
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 32

ISSN No. 0976-5697

Security Enhancement through Fine Grained Access Control in Cloud Computing

S. Rama Krishna1, B. Padmaja Rani2

Associate Professor, Department of Computer Science, VYCET, Chirala.
Professor & Head of the Department, Department of Computer Science & Engineering, JNTUCEH, Hyderabad

Ramakrishna.ss@gmail.com, padmaja_jntuh@yahoo.co.in

Abstract: Cloud computing has showed up as a popular design in managing world to back up managing large volumetric details using cluster of
commodity computer systems. It is the newest effort in offering and managing computing as a service. Either program or Application, it is used
to describe both. A cloud computing paradigm dynamically assigns, configures, relocates and de provisions these computing resources as
needed. it also describes applications that are to be extended accessible through the Internet. Data security and availability management is one of
the most complex ongoing studies in cloud managing, because of clients outsourcing their sensitive details to cloud service providers. Current
alternatives that use genuine cryptographic techniques to reduce these security and availability management problems suffer from heavy
computational cost on both data owner as well as the cloud service provider for key distribution and management. This paper capability based
access control addresses this challenging problem to ensure only valid users will access the outsourced data. It reduces burden over the data
owner for key management it is proposed to maintain key management in the cloud it self. This work also proposes some modifications in
Diffie-Hellman key exchange protocol to thwart from man in middle attack between cloud service provider and the user for secretly sharing a
symmetric key for secure data access that alleviates the problem of key distribution and management at cloud service provider. The simulation
run and research reveals that the recommended strategy is highly efficient and secured under current security designs.

I. INTRODUCTION

Cloud computing has become a necessity today when
the company plans to increase capacity "or capabilities on
the fly without getting to invest new infrastructure, training
new individual purchase new license application, etc. based
service encompasses any subscription or pay per use which
extends the existing IT capabilities of the company, current
time through Online.

Figure1: Trend showing interest towards cloud [27]

Figure 2:As per Gartener survey februvery 2013 Global spending on public
cloud services is expected to grow 18.6% in 2012 to $110.3B, achieving a
CAGR of 17.7% from 2011 through 2016. The total market is expected to

grow from $76.9B in 2010 to $210B in 2016 [1].

The U.S. National Institute of Standards and

Technology (NIST) to determine cloud computing as "a
model for enabling convenient access and on demand
network to a shared pool of configurable computing
resources (eg, networks, servers, storage, applications and
services) that can need to acquire rapidly and released with
minimal management effort or service provider interaction
"[2].Cloud computing can also be defined as “a type of
parallel and distributed system consisting of a collection of
interconnected and virtualized as one or more unified
computing resources based on service-level agreements
established through negotiation between the service provider
and consumers” [3]. In recent past, various commercial
models are developed that are described by “X as a Service
(XaaS)” where X could be hardware, software or storage etc
[4]. Successful examples of emerging cloud computing
infrastructures are Microsoft Azure [5], Amazon’s EC2 and
S3 [6], and Google App Engine [7] etc.

Cloud computing also faces the data security challenges
as that of any other communication models. As data owners
store their data on external servers, there have been
increasing demands and concerns for data confidentiality,
authentication and access control [8]. Besides confidentiality
and privacy breaks, the external servers could also use part
of the data or whole for their financial gain and hence
tarnishing the data owners market or even bringing
economic losses to the data owner. These concerns originate
from the fact that cloud servers are usually operated by
commercial providers which are very likely to be outside of
the trusted domain of users [9]. The work done in [8][10-11]
propose cryptographic access control model as shown in
Fig.1 which we have also considered as the system model in
our work. The model depicted in Fig.1 has three participants
Data Owner (DO), Cloud Service Provider (CSP), and the
User. The DO places the data on the CSP which the user
wants to access. As the CSP is un-trusted, DO places
encrypted data on CSP. Upon receiving a data access
request from the user, DO sends required keys and a

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 33

certificate to the user. User then presents the certificate to
CSP and gets the encrypted data upon successful
verification by CSP as shown in Fig.3.

