looking for the IP address of eth0):

eth0 Link encap:Ethernet HWaddr 00:08:C7:A4:CC:5B
inet addr:12.13.14.15 Bcast:12.13.14.255

Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST

MTU:1500 Metric:1

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 406

RX packets:6108459 errors:0 dropped:0 overruns:0
frame:0

TX packets:5422798 errors:8 dropped:0 overruns:0
carrier:8

collisions:4675 txqueuelen:100
Interrupt:11 Base address:0xfcf0

As you can see from the above, the external IP address is

"12.13.14.15" for this example. So, now that you have your
IP address after running the "ipconfig" command, ping your
external IP address. This will confirm that the MASQ server
has full network connectivity. The output should look
something like the following (hit Control-C to abort the
ping):

masq-server# ping 12.13.14.15
PING 12.13.14.15 (12.13.14.15): 56 data bytes
64 bytes from 12.13.14.15: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 12.13.14.15: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 12.13.14.15: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 12.13.14.15: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 12.13.14.15 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms

If either of these tests doesn't work, you need to go back

and double check your network cabling and verify that the
two network interfaces on the MASQ server are seen in
"dmesg". An example of this output would be the following
towards the END of the "dmesg" command:

.
.
PPP: version 2.3.7 (demand dialling)
TCP compression code copyright 1989 Regents of the

University of California
PPP line discipline registered.
3c59x.c:v0.99H 11/17/98 Donald Becker
http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html
eth0: 3Com 3c905 Boomerang 100baseTx at 0xfe80,

00:60:08:a7:4e:0e, IRQ 9
8K word-wide RAM 3:5 Rx:Tx split, autoselect/MII

interface.
MII transceiver found at address 24, status 786f.
Enabling bus-master transmits and whole-frame

receives.
eth1: 3Com 3c905 Boomerang 100baseTx at 0xfd80,

00:60:97:92:69:f8, IRQ 9
8K word-wide RAM 3:5 Rx:Tx split, autoselect/MII

interface.
MII transceiver found at address 24, status 7849.
Enabling bus-master transmits and whole-frame

receives.
Partition check:
sda: sda1 sda2 < sda5 sda6 sda7 sda8 >
sdb:
..-------------------------------------
Also be sure that the cabling is correct (Ethernet: the

NICs connecting the external MASQ server to your ISP has

the "link" light lit up). Finally, make sure that TCP/IP is
correctly configured on the MASQed Server.

 Testing internal MASQ client to external MASQ server
connectivity

 Step Six : Testing internal MASQ client to external
MASQ server connectivity

From an internal MASQed computer, ping the IP
address of the MASQ server's EXTERNAL TCP/IP address
obtained in Step FIVE above. This address could be from
your Ethernet, PPP, etc. interface which is ultimately the
address connected to your ISP. This ping test will prove that
Linux masquerading (ICMP Masquerading specifically) and
IP forwarding is working.

If everthing thing is working correctly, the output should
look something like the following (hit Control-C to abort the
ping):

masq-client# ping 12.13.14.15
PING 12.13.14.15 (12.13.14.15): 56 data bytes
64 bytes from 12.13.14.15: icmp_seq=0 ttl=255

time=0.8 ms
64 bytes from 12.13.14.15: icmp_seq=1 ttl=255

time=0.4 ms
64 bytes from 12.13.14.15: icmp_seq=2 ttl=255

time=0.4 ms
64 bytes from 12.13.14.15: icmp_seq=3 ttl=255

time=0.5 ms
^C
--- 12.13.14.15 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet

loss
round-trip min/avg/max = 0.4/0.5/0.8 ms

If this test doesn't work, first make sure that the "Default

Gateway" on the MASQed PC is pointing to the IP address
on the MASQ -SERVERs- INTERNAL NIC. Also double
check that the /etc/rc.d/rc.firewall-* script was run without
any errors. Just as a test, try re-running the
/etc/rc.d/rc.firewall-* script now to see if it runs OK. Also,
though most kernels support it by default, make sure that you
enabled "ICMP Masquerading" in the kernel configuration
and "IP Forwarding" in your /etc/rc.d/rc.firewall-* script.

