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Abstract: Given a collection of medical images (like CT scans), we derive appropriate representations of their content and organize the images 

together with representations in a multi-dimensional data structure so that we can search efficiently for images similar to an example image. 

Image content is represented by Attributed Relational Graphs (ARGs) holding features of objects and relationships between objects. Our 

proposed image indexing and similarity search methods rely on the assumption that a fixed number of “labelled” or “expected” objects (e.g., 

“heart”, “lungs” etc) are common in all images of a given application domain in addition to a variable number of “unexpected” or “unlabeled” 

objects (e.g., “tumor”, “hematoma” etc). Our method can answer queries by example such as “find all X-rays that are similar to Smith’s X-ray.” 

The stored images are mapped to points in a multi-dimensional space and are indexed using state-of-the-art database methods (R-trees). The 

proposed method has several desirable properties: (a) Database search is approximate so that all images up to a pre-specified degree of similarity 

(tolerance) are retrieved; (b) it has no “false dismissals” (i.e. all images qualifying query selection criteria are retrieved) and (c) it is much faster 

than sequential scanning for searching in the main memory and on the disk (i.e. by up to an order of magnitude); thus, scaling-up well for larger 

databases. 

 

Keywords: Indexing, Similarity Searching, Medical Images, R-tree, Attributed Relational Graphs 

 

I. INTRODUCTION 

In many applications, images comprise vast majority of 

acquired and processed data. For example, in remote sensing 

and astronomy, large amounts of image data are received 

daily by land stations for processing, analysis and archiving. 

A similar need for processing, analysis and archiving of 

images has been identified in applications such as 

cartography (images are analog or digitized maps) and 

meteorology (images are meteorological maps). The medical 

imaging field, in particular, has grown substantially in 

recent years and has generated additional interest in methods 

and tools for the management, analysis, and communication 

of medical images. Picture Archiving and Communication 

Systems (PACS) are currently used in many medical centers 

to manage the image data produced by computed 

tomography (CT), magnetic resonance (MRI), digital 

subtraction angiography (DSA), digital radiography, 

ultrasound, and other diagnostic imaging modalities which 

are available and routinely used to support clinical decision 

making. It is important to extend the capabilities of 

techniques used in such application fields by developing 

database systems supporting the automated archiving and 

retrieval of images by content. 

An “Image Database” (IDB) is a “system in which a large 

amount of image data is stored in an integrated fashion” [1]. 

Image data may include: the raw images themselves, 

attributes (e.g., dates, names), text (e.g., diagnosis related 

text), information extracted from images by automated or 

computer assisted image analysis etc. The effectiveness of 

an IDB system, which supports the archiving and retrieval 

of images by content, ultimately depends on the types and 

correctness of image representations used, the types of 

image queries allowed, and the efficiency of search 

techniques implemented. In selecting an appropriate type of 

image representation, an attempt must be made to reduce the 

dependence on the application domain as much as possible 

and to ensure certain level of tolerance to uncertainty with 

regard to image content. Furthermore, image representations 

must be compact to minimize storage space, while image 

processing, analysis and search procedures must be 

computationally efficient in order to meet the efficiency 

requirements of many IDB applications. Query response 

times and the size of the answer set depend highly on query 

type, specificity, complexity, and amount of on-line image 

analysis required and the size of the search. In addition, 

query formulation ought to be iterative and flexible, thus 

enabling a gradual resolution of user uncertainty. All images 

(and/or information related to images) satisfying the query 

selection criteria are retrieved and displayed for viewing. 

The retrieval capabilities of an IDB must be embedded in 

its query language. Command oriented query languages 

allow the user to issue queries by conditional statements 

involving various image attributes (values of attributes 

and/or ranges of such values). Other types of image queries 

include: queries by identifier (a unique key is specified), 

region queries (an image region is specified and all 

intersecting regions are returned), text queries etc. The 

highest complexity of image queries is encountered in 

queries by example. In this case, a sample image or sketch is 

provided and the system must analyze it, extract an 

appropriate description and representation of its content and 

match this representation against representations of images 

stored in the database. Such queries are easy to be expressed 

and formulated, since the user need not be familiar with the 

syntax of any special purpose image query language.  