Figure 3.

The model described in Fig.3 guarantees
confidentiality, integrity and authentication, but the problem
with this model is that the owner should be always online
when the user wants to access the data [12]. The key
management between all the communicating parties is also
cumbersome. In some situations, an owner with poor
computing capabilities becomes a bottleneck. Traditional
access control architectures usually assume the data owner
and the servers storing the data are in the same trusted
domain [9], where the storage servers are modelled as an
omniscient reference monitor [13] entrusted to define and
enforce access control policies. An assumption like this does
not hold true for cloud computing as the data ownersmust
ensure the trust worthiness of the cloud servers which is
very difficult in practice.

The general principle of cryptography has also been
used with Access Control Lists (ACLs) for ensuring access
control and confidentiality to the data storage on un-trusted
servers [14-15]. Use of ACLs or filegroups reduces the
complexity of data encryption and key management.
However, ACLs or filegroups still lack scalability, and fine-
grainedness for confidentiality and access control in cloud
computing [9].Access control policies based on data
attributes and encryption as suggested in [9] also becomes
cumbersome as it is computationally challenging to derive a
unique logical expression for every user in the cloud.

In this paper, we address this open issue of access
control and propose a secure, scalable, and efficient data
access control mechanism using capability based access
control [24] and over encryption for cloud computing
paradigm. Data owner encrypts the outsourced data with a
symmetric key which is shared only with the user. The CSP
and user generate a symmetric key using a modified DH key
exchange protocol for the purpose of secure communication
between them that relieves the CSP from key management
burden as needed in public key cryptography. The proposed
work guarantees secure access to outsourced data and at the
same time it relieves the DO from worrying about every
data access request made by the user except the initial one.
Hence, DO will not be a bottleneck and rather will increase
efficiency as it does not remain in scene for all future data
access requests and responses.

The remainder of the paper is organized as follows.
Section II reviews the related research. Section III discusses
models and assumptions. Section IV presents our proposed
scheme. In Section V, we analyse our proposed scheme in

terms of performance and strength. Section VI gives details
about the simulation run. Finally, Section VII concludes the
paper and presents future research directions.

II. RELATED WORK

A few research efforts have directly tackled the issues
of access control in cloud computing model. Yu et al. [9]
proposed a scheme to achieve fine-grained, secure, and
scalable access control in cloud computing by combining
techniques of attribute-based encryption (ABE), proxy
reencryption, and lazy re-encryption. A set of attributes are
associated to a file that are meaningful in the context of
interest. The access structure of each user is defined as a
logical expression over these attributes, which reflects the
scope of data file that the user is allowed to access. A public
key component is defined for each attribute.

Data files are encrypted using the public keys
corresponding to their attributes. User secret keys are
defined matching their access structures so that a user is able
to decrypt a ciphertext if and only if the data file attributes
satisfy his access structure. The main issue with this scheme
is that as the cloud servers store a vast amount of data,
deriving a unique logical expression for every user using the
attributes of every file will become computationally
complex. Also, re-encryption becomes a problem as
updating the user secret for all the users except the revoked
one is a challenging process when the number of users is
high. Ateniese et al. [14] proposed a secure distributed
storage scheme based on proxy re-encryption. The data
owner encrypts blocks of content with symmetric content
keys. The content keys are all encrypted with a master
public key. The data owner uses his master private key and
user’s public key to generate proxy re-encryption keys,
using which the semi-trusted server can then convert the
ciphertext into plaintext for a specific user. The issue with
this scheme is that collaboration between a malicious server
and any single malicious user would expose decryption keys
of all the encrypted data and compromise data security of
the system. Miklau et al. [16] presented a framework for
access control on published XML documents by using
different cryptographic keys over different portions of XML
tree. They also introduced special metadata nodes in the
structure to enforce access control. The complexity of this
approach is XML tree generation and key management.

