
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 182

ISSN No. 0976-5697

A scope of implementation of Parallel Algorithms using Parallel Computing Toolbox

Priyanka G. Gonnade
Lecturer, Computer Science and Engineering

Rajiv Gandhi College of Engineering and Research
Nagpur, India

priyanka.gonnade@gmail.com

Pooja B. Aher
Lecturer, Computer Science and Engineering

J.L. Chaturvedi College of Engineering
Nagpur, India

poojabaher1786@gmail.com

Abstract: Parallel computing techniques can help reduce the time it takes to reach a solution. A high-level language like Matlab helps in
implementing the parallel algorithms. In this paper, some of the salient features of : Parallel Computing Toolbox™ and Distributed Computing
Server™ are highlighted and provide insight into the motivations, rationale, and eventual design decisions that went into the feature
implementation. The MathWorks extensions to the MATLAB language: Parallel Computing Toolbox™ and Distributed Computing Server™
software helps in flexible implementation.

Keywords: Parallel Computing Toolbox™, Distributed Computing Server™, Parallel computing, Simulink, Distributed Arrays

I. INTRODUCTION

MATLAB is popular mathematical software that
provides an easy-to-use interface for scientists and students
to compute and visualize various computations. Computation
intensive MATLAB applications can benefit from faster
execution. This technical computing language and
development environment is used in a variety of fields, such
as image and signal processing, control systems, financial
modeling, and computational biology[1,2]. MATLAB offers
many specialized routines through domain specific add-ons,
called “toolboxes”, and a simplified interface to high-
performance libraries. These features appeal to domain
experts who can quickly iterate through various designs to
arrive at a functional design more quickly than with a low-
level language such as C.

Advances in computer processing power have enabled
easy access to multiprocessor computers, whether through
multicore processors, clusters built from commercial, off-the-
shelf components, or a combination of the two. This created
demand for desktop applications such as MATLAB to find
mechanisms to exploit such architectures [2,3]. This paper
focuses primarily on The MathWorks extensions to the
MATLAB language: Parallel Computing Toolbox™ and
Distributed Computing Server™ software.

Parallel Computing Toolbox™ allows solving
computationally and data-intensive problems using multicore
processors, GPUs, and computer clusters. High-level
constructs such as parallel for-loops, special array types and
parallelized numerical algorithms is used to parallelize
MATLAB® applications[3]. The toolbox with Simulink® to
run multiple simulations of a model in parallel. The toolbox
provides twelve workers (MATLAB computational engines)
to execute applications locally on a multicore desktop.
Without changing the code, we can run the same application
on a computer cluster or a grid computing service (using
MATLAB Distributed Computing Server™).

MATLAB Distributed Computing Server is available for
all hardware platforms and operating systems supported by
MATLAB and Simulink[3]. It includes a basic scheduler and
directly supports Platform LSF®, Microsoft® Windows®
Compute Cluster Server, Microsoft Windows HPC Server

2008, Altair® PBS Pro®, and TORQUE schedulers. Other
schedulers can be integrated using the generic interface API.

In this paper, some of the salient features are highlighted
and provide insight into the motivations, rationale, and
eventual design decisions that went into the feature

implementation. The paper is organized as follows: section 2
describes some parallel computing concepts, section 3
describes program development steps and section 4 and 5
describes various key features of toolboxes and running a
parallel simulation.

II. PARALLEL COMPUTING CONCEPTS

A. Job

A job is some large operation that we need to perform in
our MATLAB session[4]. A job is broken down into
segments called tasks. We decide how best to divide a job
into tasks. We can divide a job into identical tasks, but tasks
do not have to be identical.

B. Client session

The MATLAB session in which the job and its tasks are

defined is called the client session. Often, this is on the
machine where you program MATLAB [4, 5]. The client
uses Parallel Computing Toolbox software to perform the
definition of jobs and tasks. The MATLAB Distributed
Computing Server™ product performs the execution of your
job by evaluating each of its tasks and returning the result to
your client session. Parallel Computing Toolbox™ software
allows you to run as many as 12 MATLAB workers on your
local machine in addition to your MATLAB client session.

