
��������	�
����	�
�����������

�� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 431

ISSN No. 0976-5697

Medical Image Indexing using Attributed Relational Graphs and Rectangular Trees

Sujatha Sivakumar
Software Engineer

Mascon Global Limited

Bangalore, India

sujatha.shivakumar@gmail.com

Natarajan Meghanathan*
Assistant Professor, Department of Computer Science

Jackson State University

Jackson, MS, USA

 natarajan.meghanathan@jsums.edu

Abstract: Given a collection of medical images (like CT scans), we derive appropriate representations of their content and organize the images

together with representations in a multi-dimensional data structure so that we can search efficiently for images similar to an example image.

Image content is represented by Attributed Relational Graphs (ARGs) holding features of objects and relationships between objects. Our

proposed image indexing and similarity search methods rely on the assumption that a fixed number of “labelled” or “expected” objects (e.g.,

“heart”, “lungs” etc) are common in all images of a given application domain in addition to a variable number of “unexpected” or “unlabeled”

objects (e.g., “tumor”, “hematoma” etc). Our method can answer queries by example such as “find all X-rays that are similar to Smith’s X-ray.”

The stored images are mapped to points in a multi-dimensional space and are indexed using state-of-the-art database methods (R-trees). The

proposed method has several desirable properties: (a) Database search is approximate so that all images up to a pre-specified degree of similarity

(tolerance) are retrieved; (b) it has no “false dismissals” (i.e. all images qualifying query selection criteria are retrieved) and (c) it is much faster

than sequential scanning for searching in the main memory and on the disk (i.e. by up to an order of magnitude); thus, scaling-up well for larger

databases.

Keywords: Indexing, Similarity Searching, Medical Images, R-tree, Attributed Relational Graphs

I. INTRODUCTION

In many applications, images comprise vast majority of

acquired and processed data. For example, in remote sensing

and astronomy, large amounts of image data are received

daily by land stations for processing, analysis and archiving.

A similar need for processing, analysis and archiving of

images has been identified in applications such as

cartography (images are analog or digitized maps) and

meteorology (images are meteorological maps). The medical

imaging field, in particular, has grown substantially in

recent years and has generated additional interest in methods

and tools for the management, analysis, and communication

of medical images. Picture Archiving and Communication

Systems (PACS) are currently used in many medical centers

to manage the image data produced by computed

tomography (CT), magnetic resonance (MRI), digital

subtraction angiography (DSA), digital radiography,

ultrasound, and other diagnostic imaging modalities which

are available and routinely used to support clinical decision

making. It is important to extend the capabilities of

techniques used in such application fields by developing

database systems supporting the automated archiving and

retrieval of images by content.

An “Image Database” (IDB) is a “system in which a large

amount of image data is stored in an integrated fashion” [1].

Image data may include: the raw images themselves,

attributes (e.g., dates, names), text (e.g., diagnosis related

text), information extracted from images by automated or

computer assisted image analysis etc. The effectiveness of

an IDB system, which supports the archiving and retrieval

of images by content, ultimately depends on the types and

correctness of image representations used, the types of

image queries allowed, and the efficiency of search

techniques implemented. In selecting an appropriate type of

image representation, an attempt must be made to reduce the

dependence on the application domain as much as possible

and to ensure certain level of tolerance to uncertainty with

regard to image content. Furthermore, image representations

must be compact to minimize storage space, while image

processing, analysis and search procedures must be

computationally efficient in order to meet the efficiency

requirements of many IDB applications. Query response

times and the size of the answer set depend highly on query

type, specificity, complexity, and amount of on-line image

analysis required and the size of the search. In addition,

query formulation ought to be iterative and flexible, thus

enabling a gradual resolution of user uncertainty. All images

(and/or information related to images) satisfying the query

selection criteria are retrieved and displayed for viewing.