Vimercati et al. [17] proposed a solution for securing
data storage on untrusted servers. Each file is encrypted with
a symmetric key and each user is assigned a secret key. The
data owner creates corresponding public tokens from which,
together with his secret key, the user derives decryption
keys. The data owner sends these public tokens to the semi-
trusted server and also delegates the responsibility of
distribution. Given these public tokens, the server is not able
to derive the decryption key of any file. This approach
introduced a minimal number of secret key per user and a
minimal number of encryption key for each file. The issue
with this scheme is that the complexity of operations of file
creation and user grant or user revocation requests is linear
to the number of users, because of which the scheme
becomes non-scalable. Naor et al [18] proposed application
of symmetric key primitives in an untrusted storage
environment to ensure data confidentiality and access
control. The scheme is based on pre-key distribution
mechanisms using Blom [19] scheme that can reduce public

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 34

key cryptography in the storage-as-a-service model. The
issue in this work is that they have not evaluated the
performance of their schemes and also, do not provide an
expressive access control model.

III. MODEL AND ASSUMPTIONS

Similar to [8][10][20], we assume that the system is
composed of a Data owner, many Data consumers called as
Users, and a Cloud service provider. The authentic users get
the data file that is stored on the CSP by the DO in a
confidential manner. We also assume that neither the DO
nor the User will be always online as is done in [9]. DO
comes online when a new user is to be registered or when
the capability list is to be updated at CSP. CSP is a
conglomeration of several Service providers like Amazon,
Google, and Microsoft which has very large storage and
computation capacity. CSP is always online. We also
assume that the DO can also execute a binary application
code at the CSP for managing his data files in addition to
storing those in encrypted form as is done in [9][21].
Communication between CSP and user or between user and
DO is made secure using cryptographic primitives like
SSL/TLS. In our model, users cannot access other’s data
files as there will be no capability granted by DO for these
users. For the purpose of simplifying the secure
communication between DO and CSP, DO and user, we
assume that each party is preloaded with others public keys
hence, we do not need any PKI for distributing public keys
of each other involved in secure communication. Fig.3
shows the notations used in our scheme.

IV. PROPOSED SCHEME

In this section, we provide an example of our approach
along with data structures and notations used in the
algorithm. We also present the pseudo-code of our
algorithms. In order to achieve secure and efficient data
access control in cloud computing, we uniquely combine
capability based access control technique with cryptography.

Fig.4 illustrates our scheme by an example. Here, the
owner can be a doctor who posts the patients’ reports into
the cloud and user can be any Hospital patient registered
into the same decease who views his/her health reports from
the cloud. The data owner computes a message digest using
MD5 for every file belonging to the data set available with
it. We have used a 128-bit MD5 hash over any other like
SHA-1 (160-bit) for data integrity because we are
encapsulating this digest along with the file using a
symmetric key.

This in turn gives cryptographic strength much more
than using the later one i.e. SHA-1. This ensures data
confidentiality and integrity between owner and user. DO
then updates the capability list with a new entry for every
user and the data item that can be accessed by the user. It
inserts access rights (0 for read, 1 for write or 2 for both
read and write) into the AR field of the tuple (UID, FID,
AR). DO then sends everything encrypted using its private
key first and then using public key of the CSP for the
purpose of authentication and confidentiality between CSP
and DO. This procedure is described in Fig.4.

Figure 4: example operations Private health record

Figure 5: Notations used throughout this paper

Figure 6. Algorithm for DO sending encrypted outsourced Data items and

capability list to CSP.

Fig.7 illustrates the procedure that the CSP will adopt
when it receives encrypted data files and capability lists
from the DO. It uses its’ own private key and the public key
of DO to decrypt the message and store the encrypted data
files and capability list in its’ storage. However, our model

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 35

does not allow the CSP to know the actual data items as it
does not know the Ko i.e. the shared symmetric key between
user and DO. This achieves one of our design objectives
where the data files only should be visible to the user and
DO, not to the CSP as it is available over an untrusted
domain.

Figure 7 Algorithm for CSP receiving and storing both encrypted files and

capability list

When a new user is to be added, the user needs to send
a registration request with UID, FID, Nonce, Timestamp and
access rights required for the data file to the data owner.
Fig.6 describes the pseudo code for this procedure. Here,
after receiving a request, data owner adds an entry into the
capability list if it is a valid request. For simplicity we
assume that the DO has a separate procedure for verifying
the genuineness of the client request.