C. MATLAB job scheduler (MJS)

The MATLAB job scheduler (MJS) is the part of the

server software that coordinates the execution of jobs and
the evaluation of their tasks [6,7]. The basic parallel

Priyanka G. Gonnade et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,182-186

© 2010, IJARCS All Rights Reserved 183

computing configuration is shown in Fig 2.1. The MJS
distributes the tasks for evaluation to the server's individual
MATLAB sessions called workers. Use of the MJS is
optional; the distribution of tasks to workers can also be
performed by a third-party scheduler, such as Window HPC
Server (including CCS), a Platform LSF scheduler, or a PBS
Pro scheduler.

The optional MJS can run on any machine on the
network. The MJS runs jobs in the order in which they are
submitted, unless any jobs in its queue are promoted,
demoted, canceled, or destroyed. Each worker receives a
task of the running job from the MJS, executes the task,
returns the result to the MJS, and then receives another task.
When all tasks for a running job have been assigned to
workers, the MJS starts running the next job with the next
available worker.

A MATLAB Distributed Computing Server network

configuration usually includes many workers that can all
execute tasks simultaneously, speeding up execution of
large MATLAB jobs. Fig 2.2 shows multiple parallel
computing sessions.

A large network might include several MJS sessions as
well as several client sessions. Any client session can create,
run, and access jobs on any MJS, but a worker session is
registered with and dedicated to only one MJS at a time. Fig
2.3 shows multiple MJS processes

As an alternative to using the MJS, you can use a third-

party scheduler. This could be a Microsoft Windows HPC
Server (including CCS), Platform LSF scheduler, PBS Pro
scheduler, TORQUE scheduler, mpiexec, or a generic
scheduler. Choosing between a Scheduler and MJS depends
on the application.

Figure 2.3 Configuration with Multiple Clients and MJS Processes

Figure 2.4 Life Cycle of a Job

Figure 2.2 Interactions of Parallel Computing Sessions

Figure 2.1 Basic Parallel Computing Configuration

Priyanka G. Gonnade et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,182-186

© 2010, IJARCS All Rights Reserved 184

D. mdce Service

If we are using the MJS, every machine that hosts a worker
or MJS session must also run the mdce service [7, 8]. The
mdce service recovers worker and MJS sessions when their
host machines crash. If a worker or MJS machine crashes,
when mdce starts up again (usually configured to start at
machine boot time), it automatically restarts the MJS and
worker sessions to resume their sessions from before the
system crash.

E. Life Cycle of a Job

When we create and run a job, it progresses through a

number of stages [9]. Each stage of a job is reflected in the
value of the job object’s State property which can be
pending, queued, running, or finished. The fig 2.4 below
illustrates the stages in the life cycle of a job. In the MJS (or
other scheduler), the jobs are shown categorized by their
state.

III. PROGRAM DEVELOPMENT USING PARALLEL
COMPUTING TOOLBOX

A typical Parallel Computing Toolbox client session
includes the following steps:

A. Identify a cluster

Your network may have one or more MJS available (but

usually only one scheduler). The function you use to find an
MJS or scheduler creates an object in your current
MATLAB session to represent the MJS or scheduler that
will run your job.

parallel.defaultClusterProfile('local');

 c = parcluster();

Here, parallel.defaultClusterProfile indicate we are using the
local cluster and parcluster is use to create the object c to
represent this cluster.

B. Create a Job

You create a job to hold a collection of tasks. The job

exists on the MJS (or scheduler's data location), but a job
object in the local MATLAB session represents that job.
Create job j on the cluster by using following syntax.

 j = createJob(c)

C. Create Tasks

You create tasks to add to the job. Each task of a job can

be represented by a task object in your local MATLAB
session. Create as number of tasks we want within the job j.
In this example, each task evaluates the sum of the array that
is passed as an input argument.

createTask(j, @sum, 1, {[1 1]});

 createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

D. Submit a Job to the Job Queue for Execution

When your job has all its tasks defined, you submit it to

the queue in the MJS or scheduler. The MJS or scheduler
distributes your job's tasks to the worker sessions for
evaluation. When all of the workers are completed with the
job's tasks, the job moves to the finished state.