So far, in order to determine which images must be 

retrieved, content representations corresponding to all stored 

images are compared (one by one) with a similar 

representation extracted from the query image. Thus, 

retrievals can be inefficient due to the fact that comparisons 



Natarajan Meghanathan et al, International Journal of Advanced Research in Computer Science, 1 (4),Nov –Dec, 2010,431-439 

© 2010, IJARCS All Rights Reserved   432 
 

often involve time intensive operations.  The effectiveness 

of an IDB system supporting the archiving and retrieval of 

images by content can be significantly enhanced by 

incorporating efficient techniques supporting the indexing of 

images by content into the IDB storage and search 

mechanisms.   

Our contribution in this paper is as follows: Given a 

collection of images we derive appropriate representations 

of their content and organize the images together with their 

representations in the database so that, we can search 

efficiently for images similar to an example image. Given a 

collection of medical images, each image has been 

segmented (automatically or manually) into closed contours 

corresponding to dominant image objects or regions. These 

are objects common in all mages of a given application 

domain. For example, in medical images, the expected 

objects may correspond to the usual anatomical structures 

(e.g., “heart”, “lungs”) and the outline contour of the body.  

All expected objects are identified prior to storage and a 

class or name is assigned to each one.  The labeled objects 

need not be similar in all images. Not all objects need to be 

identified: Images may also contain “unexpected” or 

“unlabeled” objects. These may be objects not present in all 

images. For example, in medical images, the unexpected 

objects may correspond to abnormal pathological structures 

(e.g., “hematoma”, “tumor” etc.). The user can specify a 

desirable image (e.g., “find the examinations which are 

similar to Smith’s examination”). The system will return all 

the images below a distance threshold or the most similar 

images. For two images to be similar they must contain 

similar objects (regions in general) in similar spatial 

relationships. Our primary goal is to swiftly respond to the 

queries. A secondary goal is to support visualization and 

data mining (e.g., study of the clustering properties of the set 

of images).  

The rest of the paper is organized as follows: In Section 

2, we discuss existing methods on image retrievals. Section 

3 provides a brief overview of the proposed work. Section 4 

presents a detailed system analysis of our proposed methods 

for digital medical image indexing using the Attributed 

Relational Graphs (ARGs) and Rectangular trees (R-trees). 

Section 5 concludes the paper.    

II. EXISTING METHODS ON IMAGE INDEXING, 

SEARCHING AND RETRIEVAL 

A. Image Retrieval by Content 

Image content can be described indirectly through 

attributes (e.g., subject, speaker, etc.) or text (e.g., captions). 

Queries by image content require that, prior to storage, 

images are processed, and appropriate descriptions of their 

content are extracted and stored in the database. Retrievals 

by image content is not an exact process (two images are 

rarely identical). Instead, all images with up to a pre-

specified degree of similarity have to be retrieved [1]. The 

design of appropriate image similarity/distance functions is 

a key issue and is application-dependent. An almost 

orthogonal issue is speed of search. In this section, we 

review techniques for exact and approximate database 

search along with methods to accelerate the search. 

B. Exact Match Searching in Image Databases 

2-D strings [2] constitute an efficient image content 

representation and provide low complexity (i.e., polynomial) 

matching in image databases. A unique name or class is 

assigned to each object. The relative positions between all 

objects are then represented by two one-dimensional strings. 

The problem of image retrieval is transformed into one of 

string matching: All 2-D strings containing the 2-D string of 

the query as a substring are retrieved. Methods for speed up 

of retrievals based indexing of 2-D strings in a database 

have been proposed [3, 4].  2-D strings [5] deal with 

situations of overlapping objects with complex shapes. 2-D 

strings may yield “false alarms” (non-qualifying images) 

and “false dismissals” (qualifying but not retrieved images).  

C. Approximate Searching in Image Databases – No 

Indexing 

Systems described in the literature on Machine Vision 

typically focus on the quality of the features and the 

matching function, with little or no emphasis on the speed of 

retrieval. Thus, each image is described by a set of features; 

to respond to a query, the system searches the features of all 

the images sequentially. A typical, recent system supports 

the segmentation and interactive retrieval of facial images 

from an IDB [6]. A-priori knowledge regarding the kind and 

the positioning of expected image objects (e.g., face outline, 

nose, eyes etc.) is employed and used to guide the 

segmentation of face images into disjoint regions 

corresponding to the above objects. The database search is 

exhaustive, using sequential scanning. 