DO now send the capability list and an encrypted
message intended for user with all the key parameters
needed at user for decrypting the data files to CSP. CSP now
updates its’ capability list and sends a registration reply to
user using over encryption i.e. encrypting twice using
EKPUUSR. This meets our critical design goal that is the
key parameters required for decryption are still confidential
to user (although these have come via CSP). The nonce and
timestamps in the request and reply message serve the
purpose of replay and man-in-the-middle attack avoidance.

Figure 8.Algorithm for registering a new user

After the data files are available at the cloud in an
encrypted form and keys are made available to the user, now
that the actual data access request goes from a user to the
CSP. If request is valid, D-H is initiated by CSP.

This satisfies our design criteria of not keeping the data
owner always online. Fig.9 describes the use of modified
DH key exchange protocol to acquire a shared session key
for the purpose of confidential communication between CSP
and user. In this algorithm, we have attempted to solve the
man-in-the-middle attack that is prominent on D-H key
exchange.

This is achieved by encrypting the D-H parameters
using the public key of one side and using nonce in each
direction. CSP encrypts the object Oi which is an encrypted
version of file (fi) and its’ digest (Di) using the shared
session key generated from the D-H exchange. This over
encryption ensures the confidentiality of the message
between CSP and user and also CSP is unable to read the
contents of the data file. Our assumption here is that the
session key generated between CSP and user remains valid
for a predefined period.

Figure 9. Algorithm for secure data exchange between CSP and User using

D-H key exchange.

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 36

This is to avoid the use of D-H key exchange for every
data access request. The user upon receiving an encrypted
response from the CSP again calculates the digest by using
the hash function. The newly calculated digest is then
compared with the digest that is attached with the message
to check the integrity of the message. This is described in
Fig.10.

V. ANALYSIS OF PROPOSED SCHEME

A. Security Analysis:
In this section, we analyse security properties of our

proposed scheme and also, the performance in terms of
scalability and strength of cryptographic primitives. The
following properties are analyzed first.

Figure 10. Algorithm for response check by the user

a. Data confidentiality: We analyse data confidentiality
of our proposed scheme by comparing it with
standard encryption algorithms like Data Encryption
Standard or Advanced Encryption Standard that use
symmetric keys. As described in [22], how does a
data owner merge cloud security data with its’ own
security metrics and policies? We attempt to give an
answer to this using our proposed over encryption
scheme. The CSP is not able to know the owners data
and also the digest due to the fact that both are
encrypted and the key is only shared between data
owner and user.

The over encryption (double encryption) is described by
the following in our scheme:Oi->EKO (fi , Di) , followed by
EOi -> EKS (Oi). The EKO is one symmetric key that is
known to DO and user, hence Oi is non-intelligible to CSP.
Further, EKS is the session key between CSP and user,
hence no one else even knows Oi. By employing over
encryption, the key length is increased and hence brute-force
attack becomes difficult on the cipher. In Fig.11, we plot a
graph showing the strength of our double encryption scheme
over other standard ciphers like symmetric, asymmetric etc.
Although DES and Public key algorithms like RSA, DSS etc
are used for different purposes, because of large key sizes,
we have shown in Fig.11. that the Public key ciphers are
stronger than DES. Our proposed scheme only discloses the

capability list (CapList) to the cloud service provider using
which the access control is guaranteed.

b. Authentication and Integrity: The communications
from DO to CSP is authenticated by encrypting the
scrambled data files and capability list using the
private key of owner. This is described in Steps 1.2,
and 3 in Fig.4. At the time of adding a new user, user
is authenticated at owner by signing with his private
key, and also data owner is authenticated at CSP by
signing with his private key. This is shown in Fig.6.
Integrity of the data file is ensured by using MD5 as
the hashing algorithm. User computes a new hash and
compares it with the one created by owner and stored
in CSP. If both do not match, then integrity violation
is reported and a message is sent to the data owner.

