
��������	�
����	�
�����������

���������������������������������������������������� ��!�����"�������

�#"#�� $�%�%#��

�����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved  518 

�����������	
��
�	�

An Efficient Weather Forecasting System using a Hybrid Neural Network SOFM–MLP 

Dr. S. Santhosh Baboo 
Reader, PG and Research department of Computer Science, 

Dwaraka Doss Goverdhan Doss Vaishnav College 

Chennai, India 

santhos2001@sify.com 

 

I.Kadar Shereef* 
Research Scholar, Dravidian University 

Head, Department of Computer Applications 

Sree Saraswathi Thyagaraja College,Pollachi. 

Coimbatore, Tamil nadu, India 

kadarshereef@gmail.com

 

Abstract: �Weather prediction is a challenging task for researchers and has drawn a lot of research interest in the recent years. Literature studies 

have shown that machine learning techniques achieved better performance than traditional statistical methods. Presently multilayer perceptron 

networks (MLPs) are used for prediction of the maximum and the minimum temperatures based on past observations on various atmospheric 

parameters. To capture the seasonality of atmospheric data, with a view to improving the prediction accuracy, a novel weather forecasting 

system is presented in this paper. The proposed system is based on a neural architecture that combines a selforganizing feature map (SOFM) and 

MLPs to realize a hybrid network named SOFM–MLP. It is also demonstrated that the use of appropriate features such as temperature gradient 

can not only reduce the number of features drastically, but also can improve the prediction accuracy. These observations motivated us to use a 

feature selection MLP (FSMLP) instead of MLP, which can select good features online while learning the prediction task. FSMLP is used as a 

preprocessor to select good features. The combined use of FSMLP and SOFM–MLP provides better result in a network system that uses only 

very few inputs but can produce good prediction. The proposed system is experimented using the real time data observations and from which it 

is found that the proposed system predict the temperature with minimum error. 

 

Keywords:� Atmospheric science, back propagation, feature selection, neural networks, self-organizing feature map (SOFM), temperature 

forecasting.

 

I. INTRODUCTION 

Weather prediction is a complex process and a challenging 

task for researchers. It includes expertise in multiple 

disciplines [1], [2]. The prediction of atmospheric parameters 

is essential for various applications. Some of them include 

climate monitoring, drought detection, severe weather 

prediction, agriculture and production, planning in energy 

industry, aviation industry, communication, pollution dispersal 

[3] etc. Accurate prediction of weather parameters is a difficult 

task due to the dynamic nature of atmosphere. Various 

techniques like linear regression, auto regression, Multi Layer 

Perceptron, Radial Basis Function networks are applied to 

predict atmospheric parameters like temperature, wind speed, 

rainfall, meteorological pollution etc. Often, it is very much 

difficult to get an accurate prediction result because of many 

other factors like topography of a place, surrounding structures, 

and environmental pollution. The accuracy of a forecasting 

system may be improved if it can account for all these factors. 

Prediction of temperature based on the past measurements of 

various atmospheric parameters is focused here, and one 

assumption is made, that short-term changes in the dynamics 

will be captured in the data available for forecasting. In 

general, temperatures are measured twice a day at different 

heights and places using radiosonde (i.e., balloon floating) 

techniques. Other parameters, such as wind direction and its 

velocity, are also measured by the meteorologists. Due to 

chaotic nature [5] of the atmosphere, the massive 

computational power is required to solve the equations that  

describe the atmosphere, error involved in measuring the initial 

conditions, and an incomplete understanding of atmospheric 

processes. This means that forecasts become less accurate as 

the difference in current time and the time for which the 

forecast is being made (the range of the forecast) increases. 

The use of ensembles and model helps narrow the error and 

pick the most likely outcome. 

Several steps to predict the temperature are  

a. Data collection(atmospheric pressure, temperature, 

wind speed and direction, humidity, precipitation),  

b. Data assimilation and analysis,  

c. Numerical weather prediction, 

d. Model output post processing. 