D. Approximate Searching in Image Databases – with 

Indexing 

An attempt to combine indexing and approximate 

database search is proposed in [7]. The main idea is to 

extract f features from each image, thus mapping images 

into points in an f-dimensional space. Any spatial access 

method can then be used to handle range and nearest-

neighbor queries efficiently. The original paper did not 

address the issue of false dismissals as well as the problem 

of retrieving images by specifying properties of objects and 

relationships between objects. In all of the above methods, 

one or more of the following drawbacks exist: (a) they do 

not index on the relationships between objects; (b) they do 

not scale up, for large, disk-based databases; (c) they have 

false dismissals. Our proposed method solves all these three 

issues. 

E. Spatial Access Methods 

As mentioned before, we can achieve faster-than-

sequential searching by using the so-called “spatial access 

methods”. These are file structures to manage a large 

collection of f-dimensional points (or rectangles or other 

geometric objects) stored on the disk so that, “range 

queries” can be efficiently answered. A range query 

specifies a region (e.g., hyper-rectangle or hyper-sphere) in 

the address space, requesting all the data objects that 

intersect it. If the data objects are points (as eventually 

happens in our application), the range query requires all the 

points that are inside the region of interest. An example of a 

range query on point data is “retrieve all the cities that are 

200 km away from Brussels”. Spatial access methods can 

also handle “nearest neighbor” and “all-pairs (or “spatial-
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join”) queries. For clarity, in this paper, we focus on range 

queries only.  

Several spatial access methods have been proposed, 

forming the following classes: (a) Methods that transform 

rectangles into points in a higher dimensionality space [8]; 

(b) Methods that use linear quad-trees or, equivalently, the 

“z-ordering” [9] or other “space filling curves” and finally 

(c) Methods based on trees (k-dimensional trees etc). One of 

the most characteristic approaches in the last class is the R-

tree. The R-tree can be envisioned as an extension of the B-

tree for multidimensional objects. A geometric object is 

represented by its Minimum Bounding Rectangle (MBR). 

Non-leaf nodes contain entries of the form (ptr, R) where ptr 

is a pointer to a child node in the R-tree; R is the MBR that 

covers all rectangles in the child node. Leaf nodes contain 

entries of the form (object_ id, R) where object_id is a 

pointer to the object description, and R is the MBR of the 

object. The main idea behind the R-tree [10] is that father 

nodes are allowed to overlap. This way, the R-tree can 

guarantee good space utilization and remains balanced. 

Extensions, variations and improvements to the original R-

tree structure include the packed R-trees, the R+-tree, the R*-

tree, and the Hilbert R-tree. 

III. OUR PROPOSED METHOD 

Our method maps each image to a point in an f-

dimensional space. The mapping of Attributed Relational 

Graphs (ARGs) to f-dimensional points is achieved through 

FastMap [11]. Similarly, queries are mapped to points in the 

above f-dimensional space and the problem of IDB search is 

transformed into one of spatial search. To speed-up 

retrievals, the f-dimensional points are indexed using an R-

tree. Below we discuss each one of the above processing 

steps separately. 

A. Image Segmentation 

All images are segmented into closed contours 

corresponding to dominant image objects or regions. 

However, image segmentation and labeling of the 

components are outside the scope of this paper. We assume 

that each image has been segmented manually (e.g., by 

tracing the contours of the regions of interest). Figure 1 

shows an example of an original MRI image and its 

segmented form. The contribution of our work is with 

regards to fast searching after the images and the queries 

have been segmented.  

 

  
Figure 1. Example of an Original Gray-level Image (left) and its Segmented  

Form (right) 

B. ARG Representation 

Figure 2 shows the proposed ARG representation for 

medical MRI images of the abdomen such as the example 

image of Figure 1. Nodes correspond to regions and arcs 

correspond to relationships between regions. Both nodes and 

arcs are labeled by the attribute values of the region 

properties and the relationship properties, respectively. 

Angles are in degrees. In this work, we used the following 

set of features: Individual regions are described by 3 

attributes, namely: (i) Size ( ), computed as the size of the 

area of a region; (ii) Roundness ( ), computed as the ratio of 

the smallest to the largest second moment and (iii) 

Orientation ( ), defined as the angle between the horizontal 

direction and the axis of elongation. This is the axis of least 

second moment. Spatial Relationships between regions are 

described by 2 attributes, namely: (i) Distance ( ), computed 

as the minimum distance between their contours; (ii) 

Relative Angle ( ), defined as the angle with the horizontal 

direction of the line connecting the centers of mass of the 

two regions. 

It is straightforward to add more features as region or 

relationship attributes. Additional features that could be 

used include the average grey-level and texture values, 

moments or Fourier coefficients etc. as region descriptors; 

relative size, amount of overlapping or adjacency etc. can be 

also used to characterize the relationships between regions. 

In any case, our proposed method can handle any set of 

features. However, we have strong reasons to use the above 

set of features. The features we used are very successful. 

 

 
 

Figure 2. Attributed Relational Graph (ARG) corresponding to the Example 

Image of Figure 1 
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C. Mapping ARGs to f-dimensional Points 

The FastMap algorithm accepts as input: ARGs, the 

Eucledian distance function and, the desired number of 

dimensions, and maps the above ARGs to points in an f-

dimensional space. As mentioned earlier, the complexity of 

this mapping is f-distance computations. Each image is 

mapped to exactly one point. 

D. Indexing – File Structure 

Figure 3 demonstrates the proposed file structure of the 

data on the disk. Specifically, the file structure consists of 

the following parts: 

 

 
 

Figure 3. File Structure 

 

� The spatial access method, holding an f-dimensional 

vector for each stored image (ARG). We used R-trees 

solely because of availability; any spatial access method 

would be applicable, like, e.g., R*-trees and X-trees. In 

fact, a faster spatial access method would only make 

our approach work even faster! 

� The “ARG file”. This is a file holding the ARGs. Each 

record in this file consists of (a) An identifier (e.g., the 

image file name) corresponding to the image from 

which the ARG has been derived and (b) The features 

of each region together with its relationships with the 

other regions. 

� The “Image store” holding the original image files. For 

faster display, we have also kept the segmented forms 

of all images. 

E. Search Strategy 

The user specifies a query image and a tolerance, and 

asks for all the images within that tolerance. The ARG of 

the query is computed first. Then, the f-dimensional vector 

of the above ARG is derived. All vectors within tolerance 

are retrieved from the R-tree. The R-tree may return false 

alarms (i.e., not qualifying images). A post-processing step 

is required to clean-up the false alarms. For the R-tree 

search, we issue a range query on the R-tree to obtain a list 

of promising images (image identifiers). The clean-up 

procedure for each of the above obtained images retrieves its 

corresponding ARG from the ARG file and computes the 

actual distance between this ARG and the ARG of the 

query. If the distance is less than the threshold, the image is 

included in the response set. 

IV. SYSTEM ANALYSIS 

All images are segmented into closed contours 

corresponding to dominant image objects or regions. Tools 

like Adobe Photoshop can be used for manual segmentation 

of images. 

A. ARG Representation 

Image descriptions are given in terms of object properties 

and in terms of relationships between objects. The textbook 

approach to capture this information is the Attributed 

Relational Graphs (ARGs). In an ARG, the objects are 

represented by graph nodes and the relationships between 

objects are represented by arcs between such nodes. Both 

nodes and arcs are labeled by attributes corresponding to 

properties (features) of objects and relationships 

respectively. Figure 4 shows an example image (a line 

drawing showing a face) containing four objects (numbered 

0 through 3) and its corresponding ARG.  

 

 
 

Figure 4. Example Image showing a Sketch of a Face (left) and its 

corresponding ARG (right) 

 

The relationship between any two objects has (in this 

example) also one attribute, namely, the angle (a) with the 

horizontal direction of the line connecting the centers of 

mass of these objects. The specific features which are used 

in the ARGs are derived from the raw image data and 

depending on the application, can be geometric (i.e., 

independent of pixel values), statistical or textural, or 

features specified in some transform domain (e.g., Fourier 

coefficients of object shapes). In the case of medical CT and 

MRI images used in this work, the set of features is given 

below. 

The following properties are used to describe the 

individual regions of objects 

� Size (s), computed as the size of the area it 

occupies. 

� Roundness (r), computed as the ratio of the smallest 

to the largest second moment. 

� Orientation (o), defined to be the angle between the 

horizontal direction and the axis of elongation. This 

is the axis of least second moment. 

The following properties are used to describe the spatial 

relationships between two objects 

� Distance (d), computed as the minimum distance 

between all pairs of line segments, taking one from 

each object. 
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� Relative Position (p), defined as the angle with the 

horizontal direction of the line connecting the 

centers of mass of the two objects. 

However, the proposed methodology is independent of 

any specific kind of features. The problem of retrieving 

images which are similar to a given example image is 

transformed into a problem of searching a database of stored 

ARGs: Given a query, its ARG has to be computed and 

compared with all stored ARGs.  

In comparisons between ARGs, we need a measure of the 

“goodness” of matching. A measure of goodness is defined 

here. Let Q be a query image consisting of q objects and S 

be a stored image consisting of s objects. Let F( ) be a 

mapping from objects in Q to objects in S (e.g., such a 

mapping associates objects with the same labels). The cost 

of this mapping is defined as: 

 

DistF(Q, S) = �COST(i, F(i)) - �COST(i, j, F(i), F(j)) …(1) 

 

The first term in the above equation is the cost of 

matching associated nodes while, the second term is the cost 

of matching the relationships between such nodes. In our 

setting, only a subset of the objects in the stored image set S 

needs to be matched. There is no cost if the data image 

contains extra objects; however, we assume that the cost is 

infinite if the data image is missing one of the objects of the 

query. COST is the cost of matching features of objects or 

features of relationships between associated objects. The 

distance between images Q and S is defined as the minimum 

distance computed over all possible mappings F( ): 

 

Dist(Q, S) = minF { DistF(Q, S) }  …(2) 

 

The typical way to compute DistF(Q, S) is using an Lp 

metric. This is done as follows: Let (q1, q2, …, qK) be a 

vector of feature values derived from Q by taking the 

features of all its objects and of their relationships in some 

pre-specified order (e.g., object 1 and its relationships with 

the remaining objects are taken first, followed by the 

features of object 2, etc.). Let (s1, s2, …, sK) be the vector 

derived from S by taking the features of the objects 

associated to objects in Q in the same order. Then, Equation 

1 can be written as follows: 

 

DistF(Q, S) = Distp,F(Q, S) = [ �k |qi - si|
p ]1/p  …(3) 

                                      i=1 
 

p is the order of the metric. For p = 1and p = 2, we obtain 

the Manhattan (city-block) and the Euclidean distance 

respectively. For example, the Manhattan distance between 

the query image of Figure 5 and the example image of 

Figure 4 is Dist(Q, S) = |100-80| + |15-10| - |130-110| = 45. 

We have omitted the subscript F because there is only one 

mapping. Similarity searching in an IDB of stored ARGs 

requires that all images within distance t must be retrieved. 

Specifically, we have to retrieve all the images of S that 

satisfy the following condition. Without loss of generality, 

we use the Euclidean distance (p = 2). However, the 

proposed method can handle any Lp metric. 

 

              Dist(Q, S) � t  …(4) 
 

 
 

Figure 5. Matching between the Query and the Original Example Image 

B. FastMap 

FastMap [11] is an algorithm that takes in N ARGs, the 

ARG distance function and f, the desired number of 

dimensions, and maps the above ARGs to N points in an f-

dimensional space such that distances are preserved. The 

goal is to solve the problem for the ‘distance case, that is, to 

find N points in k-dimensional space, whose Euclidian 

distances will match the distances of a given N x N distance 

matrix.  The key idea is to pretend that objects are indeed 

points in some unknown, n-dimensional space, and to try to 

project these points on k mutually orthogonal directions. The 

challenge is to compute these projections from the distance 

matrix only, since it is the only input we have. For the rest 

of this discussion, an object will be treated as if it were a 

point in an n-dimensional space, (with unknown n). The 

main focus of the proposed method is to project the objects 

on a carefully selected ‘line’.  To do that, we choose two 

objects Oa and Ob (referred to as ‘pivot objects’ from now 

on), and consider the ‘line’ that passes through them in n-

dimensional space. The projections of the objects on that 

line are computed using the cosine law.   

C. Indexing 

Each of the f-dimensional vectors for the stored image is 

arranged into an indexing structure called R-Tree. One of 

the huge demands in geo-data applications is to respond 

very quickly to spatial queries. Spatial data objects often 

cover areas in multi-dimensional spaces. Multi-dimensional 

queries prevent from using classical indexing structures, for 

instance the B-Tree. The reason is that the database uses 

one-dimensional indexing structures. However, in modern 

information processing like CAD (Computer Aided Design), 

cartography and multimedia applications use multi-

dimensional data objects which mean that the objects have 

more attributes. Thus, the database system needs an efficient 

multi-dimensional index structure. A number of structures 

have been proposed for handling multi-dimensional point 

data. We choose to use the R-trees (Rectangular trees), a 

dynamic-index data structure [10] for spatial searching and 

can be used to represent data objects by intervals in several 

dimensions. 

D. R-Tree Index Structure 

An R-Tree is a height-balanced tree similar to a B-Tree. 

Leaf nodes contain pointers to data objects. The index is 

completely dynamic. Structure is designed in such a way 

that a spatial search requires visiting only a small number of 

nodes. The spatial data is comprised by a MBR (Minimal 
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Bounding Rectangle) which may compose one or more 

MBRs. This structure continues up to the root. Eventually 

the root comprises a MBR over all objects. Figure 6 shows 

an example of a simple R-Tree. 

In Figure 6, nodes A, B and C are the root nodes. Node A, 

for instance, covers child nodes D, E, F and G, and contains 

them with a minimal bounding rectangle. An R-Tree 

satisfies the following properties:  

1. Every leaf node contains between m and M index 

records unless it is the root Thus, the root can have less 

entries than m. 

2. For each index record in a leaf node, I is the smallest 

rectangle that spatially contains the n-dimensional data 

object represented by the indicated tuple. 

3. Every non-leaf node has between m and M children 

unless it is the root. 

4. For each entry in a non-leaf node, i is the smallest 

rectangle that spatially contains the rectangles in the child 

node. 

5. The root node has at least two children unless it is a 

leaf node. 

6. All leaves appear on the same level. That means the 

tree is balanced. 

 

 
 

Figure 6. Structure of a simple R-Tree 

 

1) Structure of a Leaf Node: Leaf nodes in an R-Tree 

contain index record entries of the form (I, tuple-identifier) 

where tuple-identifier refers to a tuple in the database and I 

is an n-dimensional rectangle which is the bounding box of 

the spatial object indexed. 

I = (I0, I1, …, In-1 ) 

Here n is the number of dimensions and Ii is a closed 

bounded interval [a, b] describing the extension of the 

object along dimension i. 

2) Structure of a Non-leaf Node: The nodes which are not 

leaf nodes contain entries of the form (I, child-pointer) 

where child-pointer is the address of a lower node in the R-

Tree and I covers all rectangles in the child node's entries. 

 

 
 

Figure 7. Root Node A covers Child Node Entries D, E, F and G 

 

3) Maximum and Minimum Entries: Variable M is the 

maximum of entries which is usually given and m is the 

minimum of entries in one node. The minimum number of 

entries in a node is dependent on M with (M/2) � m. The 

maximum number of nodes is � � � � 1// 2
++ mNmN . 

Here N stands for the number of index records of the R-

Tree. Variable m is jointly responsible for the height of an 

R-Tree and the speed of the algorithm. The choice of M 

depends on the hardware, especially on hard disk properties 

such as capacity and sector size. If nodes have more than 3 

or 4 entries, the tree is very wide, and almost all the space is 

used for leaf nodes containing index records. 

4) Searching: The search algorithm is similar to that of the 

B-Tree. It returns all qualifying records which the search 

rectangle overlaps. The algorithm descends the tree from the 

root. In the same time, the algorithm checks the rectangle 

overlapping in the node with the searched rectangle. If the 

test is positive, the search just descends to the found 

overlapping nodes. This procedure is repeated until the leaf 

node. If the entries of the leaf node overlap the searched 

rectangle then we return these entries as a qualifying record. 

In Figure 8, there is a filled rectangle which is the search 

rectangle. The algorithm is looking for qualifying records in 

the filled area. The filled rectangle overlaps the root entries 

R1 and R2, so the algorithm checks these entries. In R1, 

there is just R4 which overlaps the filled rectangle. Its 

entries are also checked. The algorithm arrives at the leaf 

node level. The entries of the leaf node are checked for 

qualifying records. R11 is the only one and so a first search 

result. In R2, there are two rectangle overlaps with the filled 

rectangle: R5 and R6. Both of them are checked and the 

algorithm recognizes that at the leaf node level, the entries 

R13, R15 and R16 overlap with the search rectangle. 