Figure 11.

c. Capability-based Access Control: In our proposed
scheme, only the data owner is able to create, modify
or delete an appropriate capability from the CapList
for a user to access a data file. Earlier schemes [14-
15] have used Access Control Lists (ACLs) for access
control where as in our work, we propose Capabilities
as the data structure for controlling access to data
files.

Capabilities are row decomposition of a Access Matrix
(AM), and hence are more appropriate to individual users in
the application scenario as against the column
decomposition of AM done in ACLs case. In a cloud
computing environment, creating an ACL for an object for
the purpose of access control may not be practicable as we
may find in most probability the data files accessed by one
user may not be needed by another. This is the reason that
why we selected capabilities for access control rather than
ACLs or filegroups as is done in literature.

B. Performance Analysis:
a. Capabilities as Addresses in the Cloud: As

reported in [23], in addition to access control,
capabilities can also be used as addressing
mechanism. There is a substantial advantage in
using capabilities as a basic component of the
address of every data file that is stored at the
servers in CSP. The CSP uses capabilities to index
into Object list or table as shown in Fig.4, where it
maintains a pointer to the Service provider (one out
of many in the conglomeration) who actually
stores the data file UID which is unique for every
capability is used as an index to search the CapList
which points to an Object table that stores length of

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 37

the object and an base address of the object that
points to a specific service providers’ domain.

This enhances the addressability or identification of the
encrypted data file in the Cloud.

b. Efficient Data Access: In our approach, the data
owner need not be online always. Our approach is
flexible in the sense that it can create, add, and
delete capabilities as and when required. We plot
the statistics of computation complexity for Public
key encryption and D-H key exchange protocols,
which is used in our scheme to send the data to user
by a CSP. As the public key encryption uses a key
space of 1024 bits, the computation complexity is
high. When the key space of encrypted data i.e. Oi
is increased, complexity of sending it using public
key is further increased to 99.3%. For the same
case, by using DH key exchange we can send the
encrypted data (Oi) to the user with less complexity
i.e. 27.98% at max. We plot the graph on 1200
point scale and then reduced it to 100 point scale.
Also, the user can get the original file and the
digest only by decrypting the data items with secret
session key that it shares with CSP using D-H key
exchange. This in turn helps both CSP and the user
to send and receive multiple data files for a certain
amount of period that can be agreed upon by both
the parties priori.

Figure 12.Computational complexities of public key and D-H key exchange

ciphers

VI. SIMULATION

In this section, we describe our simulation run. All the
servers and clients are created using Java RMI. We set up
the Cloud Server and Data Owner Server at Amazon Web
Service [25][26] cloud and Clients at various places on
separate IBM Lenovo machines with Intel[R] Core 2 Duo
CPU with the speed of 2.90GHz having 2 GB of RAM. The
machine as running Microsoft Windows XP, Service Pack 2
operating system. Our experiments are carried out in
Aamazon ec2 Server with a single CPU, 512 MB RAM, 20
GB Hard Disk, and 64-bit Windows 2008 Operating system.
We used Java RMI because of the fact that the methods of
remote Java objects can be invoked from other Java virtual
machines, possibly on different hosts. We deployed the
Cloud Server and Data Owner server at Amazon web server
and Data Owner client processes can access the

Data Owner Server to get the updates, Users can make
new request to Data Owner Server and also Data Access
request to Cloud Server. The Data Owner has the flexibility

to come online at any time and check the updated capability
list. Data Owner can make changes to capability list
depending on the availability of the resources. We ran all
our processes as per the scheme defined in Section IV and
then we intercepted the messages that went between DO,
CSP, and user. Few of our screen shots are as given below.

Figure 13:Setup of server in Amazon Web services.