submit(j);

E. Retrieve the Job's Results
 The resulting data from the evaluation of the job is
available as a property value of each task object.

 wait(j)

results = fetchOutputs(j)

In this example, it gives result as-
 results =

[2]
[4]
[6]

F. Destroy the Job

 When the job is complete and all its results are gathered,

you can destroy the job to free memory resources.

 delete(j)

IV. KEY FEATURES OF TOOLBOXES

A. Parallel for-loops with parfor Keyword

A parfor (parallel for) loop is useful in situations that

require many loop iterations of a simple calculation, such as
a Monte Carlo simulation. To run parfor we use the Parallel
Computing Toolbox. matlabpool sets up a task-parallel
execution environment in which parfor loops can be
executed interactively from the MATLAB command
prompt. The iterations of parfor loops are executed on labs.
A lab is an independent instance of MATLAB that runs in a
separate operating system process. Commonly, labs execute
in headless mode, i.e., they do not have a GUI front end
attached to them any of their interaction with the rest of the
system happens through messages exchanged through the
operating system kernel or a network interconnect. Like
threads, labs are executed on processor cores, and the
number of labs does not have to match the number of cores.
Unlike threads, labs do not share memory with each other.
As a result, they can run on separate computers connected
via a network.

B. Single Program Multiple Data (spmd)

The single program multiple data (spmd) language

construct allows seamless interleaving of serial and parallel
programming. The spmd statement is use to define a block
of code to run simultaneously on multiple workers.
Variables assigned inside the spmd statement on the workers
allow direct access to their values from the client by

Priyanka G. Gonnade et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,182-186

© 2010, IJARCS All Rights Reserved 185

reference via Composite objects. There is a single code for
execution by each parallel core but each core has its own
data to operate on. Unlike parfor loops, spmd blocks (the
code between spmd and its corresponding end) require much
larger mental leap from sequential loops. The reason is that
any code executed inside spmd can behave differently on
each core.

C. Distributed Arrays

Distributed arrays are implemented as MATLAB objects
where each lab stores a piece of the array. Each piece of this
array, in addition to storing the data, also stores information
about the type of distribution, the local indices, the global
array size, blocking, the number of worker processes, etc.
Distributed arrays support two data distributions—one-
dimensional distribution and two-dimensional block cyclic
distributions. Users have access to various parameters to
specify data distributions for their distributed arrays. With
MATLAB distributed arrays, users can change distributions
as they see fit by redistributing data. Users can even create
distributions on the fly by, for example, reading arbitrary
portions of data from a file and concatenating individual
pieces to construct distributed arrays. Certain operations and
math functions can also change data distribution. For
example, in the extreme case, the gather operation brings all
the data onto a single lab (provided it fits) leaving the rest of
the pieces on other labs empty.

D. The Parallel Command Window

A parallel command window (pmode) provides a command
line interface to an SPMD programming model with
interrupt capability and also displays output from all the
computational processes. This interface allows both
prototyping and development of SPMD algorithms and
interactive use of the distributed array language features. In
fact, all the code in the distributed array was developed
using the parallel command window. The parallel command
window is a relatively simple use of the control layer, where
simple evaluation request messages are sent to all labs when
a user types a command in the parallel command window.
All display output from the labs is streamed back to the
client machine using observed return messages (messages
are returned from remote processes, received by the I/O
infrastructure and are then passed on to designated
‘observers’ for further processing). The parallel command
window has display features that allow this output to be
viewed in several different ways. Interrupt and other control
requests can be sent as messages that are out-of-band and
affect all the labs. The only relatively difficult part is
ensuring that the state of all the labs remains consistent
when a user types a command that might affect one lab
differently from others.