A neural network [4] is a powerful data modeling tool that is 

able to capture and represent complex input /output 

relationships. The development motivation of neural network 

technology stemmed from the desire to implement an artificial 

system that could perform intelligent tasks similar to those 

performed by the human brain. Neural network resemble the 

human brain in the following two ways: 

a. A neural network acquires knowledge through 

learning. 

b. A neural network’s knowledge is stored within 

interneuron connection strengths known as synaptic 

weights 

The true power and advantages of neural networks lies in the 

ability to represent both linear and non linear relationships 

directly from the data being modeled. Traditional linear models 

are simply inadequate when it comes for true modeling data 

that contains non linear characteristics. A neural network 

model can be adjusted to produce a mapping from a given set 

of data to features of or relationships among the data. The 

model is adjusted, or trained, using a collection of data from a 

given source as input, typically referred to as the training set. 

After successful training, the neural network will be capable to 

perform classification, estimation, prediction, or simulation on 

new data from the same or similar sources. 
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In this paper, the proposed hybrid network is described 

primarily, which combines a self-organizing feature map 

(SOFM) and a multilayer perceptron network (MLP) to realize 

a much better prediction system. Then, it is demonstrated that 

the use of appropriate features can not only reduce the number 

of features, but also can improve the prediction accuracy. 

Motivated by the results with computed features, a feature 

selection MLP is used, which can select good features online 

while learning the prediction task. This, finally, results in a 

network system that can give good prediction result using very 

few inputs. 

The rest of the paper is organized as follows. The related 

works on literature for the weather prediction is presented in 

section II. The SOFM Network and SOFM–MLP Hybrid 

Network are given in Section III. The experimental results 

obtained on dataset from a sample dataset from Weather 

Underground [6] are reported in Sections IV. Finally, 

conclusions are drawn in Section V. 

II. RELATED WORKS 

In the literature, several methods have been proposed for the 

automatic prediction of temperature. Among the most recently 

published works are those presented as follows 

Y.Radhika and M.Shashi [7] presents an application of 

Support Vector Machines (SVMs) for weather prediction. 

Time series data of daily maximum temperature at location is 

studied to predict the maximum temperature of  the next day at 

that location based on the daily maximum temperatures for a 

span of previous n days referred to as order of the input. 

Performance of the system is observed for various spans of 2 to 

10 days by using optimal values of the kernel. 

Mohsen Hayati et.al, [8] studied about Artificial Neural 

Network based on MLP was trained and tested using ten years 

(1996-2006) meteorological data. The results illustrate that 

MLP network has the minimum forecasting error and can be 

considered as a good method to model the short-term 

temperature forecasting [STTF] systems. Brian A. Smith 

et.al,[16] focused on developing ANN models with reduced 

average prediction error by increasing the number of distinct 

observations used in training, adding additional input terms 

that describe the date of an observation, increasing the duration 

of prior weather data included in each observation, and 

reexamining the number of hidden nodes used in the network. 

Models were created to forecast air temperature at hourly 

intervals from one to 12 hours ahead. Each ANN model, 

having a network architecture and set of associated parameters, 

was evaluated by instantiating and training 30 networks and 

calculating the mean absolute error (MAE) of the resulting 

networks for some set of input patterns. 

Arvind Sharma et.al, [9] presented the details of how the 

different connectionist paradigms could be formulated using 

different learning methods and then investigates whether they 

can provide the required level of performance, which are 

sufficiently good and robust so as to provide a reliable forecast 

model for stock market indices. Experiment results exposes 

that all the connectionist paradigms considered could represent 

the stock indices behavior very accurately. 

Mike O'Neill [10] focus on two major practical 

considerations: the relationship between the amounts of 

training data and error rate (corresponding to the effort to 

collect training data to build a model with given maximum 

error rate) and the transferability of models’ expertise between 

different datasets (corresponding to the usefulness for general 

handwritten digit recognition).Henry A. Rowley eliminates the 

difficult task of manually selecting nonface training examples, 

which must be chosen to span the entire space of nonface 

images. Simple heuristics, like using the fact that faces rarely 

overlap in images, can further improve the accuracy. 

Comparisons with more than a few other state-of-the-art face 

detection systems are presented; showing that our system has 

comparable performance in terms of detection and false-

positive rates. 

III. METHODOLOGY 

A. SOFM Network 

In numerous applications such as in [11]–[14] the 

Kohonen’s self-organizing feature map has been successfully 

used. SOFM [15] possesses the interesting property of 

achieving a distribution of weight vectors that approximates 

the distribution of the input data. This property of the SOFM 

can be used to generate prototypes which in turn can partition 

the data into homogeneous groups. This property is used in the 

proposed methodology. 