We deployed our Cloud server code at Amazon ec2,
and then ran the Owner server also at Amazon cloud. Fig.13
shows the run of both these servers at FlexiScale cloud. We
started several clients at three of the laboratories at
VYCET,Chirala Campus in India to access the servers
running at Amazon web services cloud whose data centre
was situated at US.EAST. The servers were running at IP
address 109.233.76.202. Upon receiving the new request the
Data owner sent the updated Capability list to the Cloud
server running at Amazon Web services. As per our
protocol, the client then sent a data request to Cloud server
and received an encrypted response from Cloud server after
access control is verified through the capability list. Fig.12
shows the encrypted response.

Figure 14: Illustration of Remote client getting data from Cloud Server.

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 38

Figure 15: Illustration of Security APIs at Data owner.

To verify the communication between Data owner and
Cloud server running at Amazon Web service, we took a
snapshot at Data owner as shown in Fig.15.

Figure 16: Network watch on instance

Figure 17 Performance comparison

Figure 17 shows the performance comparison with

existing CP-ABE to modified CP-ABE time complexities
when normalized with a factor of multiplication modified
CP ABE shows the better results in implementation.

VII. CONCLUSION

The work done in this paper by adding user access part
to the data stored in Cloud servers, and also deploying our
applications over a real-time cloud environment given by
Amazon web services. In this paper, we presented a set of
security protocols to secure the data files of a data owner in
the cloud infrastructure. In our proposed scheme, the
combined approach of access control and cryptography is
used to protect the outsourced data.

We use the capability based model for access control
mechanism along with public key encryption. A D-H key

exchange model is proposed for the users to access the
outsourced data efficiently and securely from cloud service
providers’ infrastructure. The D-H protocol fits better as we
have assumed that the CSP does not have the public key of
user which is otherwise valid in a cloud set up where the
number of users normally handled by providers is very large
and key management becomes a complex issue in this
scenario. The public key, hash, and private key ciphers that
are proposed between cloud service provider, data owner,
and user ensure an isolated and secure execution
environment at the cloud. This paper also presented a proof
of concept implementation of the cryptographic algorithms
in a Cloud computing environment using Java RMI.

Our proposed scheme empowers the data owner to
outsource the security enforcement process on the
outsourced data files without losing control over the process.
Moreover, our scheme can also delegate most of the
computation overhead to Cloud servers. Future extensions
will include enhancement in design decisions like inclusion
of a trusted third party auditor which will have capabilities
of assessing and exposing Cloud service risks, key
management and distribution scenarios, and formal security
proofs of our security protocols.

VIII. REFERENCES

[1]. Gartner survey feb 2013: from
http://www.slideshare.net/GaldeMerkline/pwc-
cloudenabledtelcoopportunitiespdf

[2]. Peter Mell, and Tim Grance, Draft NIST Working
Definition of Cloud Computing, 2009: from
http://csrc.nist.gov/groups/SNS/cloud-computing/

[3]. R. Buyya, C. S. Yeo, and S. Venugopal, Market oriented
cloud computing: vision, hype, and reality, for delivering IT
services as computing utilities, Proc. 10th IEEE
International Conference on High Performance Computing
and Communications, Dalian, China, Sept 2008.

[4]. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia, Above the clouds: A berkeley view
of cloud computing, University of California, Berkeley,
Tech Rep USB-EECS-2009-28, Feb 2009.

[5]. David Chappell, Introducing the Azure Service Platform,
White paper, Oct 2008.

[6]. Amazon EC2 and S3, Online at http://aws.amazon.com/

[7]. Google App Engine, Online at :
http://code.google.com/appengine/

[8]. S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, A Data Outsourcing Architecture
Combining Cryptography and Access Control, Proc. ACM
Workshop on Computer Security Architecture (CSAW’07),
Nov 2007, USA.

[9]. S. Yu, C. Wang, K. Ren, and W. Lou, Achieving Secure,
Scalable, and Fine-grained Data Access Control in Cloud
Computing, Proc. IEEE INFOCOM 2010, San Diego, CA,
pp. 1-9.

[10]. W. Wang, Z. Li, R. Owens, and B. Bhargava, Secure and
efficient access to outsourced data, Proc. ACM Cloud

S.Rama Krishna et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,32-39

© 2010, IJARCS All Rights Reserved 39

Computing Security Workshop 2009, Chicago, Illinois,
USA, 2009, pp. 55-65.