V. RUNNING PARALLEL SIMULATIONS

A. Calling sim from within parfor

The MATLAB parfor command allows to run parallel
Simulink simulations. Calling sim from within a parfor loop
is often advantageous for performing multiple simulation

runs of the same model for different inputs or for different
parameter settings. For example, you may save significant
simulation time performing parameter sweeps and Monte
Carlo analyses by running them in parallel. Running parallel
simulations using parfor does not mean decomposing your
model into smaller connected pieces and running the
individual pieces simultaneously on multiple workers.
Normal, Accelerator, and Rapid Accelerator simulation
modes are supported by sim in parfor. Specifically, the
simulations need to create separately named output files and
workspace variables; otherwise, each simulation will
overwrite the same workspace variables and files, or
possibly have collisions trying to write variables and files
simultaneously.
B. Choosing a Simulation Mode

Normal, Accelerator, and Rapid Accelerator simulation
models are supported by sim in parfor. In general, choosing
between a simulation mode must trade off simulation speed
against flexibility. Figure 5.1 shows Speed versus Flexibility
measure of different modes.

Normal mode offers the greatest flexibility for making
model adjustments and displaying results, but it runs the
slowest. Rapid Accelerator mode runs the fastest, but this
mode does not support the debugger or profiler, and works
only with those models for which C code is available for all
of the blocks in the model. In addition, Rapid Accelerator
mode does not support 3-D signals. If your model has 3-D
signals, use Normal or Accelerator mode instead.
Accelerator mode lies between these two in performance
and in interaction with your model.

C. sim in parfor with Rapid Accelerator Mode

Running Rapid Accelerator simulations in parfor
combines speed with automatic distribution of a prebuilt

Figure 5.1 Simulation Modes

Priyanka G. Gonnade et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,182-186

© 2010, IJARCS All Rights Reserved 186

executable to the parfor workers. As a result, this mode
eliminates duplication of the update diagram phase. To run
parallel simulations in Rapid Accelerator simulation mode
using the sim and parfor commands, the following should be
done:
• Configure the model to run in Rapid Accelerator

simulation mode
• Ensure that the Rapid Accelerator target is already built

and up to date
• Disable the Rapid Accelerator target up-to-date check by

setting the sim command option
RapidAcceleratorUpToDateCheck to 'off'.

VI. CONCLUSION

With the explicit parallelism provided and use of
multicore, multiprocessor and GPU’s Mathwork’s extension
to parallel computing has very significant advantage in
development of parallel algorithms. The flexibility in using
these toolboxes leads to a simple programming. A parallel
simulation facility simplifies the testing of the application in
some runs. It concludes that with these matlab toolboxes we
have a lots of parallel computing features practical.

VII. REFERENCES

[1] Gaurav Sharma, Jos Martin MATLAB: A Language for
Parallel Computing published with open access at
Springerlink.com Int J Parallel Prog (2009)

[2] ww.h.eng.cam.ac.uk/help/tpl/programs/Matlab/parallel.html
[3] http://scent.gist.ac.kr/downloads/tutorial/2011/4/Parallel%20C

omputing%20with%20MATLAB(Draft)_MathWorks.pdf
[4] http://hpc.kfupm.edu.sa/Documentation/MATLAB%20PARA

LLEL.pdf
[5] http://people.sc.fsu.edu/~jburkardt/presentations/fdi_2009_mat

lab.pdf
[6] http://www.american.edu/cas/hpc/upload/AU-Matlab-

UserGuide.pdf
[7] http://atc.ugr.es/~javier/investigacion/papers/mpitb_papers.htm

l
[8] Moler, C.: Parallel MATLAB: Multiple processors and

multiple cores, The MathWorks News and Notes, June
2007

[9] Hudak, D.E., Ludban, N., Gadepally, V., Krishnamurthy, A.:
Developing a computational science IDE for HPC systems. In:
Proceedings of the 3rd International Workshop on Software
Engineering for High Performance Computing Applications,
International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 20–26 May 2007

	A scope of implementation of Parallel Algorithms using Parallel Computing Toolbox
	II. PARALLEL COMPUTING CONCEPTS
	Job
	A job is some large operation that we need to perform in our MATLAB session[4]. A job is broken down into segments called tasks. We decide how best to divide a job into tasks. We can divide a job into identical tasks, but tasks do not have to be ident...

	III. PROGRAM DEVELOPMENT USING PARALLEL COMPUTING TOOLBOX
	KEY FEATURES OF TOOLBOXES
	RUNNING PARALLEL SIMULATIONS
	Conclusion
	References