Finally, the search result is R11, R13, R15 and R16. 

5) Insertion: Inserting index records for new data is 

similar to insertion into a B-Tree. New data is added to the 

leaf nodes, nodes that overflow are split, and splits are 

propagated up the tree. An example of inserting rectangle 

R21 is shown in Figure 9. To find the best position for the 

new rectangle, the algorithm starts with choosing the leaf 

nodes. Figure 10 shows the procedure to choose leaf nodes. 

The first step is clear because R21 is in R1. Next, the 

algorithm chooses R3, because this rectangle needs lower 

enlargement than R4. At the last step, the algorithm finds 

the leaf node; however, all entries are full. This leads to 

splitting a node, which is next discussed in Section 4.7 and 

illustrated in Figure 11.  
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Figure 8. Searching in an R-tree 

 

 

 
Figure 9: Example to Illustrate the Insertion of a new Rectangle 

 

 

 
 

Figure 10. Example to Illustrate the Procedure to Choose Leaf Nodes 

 

6) Splitting of a Node: The objective of the procedure to 

split a node (referred as SplitNode) is to minimize rectangles 

as much as possible. That is the reason why the algorithm 

puts R21 and R9 in rectangle R3. R8 and R10 are put in the 

new parent rectangle R30. R30 is propagated upward. Since 

there is enough room to include R30, it is not necessary to 

split this node again. R3 must be adjusted as well because it 

only points to R9 and to the new rectangle R21. At last, the 

root node R1 is also adjusted because it includes a new entry 

R30. So the structure of the tree is saved. The Insertion is 

now finished and Figure 11 shows the new included 

rectangle. 
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Figure 11. Example to Illustrate the Splitting and Insertion of a Node 

 

7) Kinds of Splits: In the case of adding a new entry to a 

full node containing M entries, it is necessary to divide the 

collection of M + 1 entries between two nodes. Insertion and 

Deletion have to use this method to save the tree structure. 

The division should be done in a way that makes it as 

unlikely as possible that both new nodes will need to be 

checked on subsequent searches. The total area of the two 

covering rectangles after a split should be minimized. Figure 

12 shows a 'good' split and a 'bad' split. There are three 

versions of algorithms for SplitNode. They are: (a) 

Exhaustive algorithm; (b) Quadratic-cost algorithm; (c) 

Linear-cost algorithm. 
 

 
 

Figure 12. Kinds of Splits: Bad Split (Left) and Good Split (Right) 

 

Exhaustive Algorithm is normally not used. It is the best 

split algorithm in quality because it finds the best way to 

minimize the area of all rectangles of the R-Tree. The cost, 

however, would be 2M-1 and so the algorithm would be too 

slow with a large node size. Linear-cost algorithms produce 

the poorest quality. Hence, we use the quadratic-cost 

algorithm, explained below: 

The quadratic-cost algorithm tries (cost: O(M2)) to find a 

small-area split; however, it is not guaranteed that it finds 

one with the smallest area possible. Quadratic-Cost 

algorithm chooses two of the M+1 entries, which use most 

of the area and puts them in new nodes. Considering the 

remaining entries, the entry that needs the largest area is 

selected, if it is inserted in one of the two nodes. The 

algorithm then puts the selected entry in that node where 

fewer enlargements are needed. The procedure is repeated 

until all nodes are divided or one node has less then m 

entries. 

V. CONCLUSIONS AND FUTURE WORK 

Our proposed indexing method allows similarity search 

to be performed on both labeled and unlabeled (i.e., not 

identified) objects. Indexing is performed by decomposing 

each input image into sets of objects, called “sub-images”, 

containing all labeled objects and a fixed number of 

unlabeled objects. All sub-images are mapped to points in a 

multi-dimensional feature space and are stored in an R-tree. 

Image database search is then transformed into spatial 

search. Our proposed method outperforms sequential 

scanning significantly for searching in the main memory or 

on the disk, never missing a hit (i.e., no false dismissals). 

The method can accommodate any set of attributes that the 

domain expert will provide. With respect to future work, a 

very promising direction is the study of data mining 

algorithms on the point-transformed set of images to detect 

regularities and patterns, as well as to detect correlations 

with demographic data. Another promising direction is the 

use of more recent indexing structures, such as the X-Tree 

or the SR-Tree, which provide faster search times for 

smaller space overhead. 
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