The retrieval capabilities of an IDB must be embedded in

its query language. Command oriented query languages

allow the user to issue queries by conditional statements

involving various image attributes (values of attributes

and/or ranges of such values). Other types of image queries

include: queries by identifier (a unique key is specified),

region queries (an image region is specified and all

intersecting regions are returned), text queries etc. The

highest complexity of image queries is encountered in

queries by example. In this case, a sample image or sketch is

provided and the system must analyze it, extract an

appropriate description and representation of its content and

match this representation against representations of images

stored in the database. Such queries are easy to be expressed

and formulated, since the user need not be familiar with the

syntax of any special purpose image query language.

So far, in order to determine which images must be

retrieved, content representations corresponding to all stored

images are compared (one by one) with a similar

representation extracted from the query image. Thus,

retrievals can be inefficient due to the fact that comparisons

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 432

often involve time intensive operations. The effectiveness

of an IDB system supporting the archiving and retrieval of

images by content can be significantly enhanced by

incorporating efficient techniques supporting the indexing of

images by content into the IDB storage and search

mechanisms.

Our contribution in this paper is as follows: Given a

collection of images we derive appropriate representations

of their content and organize the images together with their

representations in the database so that, we can search

efficiently for images similar to an example image. Given a

collection of medical images, each image has been

segmented (automatically or manually) into closed contours

corresponding to dominant image objects or regions. These

are objects common in all mages of a given application

domain. For example, in medical images, the expected

objects may correspond to the usual anatomical structures

(e.g., “heart”, “lungs”) and the outline contour of the body.

All expected objects are identified prior to storage and a

class or name is assigned to each one. The labeled objects

need not be similar in all images. Not all objects need to be

identified: Images may also contain “unexpected” or

“unlabeled” objects. These may be objects not present in all

images. For example, in medical images, the unexpected

objects may correspond to abnormal pathological structures

(e.g., “hematoma”, “tumor” etc.). The user can specify a

desirable image (e.g., “find the examinations which are

similar to Smith’s examination”). The system will return all

the images below a distance threshold or the most similar

images. For two images to be similar they must contain

similar objects (regions in general) in similar spatial

relationships. Our primary goal is to swiftly respond to the

queries. A secondary goal is to support visualization and

data mining (e.g., study of the clustering properties of the set

of images).

The rest of the paper is organized as follows: In Section

2, we discuss existing methods on image retrievals. Section

3 provides a brief overview of the proposed work. Section 4

presents a detailed system analysis of our proposed methods

for digital medical image indexing using the Attributed

Relational Graphs (ARGs) and Rectangular trees (R-trees).

Section 5 concludes the paper.

II. EXISTING METHODS ON IMAGE INDEXING,

SEARCHING AND RETRIEVAL

A. Image Retrieval by Content

Image content can be described indirectly through

attributes (e.g., subject, speaker, etc.) or text (e.g., captions).

Queries by image content require that, prior to storage,

images are processed, and appropriate descriptions of their

content are extracted and stored in the database. Retrievals

by image content is not an exact process (two images are

rarely identical). Instead, all images with up to a pre-

specified degree of similarity have to be retrieved [1]. The

design of appropriate image similarity/distance functions is

a key issue and is application-dependent. An almost

orthogonal issue is speed of search. In this section, we

review techniques for exact and approximate database

search along with methods to accelerate the search.

B. Exact Match Searching in Image Databases

2-D strings [2] constitute an efficient image content

representation and provide low complexity (i.e., polynomial)

matching in image databases. A unique name or class is

assigned to each object. The relative positions between all

objects are then represented by two one-dimensional strings.

The problem of image retrieval is transformed into one of

string matching: All 2-D strings containing the 2-D string of

the query as a substring are retrieved. Methods for speed up

of retrievals based indexing of 2-D strings in a database

have been proposed [3, 4]. 2-D strings [5] deal with

situations of overlapping objects with complex shapes. 2-D

strings may yield “false alarms” (non-qualifying images)

and “false dismissals” (qualifying but not retrieved images).

C. Approximate Searching in Image Databases – No

Indexing

Systems described in the literature on Machine Vision

typically focus on the quality of the features and the

matching function, with little or no emphasis on the speed of

retrieval. Thus, each image is described by a set of features;

to respond to a query, the system searches the features of all

the images sequentially. A typical, recent system supports

the segmentation and interactive retrieval of facial images

from an IDB [6]. A-priori knowledge regarding the kind and

the positioning of expected image objects (e.g., face outline,

nose, eyes etc.) is employed and used to guide the

segmentation of face images into disjoint regions

corresponding to the above objects. The database search is

exhaustive, using sequential scanning.

D. Approximate Searching in Image Databases – with

Indexing

An attempt to combine indexing and approximate

database search is proposed in [7]. The main idea is to

extract f features from each image, thus mapping images

into points in an f-dimensional space. Any spatial access

method can then be used to handle range and nearest-

neighbor queries efficiently. The original paper did not

address the issue of false dismissals as well as the problem

of retrieving images by specifying properties of objects and

relationships between objects. In all of the above methods,

one or more of the following drawbacks exist: (a) they do

not index on the relationships between objects; (b) they do

not scale up, for large, disk-based databases; (c) they have

false dismissals. Our proposed method solves all these three

issues.

E. Spatial Access Methods

As mentioned before, we can achieve faster-than-

sequential searching by using the so-called “spatial access

methods”. These are file structures to manage a large

collection of f-dimensional points (or rectangles or other

geometric objects) stored on the disk so that, “range

queries” can be efficiently answered. A range query

specifies a region (e.g., hyper-rectangle or hyper-sphere) in

the address space, requesting all the data objects that

intersect it. If the data objects are points (as eventually

happens in our application), the range query requires all the

points that are inside the region of interest. An example of a

range query on point data is “retrieve all the cities that are

200 km away from Brussels”. Spatial access methods can

also handle “nearest neighbor” and “all-pairs (or “spatial-

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 433

join”) queries. For clarity, in this paper, we focus on range

queries only.

Several spatial access methods have been proposed,

forming the following classes: (a) Methods that transform

rectangles into points in a higher dimensionality space [8];

(b) Methods that use linear quad-trees or, equivalently, the

“z-ordering” [9] or other “space filling curves” and finally

(c) Methods based on trees (k-dimensional trees etc). One of

the most characteristic approaches in the last class is the R-

tree. The R-tree can be envisioned as an extension of the B-

tree for multidimensional objects. A geometric object is

represented by its Minimum Bounding Rectangle (MBR).

Non-leaf nodes contain entries of the form (ptr, R) where ptr

is a pointer to a child node in the R-tree; R is the MBR that

covers all rectangles in the child node. Leaf nodes contain

entries of the form (object_ id, R) where object_id is a

pointer to the object description, and R is the MBR of the

object. The main idea behind the R-tree [10] is that father

nodes are allowed to overlap. This way, the R-tree can

guarantee good space utilization and remains balanced.

Extensions, variations and improvements to the original R-

tree structure include the packed R-trees, the R+-tree, the R*-

tree, and the Hilbert R-tree.

III. OUR PROPOSED METHOD

Our method maps each image to a point in an f-

dimensional space. The mapping of Attributed Relational

Graphs (ARGs) to f-dimensional points is achieved through

FastMap [11]. Similarly, queries are mapped to points in the

above f-dimensional space and the problem of IDB search is

transformed into one of spatial search. To speed-up

retrievals, the f-dimensional points are indexed using an R-

tree. Below we discuss each one of the above processing

steps separately.

A. Image Segmentation

All images are segmented into closed contours

corresponding to dominant image objects or regions.

However, image segmentation and labeling of the

components are outside the scope of this paper. We assume

that each image has been segmented manually (e.g., by

tracing the contours of the regions of interest). Figure 1

shows an example of an original MRI image and its

segmented form. The contribution of our work is with

regards to fast searching after the images and the queries

have been segmented.