If you still can't get things to work, take a look at the
output from the following commands run on the Linux
MASQ SERVER: "ifconfig" : Make sure the interface for
your Internet connection (be it ppp0, eth0, etc.) is UP and
you have the correct IP address for the Internet connection.
An example of this output is shown in STEP FIVE above. m
"netstat -rn" : Make sure your default gateway (the column
with an IP address in the Gateway column) is set. An
example of this output might look like:

masq-server# netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt

Iface
192.168.0.1 0.0.0.0 255.255.255.255 UH 0 16384 0 eth1
12.13.14.15 0.0.0.0 255.255.255.255 UH 0 16384 0 eth0
12.13.14.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
127.0.0.0 0.0.0.0 255.0.0.0 U 0 16384 0 lo
0.0.0.0 12.13.14.1 0.0.0.0 UG 0 16384 0 eth0

Notice the very LAST line that starts with 0.0.0.0?

Notice that it also has an IP address in the "Gateway" field?

Chiranji Lal Chowdhary.et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,396-407

© 2010, IJARCS All Rights Reserved

 407

You should specify an IP address for your specific setup in
that field (this is typically done automatically when your
Internet connection is enabled).

m "cat /proc/sys/net/ipv4/ip_forward" : Make sure it
says "1" so that Linux forwarding is enabled m Run the
command "/sbin/ipchains -n -L" for 2.2.x users or
"/sbin/ipfwadm -F -l" for 2.0.x users. Specifically, look for
the FORWARDing section to make sure you have MASQ
enabled. An example of an IPCHAINS output might look
like for users using the SIMPLE rc.firewall-* ruleset:

.Chain forward (policy REJECT):
target prot opt source destination ports
MASQ all ------ 192.168.0.0/24 0.0.0.0/0 n/a
ACCEPT all ----l- 0.0.0.0/0 0.0.0.0/0 n/a

VII. CONCLUSION

Masquerade NAT is used to allow your private network
to hide behind, as well as be represented by, the address
bound to the public interface. In many situations, this is the
address that has been assigned by an Internet Service
Provider (ISP), and the address may be dynamic in the case
of a Point-to-Point Protocol (PPP) connection. This type of
translation can only be used for connections originating
within the private network destined for the outside public
network. Each outbound connection is maintained by using a
different source IP port number.

Masquerade NAT allows workstations with private IP
addresses to communicate with hosts on the Internet using
iSeries server. iSeries server has an IP address assigned by
the local ISP as its Internet gateway. The term locally
attached machine is used to refer to all machines on an
internal network regardless of the method of attachment
(LAN or WAN) and regardless of the distance of the
connection.

VIII. REFERENCES

[1] Phifer, L., “IP Security and NAT: Oil and Water?”,
ISP-Planet,June 15, 2000. http://www.isp-
planet.com/technology/nat_ipsec.html

[2] Phifer, L., “Realm-Specific IP for VPNs and Beyond”,
ISP-Planet, June 23, 2000. http://www.isp-
planet.com/technology/rsip.html

[3] Egevang, K. and Francis, P., “The IP Network Address
Translator (NAT),” RFC 1631, May 1994.

[4] http://www.ibiblio.org/pub/linux/docs/howto/other-
formats/pdf/IP-Masquerade-HOWTO.pdf

[5] http://www.bglug.ca/articles/nat_and_ip_masquerade.p
df

[6] http://estigia.fi-b.unam.mx/Linux/pdf/prared17.pdf

[7] http://www.comptechdoc.org/independent/networking/g
uide/netipmasq.html

[8] http://www.comptechdoc.org/independent/networking/g
uide/netipmasq.html