 

a) Architecture 

 The SOFM is an algorithmic transformation ������ � �	 

���� that is frequently advocated for visualization of metric-

topological relationships and distributional density properties 

of feature vectors (signals) � � ���� ��� � � ����in�	.  

 
 

Figure 1. SOFM network architecture 

 

SOFM is deployed through a neural architecture as shown in 

Fig. 1, and it is believed to be analogous in some ways to the 

biological neural network. The visual display generated by 
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SOFM can be used to form hypotheses about topological 

structure present in X. It is concentrated on (m×n) displays 

in���, but in principle X can be transformed onto a display 

lattice in ��for any q.  

 

 
 

Figure 2. Hybrid neural net for temperature forecasting 

 

Input vectors ���	�are distributed by a fan-out layer to each 

of the (m×n) output nodes in the competitive layer as shown in 

Fig. 1. Each node in this layer has a weight vector (prototype) 

vij attached to it. Let �	 � �����  �	 denote the set of weight 

vectors. �	 is (logically) connected to a display grid ��  
�����. ({i,j} ) in the index set (1,2,…,m}x(1,2,…,n} is the 

logical address of a cell. There is a one-to-one correspondence 

between the m × np-vectors vij and the mxn cells ({i,j} ), i.e., 

�	 ! ��. 
With a random initialization of the weight vectors vij the 

feature mapping algorithm starts. For notational clarity, the 

double subscripts are suppressed. Now, let x ∈ �	 enter the 

network, and let denote the current iteration number. Find vr,s-

1that best matches x in the sense of minimum Euclidean 

distance in �	. This vector comprises a (logical) “image” that 

is the cell in ��with subscript r. Next, a topological (spatial) 

neighborhood Nr(s) centered at is defined in��, and its display 

cell neighbors are located. A 3×3 window, N(r), centered at r 

corresponds to the updating of nine prototypes in��	. Finally, 

vr,s-1 and other weight� vectors associated with cells in the 

spatial neighborhood Ns(r) are updated using the rule as given 

below 

 

���" � ���"#� $%&��'��� ( ���"#�� 
 

(1) 

Here, ) is the index of the “winner” prototype and ||*|| is the 

Euclidean norm on��	. 

) � *+,-./01213
�

�45� ( ���"#�54� (2) 

The strength of interaction between cells r and i in 

���usually decreases with s, and for a fixed s it decreases as the 

distance (in���) from cell to cell i increases which is expressed 

by the function�%&��'�. %&��'���is usually expressed as the 

product of a learning parameter and a lateral feedback function 

gs(dist(r,i)) . A common choice for gs is 

gs(dist(r,i))=6#7�"89�&��� :;9< . ="�and >"� both decrease with s. 

Nr(s) is the topological neighborhood which also decreases 

with s. This method, when repeated long enough, usually 

preserves spatial order in the sense that weight vectors which 

are metrically close in ��	�have visually close images in the 

viewing plane. The SOFM is repeated for (500×m×n) steps. 

 

B. SOFM–MLP hybrid network 

The hybrid network’s architecture is clearly shown in Figure 

2 which has eight layers. The first layer with p nodes scales the 

data: it is the scaling interface between user and the system at 

the input side. The second and third layers constitute the 

SOFM layer. The output of the scaling layer is fed as the input 

to the SOFM layer. So, the second layer has p nodes. As 

discussed earlier for the SOFM net, there are complete 

connections between layers 2 and 3. 

The output layer of the SOFM net let possesses K number of 

nodes. So, there are K MLP networks, each of which receives 

inputs. Consequently, the fourth layer has Kp nodes. These Kp 

nodes constitute the input layer of a set of K MLP networks. 

Without any loss of generality, it is assumed that each of the K 

MLP networks has only one hidden layer, although it could be 

more than one and it can vary for different MLP nets. Let the 

nodes in layer four be numbered as Ni , i=1,2,…,Kp. Nodes N1 

to Np will be the input nodes of the first MLP (M2); nodes Np+1 

to will be input nodes of the second MLP (M2); Similarly, 

nodes N(K-1)p+1 to Nnp will be the input nodes of Kth MLP, MK. 

p=9k as mentioned earlier.The jth input node of MLP Mi gets 

the jth normalized input (say, xj ) and passes it on to the first 

hidden layer of Mi.  

The output of the th node of the SOFM (say, Oi) is 

connected to the output of every node of the last layer of Mi. 

The product of the MLP output and the SOFM output then 

moves to layer 7. The product can be computed using an 

additional layer with two neurons for each MLP. Since only 

one of the SOFM outputs will be one, and the rest will be zero, 

only one of the MLPs will pass its output unattenuated to layer 

7. The remaining (k-1) MLPs will transfer zero to layer 7.Since 

it is assumed that only one hidden layer, the nodes in layer six 

are the output nodes of the MLP nets. Each MLP, Mi will have 

two output nodes. Let us denote these nodes by ���? �where the 

index corresponds to the th MLP, Mi and j=1,2, where 1 

corresponds to the minimum temperature and 2 corresponds to 

the maximum temperature. Layers 4–6 together constitute the 

MLP layer in Fig. 2.  

The outputs of this MLP-layer are then aggregated in layer 

seven which has just two nodes one for the minimum 

temperature and the other for the maximum temperature. Let us 

denote these two nodes by and m and M. Now nodes ���? , ∀ 

i=1,2,…K are connected to node m and ���? , ∀ i=1,2,…K are 

connected to node M. All connection weights between layers 6 

and 7 are set to unity and nodes m and M compute the 

weighted sum of all inputs as the output which is then passed 

to the scaling layer. Note that the network architecture ensures 

that the aggregated output that is fed to the scaling layer is 

nothing but the output of the MLP corresponding to the 

winning node of the SOFM net. 

It must be analyzed why not a clustering algorithm used 

instead of SOM. The prototypes generated by SOFM not only 

preserve topology but also density. This density preservation 

property must be exploited. Because of the density matching 

property of SOFM, if a particular region of the input space 
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contains frequently occurring stimuli, it will be represented by 

a larger area in the feature map than a region of the input space 

where the stimuli occur less frequently. Consequently, if there 

is a dense area in the input space SOFM will place more 

prototypes there. So, there will be more competitive MLPs for 

dense regions. Consequently finer details of the process can be 

modeled better and this will result in an enhancement of the 

overall performance. Density matching property is not 

available in K-means type of clustering algorithms. 

 

a) Training the SOFM–MLP Hybrid Net 

 

Input normalization (i.e., scaling) layer is used to normalize 

Xtr firstly. Then the SOFM net is trained with the normalized 

Xtr. Once the SOFM training is over, Xtr is partitioned into K 

subsets, �8&�@�, l=1,2,…,K as follows: 

 

�8&�@� � ��� � A �	B5B�� ( �@B5 � CDE� B5�� ( ��5B� (3) 

 

�8&�@�� Can also be said as the set of input vectors for which 

the lth prototype, of the SOFM becomes the winner. LetF8&�@��be 

the set of output vectors associated with vectors in�8&�@�. Now 

multilayer perceptron nets M1, M2,…, MK, where is trained 

with (�8&�@�,F8&�@�). Note that each of Ml, l=1,2,…,K will have the 

same number of nodes in the input layer, i.e.,p=9k and the 

same number of nodes in the output layer, i.e., 2. But the 

number of nodes in the hidden layer for different Ml could be 

different. This training is done offline and during training; the 

output of the SOFM is not considered. In fact, the input to 

SOFM is not feed for training the MLP. Once the training of 

both SOFM and K MLPs is over, the hybrid net for prediction 

of temperatures must be used. 

x(t) is applied to the first layer suppose an input vector 

x(t)∈R9k comes (this will be generated based on nine 

observations on each of the past k days). The first layer 

normalizes it, and the normalized input then goes to the SOFM 

layer. x(t) makes the output of only one of the K SOFM output 

nodes (say, of the l th node) high (1) and sets the rest ( K-1 

outputs) to zero. The normalized x(t) and output of the i th 

SOFM node are now fed to the th MLP Mi, i=1,2,…,K . 

Consequently, only the l th MLP will be active, and rest of the 

MLPs will be inactive. The integrated output from the MLP 

layer will be nothing but the output of the l th MLP, which will 

then be scaled back to the original scale by the output scaling 

layer—and the prediction for the maximum and the minimum 

temperatures of day t+1 are obtained. 

 

C. Prediction with computed features 

In all the work explained previously in this paper, the entire 

information available for the past three days is used to predict 

the temperatures for the next day. As a result, the number of 

input features becomes 27, which made the learning task a 

difficult one. The use of suitable features is a key factor toward 

determining the success of the learning process. In this case, 

also, if some derived features can be used that are better suited 

for the task at hand, then better prediction is expected to get. 

With a view to achieving this, used local gradients of the 

temperature sequences are used as features. The local gradient 

is computed as follows. Suppose, Tmax(t-4), Tmax(t-3), Tmax(t-2) 

and Tmax(t-1) are the maximum temperatures recorded for the 

last four days. Then, the temperature gradients or changes in 

temperature are Tmax(t-4)- Tmax(t-3), Tmax(t-3)-Tmax(t-2), and 

Tmax(t-2)-Tmax(t-1). Similarly, three such components can be 

computed for the minimum temperature. Here, 15 features are 

used which comprises of nine features giving the atmospheric 

conditions of today (day ) and six temperature gradients as 

discussed above. The advantage with this scheme is that: 1) it 

reduces the number of input features, and 2) it gives an idea to 

the MLP network about the changes in the maximum and the 

minimum temperatures. This can make the learning task 

simpler.  

 

D. Online feature selection and hybrid network 

This is the final part of the proposed system. In the previous 

part two things were observed: the hybrid network works better 

than MLP, and the choice of good features improves the 

prediction accuracy. Therefore, if online feature selection can 

be done, i.e., select the good features while learning the 

prediction task, the performance of the network can be 

probably further improved, and this can also tell us about 

various important features responsible for temperature 

variations. This may help us to get a better insight into the 

temperature variation process. This process is given as follows 

 

a) Online Feature Selection Net 

Several attempts have been made previously to use neural 

networks for feature selection. These methods are offline in 

nature. In this paper, an online feature selection method is used 

due to Pal and Chintalapudi [17]. The acronym FSMLP 

(Feature Selection MLP) is used for the Pal–Chintalapudi 

modification of the standard MLP that can select features. In a 

standard MLP, the effect of some features (inputs) can be 

eliminated by not allowing them into the network. If “partially 

useful” features can be identified, then they can be attenuated 

according to their relative usefulness. This can be realized by 

associating an adaptive gate to each input node. The gate 

should be modeled in such a manner that for a good feature, it 

is completely opened, and the feature is passed unattenuated 

into the net; while for a bad feature, the gate should be closed 

tightly. Conversely, for a partially important feature, the gate 

could be partially opened. Mathematically, the gate is modeled 

by a function with a tunable parameter. The degree to which 

the gate is opened finds the goodness of the feature. An input 

feature value is multiplied by its gate function value, and the 

modulated feature value is then passed into the network. The 

gate functions attenuate the features before they propagate 

through the net, so these gate functions can be called as 

attenuator functions. The usage of s-type (or sigmoidal) 

functions with a tunable parameter is a simple way of finding 

useful gate functions, which can be learned using the training 

data. 

An attenuation (gate) function associated with an input node 

let be F:R→[0,1]. If x is the node input, then xF(γ) is the node 

output. Thus, xF(γi) can be viewed as the activation function of 

the i th input node, where γi is a parameter (not a connection 

weight) of the activation function. Thus, the input layer nodes 

act as “neurons” (i.e., have internal calculations). Notice that 

once γi is known, F(γi) acts as a fixed multiplier for all input 



I. Kadar Shereef et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov –Dec, 2010,518-525 

© 2010, IJARCS All Rights Reserved  522 

values of the i th feature. The function F can have various 

forms. In the experiments described below, the attenuation 

function F(γ)=1/(1+e-γ) is used. Thus, the i th input node 

attenuates xi by an amount F(γi)∈(0,1), where γi is a parameter 

to be learned during training. If F(γi) is close to zero, it may 

chosen to eliminate input feature xi: this is how the FSMLP 

accomplishes feature selection. The backpropagation formulas 

for the MLP can simply be extended backward into this 

modified input layer to adjust the γis during training. 

Number of nodes in the first hidden (not input) layer let be 

nh; Learning rate for the parameters of the attenuator 

membership functions be µ; Learning rate for the connection 

weights be η; F:R→(0,1)=attenuator function with argument γi 

for input node i; F’(γi ) derivative of F at γi; G���H�I�=weight 

connecting th node of the input layer to the th node of the first 

hidden layer for the t th iteration; and J��=error term for the j th 

node of the first hidden layer. 

The learning rule for connection weights can be easily 

shown that it remains the same for all layers except for�G���H�I�. 
The update rules for G���H�I��and γi are 

 

G���H�I� � G���H�I ( K� ( L��J��M��N�I ( K��� 
 

(4) 

 

�N�O� � �N�O ( K� $ PQN�RSTNUVWT��
XY

TZ�
[\�]��I ( K�� 

(5) 

 

The��N, i=1,2,…,p are initialized with values that make 

F(�N�close to zero for all i. Accordingly, xiF(�N) is small at the 

beginning of training. So, a very small “fraction” of each input 

feature value is only allowed by FSMLP to pass into the 

standard part of the MLP. As the network trains, it selectively 

allows only the important features to be active by increasing 

their attenuator weights (and, hence, increasing the multipliers 

of {xi} associated with these weights) as dictated by the 

gradient descent. The training can be stopped when the mean 

squared error is low or when the number of iterations reaches a 

maximum limit. Features with low attenuator weights are then 

eliminated from the feature set. In this feature selection 

process, only those features are considered whose attenuation 

values less than 90% at the end of the training. 

IV. EXPERIMENTAL RESULTS 

To experiment the proposed system a sample dataset is taken 

from Weather Underground [6]. This dataset contains the real 

time observation of the weather for a particular period of time. 

For this experiment, an observation of the complete previous 

year from January 2009 to December 2009 is taken. The 

dataset contains many attributes such as Temp. (°C), Dew 

Point (°C), Humidity (%), Sea Level Pressure (hPa), Visibility 

(km), Wind (km/h), Gust Speed (km/h)  and Precip (cm). Table 

I gives the cumulative percentage frequencies for the MLP 

Networks. 
 

Table I: Cumulative percentage frequency for MLP networks 

Range 

in °°°°C 

% Frequency of Temperature for test data 

nh=10 nh=15 nh=20 nh=25 

Max Min Max Min Max Min Max Min 

±0.5 31.9 30.4 32.1 31.1 31.9 31.1 30.9 29.9 

±1.0 58.3 57.3 58.8 57.9 58.4 57.9 57.6 56.7 

±1.5 73.1 73.4 73.8 74.3 73.4 73.1 72.6 73.1 

±2.0 85.5 84.4 85.8 84.8 85.7 84.4 84.6 83.6 

±2.5 90.3 90.2 90.8 91 90.4 89.6 89.6 89.8 

±3.0 94.2 92.2 94.6 91.9 94 93.9 93.4 90.7 

Max. 

Dev. 
5.71 6.64 5.82 5.85 5.61 5.64 4.62 4.65 

Avg. 

Dev. 
1.2 1.2 1.1 1.1 1.1 1.2 1.1 1.2 

 

Table II depicts the performance of the SOFM–MLP 

network on the test data when each of the K(=8) MLPs uses 

nh=10, nh=15, and nh=20 nodes in the hidden layer. For the 

SOFM layer, eight nodes are used, and thereby the training 

data were partitioned into eight homogeneous subgroups. For 

this dataset, the choice of eight was made based on a few 

experiments. In this case, use of more than eight nodes results 

in some clusters with very few data points. Each MLP is 

trained ten times with different random initialization, and 

Table II represents the average prediction accuracy over these 

runs. Comparing Table II values with observed correct value, it 

is found that within ±1° C error, the SOFM–MLP shows an 

improvement between 2.7% to 7.8% over the direct use of 

MLP. This improvement is reduced to about 2.2% to 7.4% 

within ±2° C error. If the maximum deviation and the average 

deviation are considered, and also better results for SOFM–

MLP are found consistently. Comparing SOFM–MLP (Table I) 

with another local predictor, the RBF network, It is found that 

all three architectures of SOFM–MLP significantly outperform 

the Radial Basis Function (RBF) net for all deviations less than 

equal to ±2° C. 

As explained in the methodology the combination of the 

MLP and the SOFM-MLP on the test data produces the 

accurate results. Table III shows the performance of the MLP 

and SOFM–MLP on the test data with the new features.� 
 

Table II: Cumulative percentage frequency table for SOFM–MLP when 

observations from the past three days are used as input 

Range 

in °°°°C 

% Frequency of Temperature for test data 

nh=10 nh=15 nh=20 

Max Min Max Min Max Min 

±0.5 34.9 33.4 35.1 34.1 34.9 34.1 

±1.0 62.3 61.3 62.8 61.9 62.4 61.9 

±1.5 78.2 78.5 78.9 79.4 78.5 78.2 

±2.0 90.6 89.5 90.9 89.9 90.8 89.5 

±2.5 93.5 93.4 94.0 94.2 93.6 92.8 

±3.0 97.4 95.4 97.8 95.1 97.2 97.1 

Max. 

Dev. 
5.71 6.64 5.82 5.85 5.61 5.64 

Avg. 

Dev. 
1.05 1.06 1.05 1.08 1.07 1.08 

 

Comparing Table III with Table I, it is found that with a 

smaller architecture (small number of input units), the 

performance of the ordinary MLP is consistently better. For 

deviations less than or equal to ±2° C, the performance of the 
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MLP network with gradients as features is consistently better 

than the corresponding MLP using 27 features.  
 

Table III: Cumulative percentage frequency table for MLP and SOFM–MLP 

using temperature gradients as features 

Range 

in °°°°C 

% Frequency of Temperature for test data 

MLP SOFM-MLP 

nh=10 nh=15 nh=10 nh=15 

Max Min Max Min Max Min Max Min 

±0.5 35 33.5 35.2 34.2 39.9 38.4 40.1 39.1 

±1.0 61.4 60.4 61.9 61 67.3 66.3 67.8 66.9 

±1.5 76.2 76.5 76.9 77.4 83.2 83.5 83.9 84.4 

±2.0 88.6 87.5 88.9 87.9 93.8 92.7 94.1 93.1 

±2.5 93.4 93.3 93.9 94.1 96.7 96.6 97.2 97.4 

±3.0 97.3 95.3 97.7 95 98.9 96.9 99.3 96.6 

Max. 

Dev. 
5.41 6.34 5.52 5.55 4.91 5.84 5.02 5.05 

Avg. 

Dev. 
1.04 1.02 1.05 1.06 1.04 1.07 0.99 1.03 

 

This is clearly a significant improvement because with the 

new features a much smaller network is used. Comparing 

columns of SOFM–MLP in Table III with Table II, it is found 

that for deviations less than or equal to ±1.5°C, SOFM–MLP 

using gradient as features exhibits consistently better 

performance than the corresponding SOFM–MLP using all 27 

features. For deviations less than or equal to ±2°C, the 

performance of SOFM–MLP more or less remains the same. 

Table III also reveals that the maximum deviation and average 

deviation are better for SOFM–MLP than direct use of MLP. 

Instead of using all the features some features are selected 

and the use of selected features increases the accuracy. In order 

to select the good features, the FSMLP is trained using the 

entire dataset. And after the features are selected, the SOFM–

MLP is trained with the selected set of features. Table IV 

displays the attenuation factors of the 15 features after training. 

Table IV reveals that only eight of the 15 features are 

important for prediction of the next day’s temperature [Tmax(t) 

or Tmin(t)]. The network rejects the maximum pressure, 

minimum pressure, and minimum relative humidity, but not the 

maximum relative humidity. It is very reasonable to expect that 

the maximum relative humidity can have influence on the 

temperature variation but not the minimum relative humidity. 

The network can capture this information. Similarly, of the six 

temperature gradients, the network picks up only the two most 

recent temperature gradients, i.e., the difference of the 

maximum temperatures of today and yesterday [Tmax(t)- Tmax(t-

1)] and the difference of the minimum temperatures of today 

and yesterday[Tmin(t)- Tmin(t-1)]. This tells us that only very 

local (with respect to time) variation of temperature has effect 

on predicting the temperature. Of the accepted features, 

FSMLP has given the maximum importance to the minimum 

temperature of  today [Tmin(t)]; the next important feature is the 

maximum temperature of today Tmax(t). This is also very 

logical, as the maximum and minimum temperatures are 

predicted. The third most important feature selected by the 

network, as a meteorologist will expect, is the maximum vapor 

pressure of today. In previous experiments, validation set is not 

used to guard against overtraining or memorization by the 

network. In order to demonstrate the fact that our earlier results 

do not suffer from overtraining and memorization, and to see 

the effect of validation, a validation set is used now. 70 points 

is used for validation and 200 points for testing. 
 

Table IV: FSMLP attenuation factors for network with 15 inputs 

No. 
Attenuation 

(%) 
Feature Remark 

1 99.37 Max. pressure Reject 

2 99.28 Min. pressure Reject 

3 62.06 Max. vapor pressure Accept 

4 79.18 Min. vapor pressure Accept 

5 73.80 Max. relative humidity Accept 

6 98.79 Min. relative humidity Reject 

7 59.67 Tmax(t) Accept 

8 22.19 Tmin(t) Accept 

9 99.53 Tmax(t-2)-Tmax(t-3) Reject 

10 99.54 Tmin(t-2)-Tmin(t-3) Reject 

11 99.71 Tmax(t-1)-Tmax(t-2) Reject 

12 99.62 Tmin(t-1)- Tmin(t-2) Reject 

13 81.13 Tmax(t)- Tmax(t-1) Accept 

14 70.02 Tmin(t)- Tmin(t-1) Accept 

15 62.24 Rainfall Accept 

 

Table V: Cumulative percentage frequency table for MLP and SOFM–MLP 

using selected features 

 

Range 

in °°°°C 

% Frequency of Temperature for test data 

MLP SOFM-MLP 

nh=10 nh=12 nh=10 nh=12 

Max Min Max Min Max Min Max Min 

±0.5 39.1 37.6 39.3 38.3 44 42.5 44.2 43.2 

±1.0 65.5 64.5 66 65.1 71.4 70.4 71.9 71 

±1.5 80.3 80.6 81 81.5 87.3 87.6 88 88.5 

±2.0 90.3 89.2 90.6 89.6 95.5 94.4 95.8 94.8 

±2.5 95.1 95 95.6 95.8 98.4 98.3 98.9 99.1 

±3.0 97.7 95.7 98.1 95.4 99.3 97.3 99.7 97 

Max. 

Dev. 
5.57 6.34 5.52 5.55 4.91 5.84 4.81 4.85 

Avg. 

Dev. 
1.04 1.02 1.05 1.06 1.04 1.07 0.94 1.01 

 

For each network, the training is stopped when the 

prediction error on the validation set starts increasing. Ten 

experiments have been made each with MLP and SOFM–

MLP. Interestingly, in all but two cases, the training error and 

validation error exhibited identical behavior. Table V depicts 

the average performance of MLP and SOFM–MLP using the 

selected features in conjunction with a validation set. Since in 

these cases only eight input features are used, the maximum 

number of nodes is restricted in the hidden layer to 12 only. 

Comparing Table V with Table III, It is found that in this case, 

too, there is a marginal improvement in performance for 

SOFM–MLP with the selected features. Comparing the 

columns for SOFM–MLP with those of MLP in Table V, again 

it is found that SOFM–MLP outperforms the conventional 

MLP. The most important point is that only a few features can 

be used to get good results.  
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Table VI:  Exact and predicted values of maximum temperature for unseen 

days 

Unseen days 
Predicted 

Temperature 
Exact Temperature 

02-Jan-2009 30 31 

01-mar-2009 36 35 

27-Aug-2009 29 30 

09-Jun-2009 32 32 

29-Nov-2009 29 31 

 

Fig. 3 depicts the plot of predicted maximum temperature 

averaged over ten runs and the accurate temperature on the 

particular day measured before. The minimum and the 

maximum error can be viewed with the use of the trend line. 

The figure is plotted against the values in Table VI. 

 

 
 

Figure 3. Values plotted for exact and predicted temperature 

 

The value in the graph shows that the predicted values are 

much closer to the exact values which illustrate the accuracy in 

temperature prediction of the proposed system. 

V. CONCLUSION 

In this paper a hybrid neural network based temperature 

prediction system is proposed. The hybrid neural network 

model combines the self-organizing feature map and the 

multilayer perceptron network for temperature prediction. In 

this context, some derived features are used to enhance the 

prediction accuracy. The importance of feature analysis is 

further demonstrated using an online feature selection 

technique. The proposed technique has been compared with 

both local and global predictors and has been found to produce 

a much better prediction than the temperature prediction 

system which uses the MLP, radial basis function (RBF) 

networks, autoregressive (AR) and linear regressive (LR) 

models. From the experimental results it can be stated that the 

Derived features could be more effective than raw features. For 

example, use of gradient as features instead of the raw 

observations can reduce the required size of the network and 

make the training task simpler yet achieving better 

performance over the raw features. Feature selection is an 

important factor for better prediction of atmospheric 

parameters. In this regard, the FSMLP turns out to be an 

excellent tool that can select good features while learning the 

prediction task. The combined use of FSMLP and SOFM–

MLP results in an excellent paradigm for prediction of 

atmospheric parameters. 
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