Figure 1. Example of an Original Gray-level Image (left) and its Segmented

Form (right)

B. ARG Representation

Figure 2 shows the proposed ARG representation for

medical MRI images of the abdomen such as the example

image of Figure 1. Nodes correspond to regions and arcs

correspond to relationships between regions. Both nodes and

arcs are labeled by the attribute values of the region

properties and the relationship properties, respectively.

Angles are in degrees. In this work, we used the following

set of features: Individual regions are described by 3

attributes, namely: (i) Size (), computed as the size of the

area of a region; (ii) Roundness (), computed as the ratio of

the smallest to the largest second moment and (iii)

Orientation (), defined as the angle between the horizontal

direction and the axis of elongation. This is the axis of least

second moment. Spatial Relationships between regions are

described by 2 attributes, namely: (i) Distance (), computed

as the minimum distance between their contours; (ii)

Relative Angle (), defined as the angle with the horizontal

direction of the line connecting the centers of mass of the

two regions.

It is straightforward to add more features as region or

relationship attributes. Additional features that could be

used include the average grey-level and texture values,

moments or Fourier coefficients etc. as region descriptors;

relative size, amount of overlapping or adjacency etc. can be

also used to characterize the relationships between regions.

In any case, our proposed method can handle any set of

features. However, we have strong reasons to use the above

set of features. The features we used are very successful.

Figure 2. Attributed Relational Graph (ARG) corresponding to the Example

Image of Figure 1

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 434

C. Mapping ARGs to f-dimensional Points

The FastMap algorithm accepts as input: ARGs, the

Eucledian distance function and, the desired number of

dimensions, and maps the above ARGs to points in an f-

dimensional space. As mentioned earlier, the complexity of

this mapping is f-distance computations. Each image is

mapped to exactly one point.

D. Indexing – File Structure

Figure 3 demonstrates the proposed file structure of the

data on the disk. Specifically, the file structure consists of

the following parts:

Figure 3. File Structure

� The spatial access method, holding an f-dimensional

vector for each stored image (ARG). We used R-trees

solely because of availability; any spatial access method

would be applicable, like, e.g., R*-trees and X-trees. In

fact, a faster spatial access method would only make

our approach work even faster!

� The “ARG file”. This is a file holding the ARGs. Each

record in this file consists of (a) An identifier (e.g., the

image file name) corresponding to the image from

which the ARG has been derived and (b) The features

of each region together with its relationships with the

other regions.

� The “Image store” holding the original image files. For

faster display, we have also kept the segmented forms

of all images.

E. Search Strategy

The user specifies a query image and a tolerance, and

asks for all the images within that tolerance. The ARG of

the query is computed first. Then, the f-dimensional vector

of the above ARG is derived. All vectors within tolerance

are retrieved from the R-tree. The R-tree may return false

alarms (i.e., not qualifying images). A post-processing step

is required to clean-up the false alarms. For the R-tree

search, we issue a range query on the R-tree to obtain a list

of promising images (image identifiers). The clean-up

procedure for each of the above obtained images retrieves its

corresponding ARG from the ARG file and computes the

actual distance between this ARG and the ARG of the

query. If the distance is less than the threshold, the image is

included in the response set.

IV. SYSTEM ANALYSIS

All images are segmented into closed contours

corresponding to dominant image objects or regions. Tools

like Adobe Photoshop can be used for manual segmentation

of images.

A. ARG Representation

Image descriptions are given in terms of object properties

and in terms of relationships between objects. The textbook

approach to capture this information is the Attributed

Relational Graphs (ARGs). In an ARG, the objects are

represented by graph nodes and the relationships between

objects are represented by arcs between such nodes. Both

nodes and arcs are labeled by attributes corresponding to

properties (features) of objects and relationships

respectively. Figure 4 shows an example image (a line

drawing showing a face) containing four objects (numbered

0 through 3) and its corresponding ARG.

Figure 4. Example Image showing a Sketch of a Face (left) and its

corresponding ARG (right)

The relationship between any two objects has (in this

example) also one attribute, namely, the angle (a) with the

horizontal direction of the line connecting the centers of

mass of these objects. The specific features which are used

in the ARGs are derived from the raw image data and

depending on the application, can be geometric (i.e.,

independent of pixel values), statistical or textural, or

features specified in some transform domain (e.g., Fourier

coefficients of object shapes). In the case of medical CT and

MRI images used in this work, the set of features is given

below.

The following properties are used to describe the

individual regions of objects

� Size (s), computed as the size of the area it

occupies.

� Roundness (r), computed as the ratio of the smallest

to the largest second moment.

� Orientation (o), defined to be the angle between the

horizontal direction and the axis of elongation. This

is the axis of least second moment.

The following properties are used to describe the spatial

relationships between two objects

� Distance (d), computed as the minimum distance

between all pairs of line segments, taking one from

each object.

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 435

� Relative Position (p), defined as the angle with the

horizontal direction of the line connecting the

centers of mass of the two objects.

However, the proposed methodology is independent of

any specific kind of features. The problem of retrieving

images which are similar to a given example image is

transformed into a problem of searching a database of stored

ARGs: Given a query, its ARG has to be computed and

compared with all stored ARGs.

In comparisons between ARGs, we need a measure of the

“goodness” of matching. A measure of goodness is defined

here. Let Q be a query image consisting of q objects and S

be a stored image consisting of s objects. Let F() be a

mapping from objects in Q to objects in S (e.g., such a

mapping associates objects with the same labels). The cost

of this mapping is defined as:

DistF(Q, S) = �COST(i, F(i)) - �COST(i, j, F(i), F(j)) …(1)

The first term in the above equation is the cost of

matching associated nodes while, the second term is the cost

of matching the relationships between such nodes. In our

setting, only a subset of the objects in the stored image set S

needs to be matched. There is no cost if the data image

contains extra objects; however, we assume that the cost is

infinite if the data image is missing one of the objects of the

query. COST is the cost of matching features of objects or

features of relationships between associated objects. The

distance between images Q and S is defined as the minimum

distance computed over all possible mappings F():

Dist(Q, S) = minF { DistF(Q, S) } …(2)

The typical way to compute DistF(Q, S) is using an Lp

metric. This is done as follows: Let (q1, q2, …, qK) be a

vector of feature values derived from Q by taking the

features of all its objects and of their relationships in some

pre-specified order (e.g., object 1 and its relationships with

the remaining objects are taken first, followed by the

features of object 2, etc.). Let (s1, s2, …, sK) be the vector

derived from S by taking the features of the objects

associated to objects in Q in the same order. Then, Equation

1 can be written as follows:

DistF(Q, S) = Distp,F(Q, S) = [�k |qi - si|
p]1/p …(3)

 i=1

p is the order of the metric. For p = 1and p = 2, we obtain

the Manhattan (city-block) and the Euclidean distance

respectively. For example, the Manhattan distance between

the query image of Figure 5 and the example image of

Figure 4 is Dist(Q, S) = |100-80| + |15-10| - |130-110| = 45.

We have omitted the subscript F because there is only one

mapping. Similarity searching in an IDB of stored ARGs

requires that all images within distance t must be retrieved.

Specifically, we have to retrieve all the images of S that

satisfy the following condition. Without loss of generality,

we use the Euclidean distance (p = 2). However, the

proposed method can handle any Lp metric.

 Dist(Q, S) � t …(4)

Figure 5. Matching between the Query and the Original Example Image

B. FastMap

FastMap [11] is an algorithm that takes in N ARGs, the

ARG distance function and f, the desired number of

dimensions, and maps the above ARGs to N points in an f-

dimensional space such that distances are preserved. The

goal is to solve the problem for the ‘distance case, that is, to

find N points in k-dimensional space, whose Euclidian

distances will match the distances of a given N x N distance

matrix. The key idea is to pretend that objects are indeed

points in some unknown, n-dimensional space, and to try to

project these points on k mutually orthogonal directions. The

challenge is to compute these projections from the distance

matrix only, since it is the only input we have. For the rest

of this discussion, an object will be treated as if it were a

point in an n-dimensional space, (with unknown n). The

main focus of the proposed method is to project the objects

on a carefully selected ‘line’. To do that, we choose two

objects Oa and Ob (referred to as ‘pivot objects’ from now

on), and consider the ‘line’ that passes through them in n-

dimensional space. The projections of the objects on that

line are computed using the cosine law.