[11]. S. Kamara, and K. Lauter, Cryptographic Cloud Storage,
Proc. Financial Cryptography: Workshop on real life
cryptographic protocols and standardization, 2010: from
http://research.microsoft.com/pubs/112576/cryptocloud.pdf

[12]. Z. Dai, and Q. Zhou, A PKI-based Mechanism for Secure
and Efficient Access to Outsourced Data, Proc.
International Conference on Networking and Digital
Society, Wenzhou, China, 2010, pp. 640-643.

[13]. J. Anderson, Computer Security Technology Planning
Study, Air Force Electronic Systems Division, report ESD-
TR-73-51, 1972: from
http://seclab.cs.ucdavis.edu/projects/history/

[14]. G. Ateniese, K. Fu, M. Green, and S. Hohenberger,
Improved proxy re-encryption schemes with applications
to secure distributed storage, ACM Transactions on
Information and System Security, Vol. 9, No. 1, Feb 2006,
pp. 1-30.

[15]. S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, Over-encryption: Management of access
control evolution on outsourced data, Proc. 33rd
International Conference on Very Large Databases
(VLDB’07), Vienna, Austria, 2007, pp. 123-134.

[16]. G. Miklau, and D. Suciu, Controlling access to published
data using cryptography, Proc. 29th VLDB, Germany, Sept
2003, pp. 898-909.

[17]. E. Goh, H. Shacham, N. Modadugu, and D. Boneh, Sirius:
Securing remote untrusted storage, Proc. Network and
Distributed Systems Security Symposium (NDSS’03), San
Diego, California, USA, 2003, pp.131-145.

[18]. Dalit Naor, A. Shenhav, and A. Wool, Toward securing
untrusted storage without public-key operations, Proc. 2005
ACM Workshop on Storage Security and Survivability
(StorageSS), Virginia, USA, Nov 2005, pp. 51-56.

[19]. Rolf Blom, An optimal class of symmetric key generation
systems, Proc. EUROCRYPT 84 workshop on Advances in
cryptology: theory and application of cryptographic
techniques, Springer Verlag, NY, USA, 1985, pp. 335-338.

[20]. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner, A Break in the Clouds: Towards a Cloud
Definition, Proc. ACM SIGCOMM Computer
Communication Review, 39(1), Jan 2009, pp. 50-55.

[21]. L. Youseff, M. Butrico, and D. D. Silva, Toward a Unified
Ontology of Cloud Computing, Proc. Grid Computing
Environments Workshop 2008 (GCE’08), Austin, TX,
USA, Nov 2008, pp. 1-10.

[22]. R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R.
Masuoka, and J. Molina, Controlling data in the cloud:
outsourcing computation without outsourcing control, Proc.
ACM Cloud Computing Security Workshop 2009
(CCSW’09), Chicago, USA, 2009, pp. 85-90.

[23]. R. S. Fabry, Capability-Based Addressing,
Communications of the ACM, 17(7), July 1974, pp. 403-
412.

[24]. Mukesh Singhal, Niranjan G.Shivaratri, Advanced
Concepts in Operating Systems, Tata McGraw-Hill Edition,
2001.

[25]. Amazon Elastic Compute Cloud (Amazon EC2) [Online].
Available: http://aws.amazon.com/ec2/

[26]. Amazon Web Services (AWS) [Online]. Available:
https://s3.amazonaws.com/

[27]. Google Trends.Available: http://www.google.com/trends/

Short Bio Data for the Authors

S.Rama Krishna M.Tech is working as associate
professor in the Department of computer Science &
Engineering, VYCET,chirala.

Dr. B Padmaja Rani M.Tech,Ph.D is Working as Professor
& Head of department in Computer Science & Engineering
at JNTUH College of Engineering Hyderabad
(Autonomous). She has done extensive research in the areas
like Information Retrieval Embedded Systems. Official
Email: padmaja_jntuh@jntuh.ac.in

mailto:padmaja_jntuh@jntuh.ac.in�

