
��������	�
����	�
�
����������

���������������������������
������������������ ��!�����"�������

�#"#�� $�%�%#��

�
����&���'���������(((��)����������
�

© 2010, IJARCS All Rights Reserved   462 

�����������	
��
�	�

Multicategory Classification Using Relevance Vector Machine for Microarray Gene 

Expression Cancer Diagnosis

Dr. S. Santhosh Baboo 
Reader, PG and Research department of Computer Science, 

Dwaraka Doss Goverdhan Doss Vaishnav College 

Chennai, Tamil Nadu,INDIA. 

Santhos2001@sify.com 

 

Mrs. S. Sasikala* 
Research Scholar, Dravidian University, AndraPradesh 

Head, Department of Computer Science 

Sree Saraswathi Thyagaraja College, Pollachi, 

Coimbatore, Tamil Nadu, India. 

Sasivenkatesh04@gmail.com 

Abstract— This paper deals with the advancement in cancer multicategory classification using Relevance Vector Machine (RVM) for 

microarray gene expression cancer diagnosis. The proposed technique can be highly used for directing multicategory classification problems in 

the cancer diagnosis area. SVM and ELM are the presently available techniques used for binary classification tasks, which is related to and 

contains elements of non-parametric applied statistics, neural networks and machine learning. The cancer classification using the present 

approach does not provide the expected accuracy and sometimes the result of clustering may be wrong. To overcome this problem an efficient 

cancer classification using the Relevance Vector Machine (RVM) is proposed in this paper. This learning algorithm can generate accurate and 

robust classification results on a sound theoretical basis, even when input data are non-monotone and non-linearly separable. The performance of 

RVM is evaluated for the multicategory classification on two benchmark microarray data sets for cancer diagnosis, namely, the Lymphoma and 

Leukemia dataset. The results indicate that RVM produces better classification accuracies than the approach using SVM and ELM when the data 

given as input are preprocessed. RVM delivers very high performance with reduced training time and implementation complexity is less when 

compared to artificial neural networks methods like conventional back-propagation ANN and Linder’s SANN. 

 

 Keyword- RVM, SVM, ELM, ANOVA, Cancer Classification and Gene Expression 

 

I. INTRODUCTION 

Cancer is one of the dangerous diseases found in most of the 

living organism, which is one of the challenging studies for 

scientist towards 20th century. There were lot of proposal 

from various pioneers and detailed picture study was still 

going on. Basically Cancer is characterized by an abnormal, 

uncontrolled growth that may destroy and invade adjacent 

healthy body tissues or elsewhere in the body. Living 

organisms such as animals and plants are made of cells. The 

simplest organisms consist of just a single cell. The human 

body compromises of billions of cells; most of the cells have 

a limited life-span and need to be replaced cyclic manner. 

Each cell is capable of duplicating themselves. Millions of 

cell divisions and replications take place daily in the body 

and it is astounding that the process occurs so perfectly most 

of the time every cell division requires replication of the 40 

volumes of genetic coding. On rare circumstances there is 

some defect in a division and a rogue, potentially malignant 

cell arises. The immune system seems to recognize such 

occurrences and is generally capable of removing the 

abnormal cells before they have an opportunity to 

proliferate. Rarely, there is a failure of the mechanism and a 

potentially malignant cell survives, replicates and cancer is 

the result. 

The activities of several thousand genes are 

simultaneously computed by High-density DNA microarray 

and the gene expression profiles have been used for the 

cancer classification recently. Although traditional linear 

techniques like principal component analysis (PCA), 

Fisher’s linear discriminant (FLD) etc., have been used for  

 

 

this purpose; use of sophisticated, state-of-the-art techniques 

is receiving increasing attention for their superior 

performance. These include artificial neural network 

(ANN), wavelet transforms [32], maximum representation 

and discrimination feature (MRDF) [33], and more recently 

support vector machine (SVM). SVM is best suited for this 

kind of supervised classification problems among the above 

mentioned classifiers [31]. The fundamental idea of SVM is 

to map a set of input data to a high-dimensional feature 

space through a kernel function and separate classes in the 

kernel induced feature space with a maximum margin 

hyperplane that maximizes the minimum distance from the 

hyperplane to the closest input data points. In general, the 

hyperplane corresponds to a non-linear decision boundary in 

the input space and depends only on a subset of the original 

input data called the support vectors. The development of 

the technique relies on the theory of uniform convergence in 

probability and associated structural risk minimization 

(SRM) principle [35]. Palmer et al. [24] have used a linear 

SVM classifier for classifying in vitro autofluorescence and 

diffuse reflectance spectra of breast tissues and reported 

excellent classification results. Lin et al. [34] have used 

SVM to classify nasopharingeal tissues based on features 

extracted using linear PCA of in vivo autofluorescence 

spectra from nasopharingeal tissues and demonstrated 

significantly improved classification performance of 

combined SVMPCA algorithm as compared to that based on 

linear PCA alone. 

A major drawback of all the previous approaches 

including SVM is that they cannot provide a posterior 
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probability of classification of the tissue to different classes. 

Such classification is particularly important in the context of 

asymmetric misclassification costs where the 

misclassification cost associated with some classes (false 

negative for cancer) may be significantly higher than that of 

others (false positive for cancer). Therefore, in clinical 

settings, the posterior probabilities of class membership 

need to be explicitly computed in order to handle 

asymmetric misclassification costs in a principled 

theoretical framework. The main objective of the present 

study is to report, for the application of the relevance vector 

machine (RVM) for diagnosis of cancer. 

This paper presents a novel technique for Multicategory 

Classification for Microarray Gene Expression Cancer 

Diagnosis Using Relevance Vector Machine for predicting 

cancer cells in living organism by the technique of ANOVA 

(Analysis Of Variance). The multi-category cancer 

classification performance of RVM is evaluated on two 

benchmark datasets which are lymphoma and leukemia dataset. 

The evaluation results indicate that RVM produces better 

classification accuracy with reduced training time and 

implementation complexity compared to earlier 

implemented models.  

The remainder section of this paper is organized as 

follows. Section 2 discusses cancer classification systems 

with various classifying approach that were earlier proposed 

in literature. Section 3 explains the proposed work of 

developing a cancer classification system using Relevance 

Vector Machine. Section 4 illustrates the results for 

experiments conducted on sample dataset in evaluating the 

performance of the proposed system. Section 5 concludes 

the paper with fewer discussions. 

II. RELATED WORK 

Sridhar ramaswamy et al., [16] describes about 

multiclass cancer diagnosis using tumor gene expression 

signatures, which deliberately says about, the complex 

combination of clinical and histopathological data for 

optimal treatment of patients with cancer depends on 

establishing accurate diagnoses; it seems to be difficult 

because of atypical clinical presentation or histopathology. 

To determine whether the identification of multiple common 

adult malignancies could be achieved purely by molecular 

classification, for example the author, subjected 218 tumor 

samples, spanning 14 common btumor types, and 90 normal 

tissue samples to oligonucleotide microarray gene 

expression analysis. Here by using SVM the accuracy of 

multi class is predicted by expressing 16,063 genes and 

sequence tags. So this had an output of 78%, much greater 

than the accuracy of random classification that is about 9%. 

In recent times, [6] [7] DNA microarray-based tumor gene 

expression profiles have been used for cancer diagnosis. 

Anyhow, studies have been limited to few cancer types and 

have spanned multiple technology platforms complicating 

comparison among different datasets. The possibility of 

cancer diagnosis across all of the common malignancies 

based on a single reference database has not been explored. 

For a sample 314 tumors and 98 normal tissues were 

considered, in that 218 tumor and 90 normal tissue samples 

passed quality control criteria and were used for subsequent 

data analysis. The remaining 104 samples of the data either 

failed quality control measures of the amount and quality of 

RNA, as assessed by spectrophotometric measurement of 

OD and agarose gel electrophoresis, or yielded poor-quality 

scans. Scans were discarded if mean chip intensity exceeded 

2 SDs from the average mean intensity for the whole scan 

set, if the proportion of ‘‘present’’ calls was less than 10%, 

or if microarray artifacts were visible. The problem of 

biological and measurement noise, contaminating 

nonmalignant tumor components, and inclusion of 

genetically heterogeneous samples within clinically defined 

tumor classes may all effectively decrease predictive power 

in the multiclass setting. Increased gene number likely 

allows for accurate prediction despite these factors. A 

greater variety and large number of tumors with detailed 

clinic pathological characterization will be required to fully 

explore the true limitations of gene expression-based 

multiclass classification. 

Lipo wang et al., proposed the accurate cancer 

classification using expression of very few genes,�the author 

aim at finding the smallest set of genes that can ensure 

highly accurate classification of cancers from microarray 

data by using supervised machine learning algorithms. The 

importance of finding the minimum gene subsets is three-

fold: 1) It greatly reduces the computational burden and 

“noise” arising from irrelevant genes. From the examples 

stated in this paper, finding the minimum gene subsets even 

allows for extraction of simple diagnostic rules which lead 

to accurate diagnosis without the need for any classifiers. 2) 

The gene expression tests are simplified to include only a 

very small number of genes rather than thousands of genes, 

which can bring down the cost for cancer testing 

significantly.3) It calls for additional investigation into the 

possible biological relationship between these small  

numbers of genes and cancer development and treatment. 

Our simple yet very effective method involves two steps. In 

the first step, the author chooses some important genes using 

a feature importance ranking scheme. In the second step, the 

author tests the classification capability of all simple 

combinations of those important genes by using a good 

classifier. For three “simple” and “small” data sets with two, 

three, and four cancer (sub) types, our approach obtained 

very high accuracy with only two or three genes. For a 

“large” and “complex” data set with 14 cancer types, the 

author divided the whole problem into a group of binary 

classification problems and applied the 2-step approach to 

each of these binary classification problems. Through this 

“divide-and-conquer” approach, the author obtained 

accuracy comparable to previously reported results but with 

only 28 genes rather than 16,063 genes. In general, this 

method can significantly reduce the number of genes 

required for highly reliable diagnosis by the technique of 

SVM-T test analysis. The author analyzed finally and gave 

the accuracy rate of 100% by three combinational iteration 

techniques. 

Ahmad M. Sarhan suggests that the cancer 

classification based on microarray gene expression data 

using DCT and ANN is a better way of classification. The 

author mainly deals about, a stomach cancer detection 

system based on Artificial Neural Network (ANN) [29-31], 
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and the Discrete Cosine Transform (DCT), is developed. 

The developed system extracts classification features from 

stomach microarrays using the DCT. The extracted features 

from the DCT coefficients are then applied to an ANN for 

classification (tumor or non tumor). The microarray images 

worn in this study were obtained from the Stanford Medical 

Database (SMD). Simulation results showed that the 

developed system produces a very high success rate.�DNA 

Microarrays are glass microscope slides onto which genes 

are attached at fixed and ordered locations. Each gene 

sequence is identified by a location of a spot in the array. 

Using a Microarray printer, the DNA is spotted directly onto 

the slide. With microarrays, it is possible to examine a gene 

expression within a single sample or to compare gene 

expressions within two tissue samples, such as in tumor and 

non tumor tissues.�In this paper, a robust system for stomach 

cancer detection using microarrays is presented. The system 

consists of a feature—extraction stage followed by an ANN 

classification stage. The feature extraction stage uses the 

2—D DCT to compress the input microarray. Low—

frequency components of the DCT array constitute most of 

the energy/information of the input microarray. These 

components were, thus, used as distinctive features and were 

extracted using a windowing technique. The paper also 

investigates through simulations, optimal parameters such as 

the optimal number of DCT coefficients/features and the 

optimal ANN structure for the recognition of stomach 

cancer. The proposed method produces a success rate of 

99.7%. The sensitivity, specificity, and accuracy of the 

system were found to be equal to 99.2%, 100%, and 99.66% 

respectively. Experimental tests on the SMD Database 

achieved 99.7% of recognition accuracy using only100 DCT 

coefficients, with a simple 2-layer ANN structure and low 

computational cost. 

Runxuan Zhang en al. in [6] proposed a fast and 

efficient classification method called ELM algorithm. In 

ELM one may choose at random and fix all the hidden node 

parameters and then analytically determine the output 

weights. Studies have shown [2] that ELM has good 

generalization performance and can be implemented easily. 

Many nonlinear activation functions are used in ELM, like 

sigmoid, sine, hard limit [5], radial basis functions [3] [4], 

and complex activation functions [1]. In order to evaluate 

the performance of ELM algorithm for micro category 

cancer diagnosis, three benchmark micro array data sets, 

namely, the GCM, the lung and the lymphoma data sets are 

used. For gene selection recursive feature elimination 

method is used. ELM can perform multicategory 

classification directly without any modification. This 

algorithm achieves higher classification accuracy than the 

other algorithms such as ANN, SANN and SVM with less 

training time and a smaller network structure. 

Liyang et al, [27] proposed the use of a recently 

developed machine-learning technique - relevance vector 

machine (RVM) - for detection of MCs in digital 

mammograms. RVM is based on the Bayesian estimation 

theory, of which a distinctive feature is that it can yield a 

sparse decision function that is defined by only a very small 

number of so-called relevance vectors. By exploiting this 

sparse property of the RVM, the author develops 

computerized detection algorithms that are not only accurate 

but also computationally efficient for MC detection in 

mammograms. The author formulates MC detection as a 

supervised-learning problem and applied RVM classifier to 

determine at each location in the mammogram if an MC 

object is present or not. To increase the computation speed 

further, the author develop a two-stage classification 

network, in which a computationally much simpler linear 

RVM classifier is applied first to quickly eliminate the 

overwhelming majority, non-MC pixels in a mammogram 

from any further consideration. This method by Liyang is 

evaluated using a database of 141 clinical mammograms (all 

containing MCs), and compared with a well-tested support 

vector machine (SVM) classifier. The detection performance 

is experimented with the use of free-response receiver 

operating characteristic (FROC) curves. It is demonstrated 

in the experiments that the RVM classifier could greatly 

reduce the computational complexity of the SVM while 

maintaining its best detection accuracy. In particular, the 

two-stage RVM approach reduced the detection time from 

250 s for SVM to 7.26 s for a mammogram (nearly 35-fold 

reduction). Thus, the proposed RVM classifier by Liyang 

found to be more advantageous for real-time processing of 

MC clusters in mammograms. 