C. Indexing

Each of the f-dimensional vectors for the stored image is

arranged into an indexing structure called R-Tree. One of

the huge demands in geo-data applications is to respond

very quickly to spatial queries. Spatial data objects often

cover areas in multi-dimensional spaces. Multi-dimensional

queries prevent from using classical indexing structures, for

instance the B-Tree. The reason is that the database uses

one-dimensional indexing structures. However, in modern

information processing like CAD (Computer Aided Design),

cartography and multimedia applications use multi-

dimensional data objects which mean that the objects have

more attributes. Thus, the database system needs an efficient

multi-dimensional index structure. A number of structures

have been proposed for handling multi-dimensional point

data. We choose to use the R-trees (Rectangular trees), a

dynamic-index data structure [10] for spatial searching and

can be used to represent data objects by intervals in several

dimensions.

D. R-Tree Index Structure

An R-Tree is a height-balanced tree similar to a B-Tree.

Leaf nodes contain pointers to data objects. The index is

completely dynamic. Structure is designed in such a way

that a spatial search requires visiting only a small number of

nodes. The spatial data is comprised by a MBR (Minimal

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 436

Bounding Rectangle) which may compose one or more

MBRs. This structure continues up to the root. Eventually

the root comprises a MBR over all objects. Figure 6 shows

an example of a simple R-Tree.

In Figure 6, nodes A, B and C are the root nodes. Node A,

for instance, covers child nodes D, E, F and G, and contains

them with a minimal bounding rectangle. An R-Tree

satisfies the following properties:

1. Every leaf node contains between m and M index

records unless it is the root Thus, the root can have less

entries than m.

2. For each index record in a leaf node, I is the smallest

rectangle that spatially contains the n-dimensional data

object represented by the indicated tuple.

3. Every non-leaf node has between m and M children

unless it is the root.

4. For each entry in a non-leaf node, i is the smallest

rectangle that spatially contains the rectangles in the child

node.

5. The root node has at least two children unless it is a

leaf node.

6. All leaves appear on the same level. That means the

tree is balanced.

Figure 6. Structure of a simple R-Tree

1) Structure of a Leaf Node: Leaf nodes in an R-Tree

contain index record entries of the form (I, tuple-identifier)

where tuple-identifier refers to a tuple in the database and I

is an n-dimensional rectangle which is the bounding box of

the spatial object indexed.

I = (I0, I1, …, In-1)

Here n is the number of dimensions and Ii is a closed

bounded interval [a, b] describing the extension of the

object along dimension i.

2) Structure of a Non-leaf Node: The nodes which are not

leaf nodes contain entries of the form (I, child-pointer)

where child-pointer is the address of a lower node in the R-

Tree and I covers all rectangles in the child node's entries.

Figure 7. Root Node A covers Child Node Entries D, E, F and G

3) Maximum and Minimum Entries: Variable M is the

maximum of entries which is usually given and m is the

minimum of entries in one node. The minimum number of

entries in a node is dependent on M with (M/2) � m. The

maximum number of nodes is � � � � 1// 2
++ mNmN .

Here N stands for the number of index records of the R-

Tree. Variable m is jointly responsible for the height of an

R-Tree and the speed of the algorithm. The choice of M

depends on the hardware, especially on hard disk properties

such as capacity and sector size. If nodes have more than 3

or 4 entries, the tree is very wide, and almost all the space is

used for leaf nodes containing index records.

4) Searching: The search algorithm is similar to that of the

B-Tree. It returns all qualifying records which the search

rectangle overlaps. The algorithm descends the tree from the

root. In the same time, the algorithm checks the rectangle

overlapping in the node with the searched rectangle. If the

test is positive, the search just descends to the found

overlapping nodes. This procedure is repeated until the leaf

node. If the entries of the leaf node overlap the searched

rectangle then we return these entries as a qualifying record.

In Figure 8, there is a filled rectangle which is the search

rectangle. The algorithm is looking for qualifying records in

the filled area. The filled rectangle overlaps the root entries

R1 and R2, so the algorithm checks these entries. In R1,

there is just R4 which overlaps the filled rectangle. Its

entries are also checked. The algorithm arrives at the leaf

node level. The entries of the leaf node are checked for

qualifying records. R11 is the only one and so a first search

result. In R2, there are two rectangle overlaps with the filled

rectangle: R5 and R6. Both of them are checked and the

algorithm recognizes that at the leaf node level, the entries

R13, R15 and R16 overlap with the search rectangle.

Finally, the search result is R11, R13, R15 and R16.

5) Insertion: Inserting index records for new data is

similar to insertion into a B-Tree. New data is added to the

leaf nodes, nodes that overflow are split, and splits are

propagated up the tree. An example of inserting rectangle

R21 is shown in Figure 9. To find the best position for the

new rectangle, the algorithm starts with choosing the leaf

nodes. Figure 10 shows the procedure to choose leaf nodes.

The first step is clear because R21 is in R1. Next, the

algorithm chooses R3, because this rectangle needs lower

enlargement than R4. At the last step, the algorithm finds

the leaf node; however, all entries are full. This leads to

splitting a node, which is next discussed in Section 4.7 and

illustrated in Figure 11.

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 437

Figure 8. Searching in an R-tree

Figure 9: Example to Illustrate the Insertion of a new Rectangle

Figure 10. Example to Illustrate the Procedure to Choose Leaf Nodes

6) Splitting of a Node: The objective of the procedure to

split a node (referred as SplitNode) is to minimize rectangles

as much as possible. That is the reason why the algorithm

puts R21 and R9 in rectangle R3. R8 and R10 are put in the

new parent rectangle R30. R30 is propagated upward. Since

there is enough room to include R30, it is not necessary to

split this node again. R3 must be adjusted as well because it

only points to R9 and to the new rectangle R21. At last, the

root node R1 is also adjusted because it includes a new entry

R30. So the structure of the tree is saved. The Insertion is

now finished and Figure 11 shows the new included

rectangle.

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 438

Figure 11. Example to Illustrate the Splitting and Insertion of a Node

7) Kinds of Splits: In the case of adding a new entry to a

full node containing M entries, it is necessary to divide the

collection of M + 1 entries between two nodes. Insertion and

Deletion have to use this method to save the tree structure.

The division should be done in a way that makes it as

unlikely as possible that both new nodes will need to be

checked on subsequent searches. The total area of the two

covering rectangles after a split should be minimized. Figure

12 shows a 'good' split and a 'bad' split. There are three

versions of algorithms for SplitNode. They are: (a)

Exhaustive algorithm; (b) Quadratic-cost algorithm; (c)

Linear-cost algorithm.

Figure 12. Kinds of Splits: Bad Split (Left) and Good Split (Right)

Exhaustive Algorithm is normally not used. It is the best

split algorithm in quality because it finds the best way to

minimize the area of all rectangles of the R-Tree. The cost,

however, would be 2M-1 and so the algorithm would be too

slow with a large node size. Linear-cost algorithms produce

the poorest quality. Hence, we use the quadratic-cost

algorithm, explained below:

The quadratic-cost algorithm tries (cost: O(M2)) to find a

small-area split; however, it is not guaranteed that it finds

one with the smallest area possible. Quadratic-Cost

algorithm chooses two of the M+1 entries, which use most

of the area and puts them in new nodes. Considering the

remaining entries, the entry that needs the largest area is

selected, if it is inserted in one of the two nodes. The

algorithm then puts the selected entry in that node where

fewer enlargements are needed. The procedure is repeated

until all nodes are divided or one node has less then m

entries.

V. CONCLUSIONS AND FUTURE WORK

Our proposed indexing method allows similarity search

to be performed on both labeled and unlabeled (i.e., not

identified) objects. Indexing is performed by decomposing

each input image into sets of objects, called “sub-images”,

containing all labeled objects and a fixed number of

unlabeled objects. All sub-images are mapped to points in a

multi-dimensional feature space and are stored in an R-tree.

Image database search is then transformed into spatial

search. Our proposed method outperforms sequential

scanning significantly for searching in the main memory or

on the disk, never missing a hit (i.e., no false dismissals).

The method can accommodate any set of attributes that the

domain expert will provide. With respect to future work, a

very promising direction is the study of data mining

algorithms on the point-transformed set of images to detect

regularities and patterns, as well as to detect correlations

with demographic data. Another promising direction is the

use of more recent indexing structures, such as the X-Tree

or the SR-Tree, which provide faster search times for

smaller space overhead.

VI. ACKNOWLEDGMENTS

The corresponding author (Natarajan Meghanathan) of

this paper conducts research in the areas of Computational

Biology and Bioinformatics as a Senior Personnel under the

U.S. National Science Foundation (NSF)-funded Mississippi

EPSCoR grant (EPS-0556308) on Modeling and Simulation

of Complex Systems. The views and conclusions contained

in this document are those of the authors and should not be

interpreted as necessarily representing the official policies,

either expressed or implied, of the funding agency.

VII. REFERENCES

[1] E. G. M. Petrakis and C. Faloustos, “Similarity
Searching in Medical Image Databases,” IEEE
Transactions on Knowledge and Data Engineering, vol.
9, no. 3, pp. 435-477, May-June 1997.

[2] S-K. Chang, Q-Y. Shi and C-W. Yan, “Iconic Indexing
by 2-D Strings,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 9, no. 3, pp.
413-428, May 1987.

[3] E. G. M. Petrakis and S. C. Orphanoudakis, “A
Methodology for the Representation, Indexing, and
Retrieval of Images by Content,” Image and Vision
Computing, vol. 11, no. 8, pp. 504-521, October 1993.

[4] E. G. M. Petrakis and S. C. Orphanoudakis, “A
Generalized Approach for Image Indexing and
Retrieval Based on 2-D Strings,” Intelligent Image
Database Systems, pp. 197-218, World Scientific
Publishing Co., 1996.

[5] S-Y. Lee and F-H. Hsu, “2-D C-String: A New Spatial
Knowledge Representation for Image Database
Systems,” Pattern Recognition, vol. 23, no. 10, pp.
1077-1087, 1990.

[6] J. R. Bach, S. Paul and R. Jain, “A Visual Information
Management System for the Interactive Retrieval of
Faces,” IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 4, pp. 619-627, August 1993.

[7] H. V. Jagadish, “A Retrieval Technique for Similar
Shapes,” Proceedings of the ACM SIGMOD
Conference on Management of Data, vol. 20, no. 2, pp.
208-217, May 1991.

Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439

© 2010, IJARCS All Rights Reserved 439

[8] J. Nievergelt, H. Hinterberger and K. C. Sevcik, “The
Grid File: An Adaptable, Symmetric Multi-key File
Structure,” ACM Transactions on Database Systems,
vol. 9, pp. 38-71, 1984.

[9] J. A. Orenstein, “Spatial Query Processing in an Object-
Oriented Database System,” Proceedings of the ACM
SIGMOD International Conference on Management of
Data, vol. 15, no. 2, pp. 326-336, June 1986.

[10] A. Guttaman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” Proceedings of the ACM SIGMOD

International Conference on Management and Data,
vol. 14, no. 2, pp. 47-57, June 1984.

[11] C. Faloutsos and K-I. Lin, “FastMap: A Fast Algorithm
for Indexing, Data-Mining and Visualization of
Traditional and Multimedia Datasets,” Proceedings of
the ACM SIGMOD International Conference on
Management and Data, vol. 24, no. 2, pp. 163-174,
May 1995.