Wen Zhang et al, [28] puts forth a novel approach for the 

multicategory cancer classification. SVM-RFE is the 

important approach of the gene selection methods, which 

combines support vector machine with recursive feature 

elimination, and the method ranks the genes with recursive 

procedure. A new machine learning method called relevance 

vector machine (RVM) is proposed by Tipping in 2000, as 

an alternative and direct competitor to the SVM. In this 

paper, the authors propose RVM-RFE method for gene 

selection by combining RVM and RFE. Compared to the 

SVM-RFE, the evaluation on the real datasets suggest that 

RVM-RFE can lead to comparable Loocv accuracy and 

shorter running time; further research suggests that our 

method is also much better than linear RVM and other 

popular methods. 

III. METHODOLOGY 

This proposed system mainly deals with cancer 

prediction by using RVM classification technique. The 

proposed technique uses ANOVA test for grouping up the 

ample amount of sequential data. This projected method is 

comprised of two steps. In Step 1, all genes in the training 

data set are ranked using a scoring scheme. Then, the genes 

with high scores are retrained. In Step 2, the classification 

capability of all simple combinations is tested among the 

genes selected in Step 1 using a good classifier. This paper 

proposes a new method of ranking with ANOVA and 

classifying with RVM. The mechanisms for Step 1 and Step 

2 are described as follows. 

Step 1: Gene Importance Ranking 

In Step 1, the importance ranking of each gene is 

computed using a feature ranking measure, two of which are 

described below. Only the most important genes are retained 

for Step 2. 
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A. ANOVA (ANalysis Of VAriance) 

ANOVA is a efficient method, which is often used in 

analysis of data, and to draw interesting information based 

on P-values. The ANOVA is robust in nature and assumes 

that all the sample populations are normally distributed with 

equal variance and all observations (samples) are mutually 

independent. The approach decided to use in this paper is 

the one-way ANOVA which performs an analysis on 

comparing two or more groups (samples) which in turn 

returns a single p-value that is significant for groups that are 

different from others. The most significant varying 

information has the smallest p-values. Within groups 

estimate of all the information existing in the ANOVA table, 

if the p value for the F- ratio is less than the critical value 

(�), then the effect is said to be significant. 

��� = 
� ������	�
���� �
�� ��� � � �������� � � ���� 

(1) 

Between –group estimate of 

������� 
������	��
�� ����� � � �������� � � ������ (2) 

�������  ���������!"#!!
���$%&'�!(")*+"!�%��,-���)".)
��$%&'!(")*+"!�%���,-�� �
�/���/��� �

(3) 

In this paper the � value is set at 0.05, any other value 

lesser than this will result in some significant effects, while 

any value greater than this fixed value will result in non-

significant effects. Differences between the column means 

(group means) are highly significant indicated by the small 

values of p. The probability of the F-value arising from two 

similar distributions gives us a measure of the significance 

of the between-sample variation as compared to the within-

sample variation. Small p-values point out a low probability 

of the ‘between-group’ variation being since sampling of the 

‘within-group’ distribution and small p-values point out 

interesting features. This study uses the p-values to rank the 

important features with small values and the sorted numbers 

of features are used for further processing.  

 

Figure 1: Proposed Feature Selection Method 

Initially, all the features are ranked with the use of a 

feature ranking measure and the most important features 

alone are retained for next the step. After selecting some top 

features from the importance ranking list, the data set is 

made to classify with only one feature. In this paper, the 

Support Vector Machine (SVM) classifier is used to test n-

feature combinations. 

B. Class Separability 

Another method used frequently for gene importance 

ranking is the class separability (CS) [8]. The class 

separability of gene I can be defined as 0�) � �1) �2)3 � (4) 

�1)��� �45)6�67� 8 45)��� (5) 

�2) � � 9 9 �4)::;<=

�
67� 8 � 45)6��� (6) 

For gene i, SBi (the distances between samples of 

different classes) is the sum of squares of the interclass 

distances. SWi (the distances of the samples present within 

the same class) is the sum of squares of the intraclass 

distances. A larger CS denotes a greater ratio of the 

interclass distance to the intraclass distance and, therefore, 

can be used to measure the capability of genes to separate 

different classes. In fact, the CS used here is similar to the 

F-statistic that is also widely used for ranking genes in 

literature (see, e.g., [12], [13]). The difference between the 

CS and the F-statistic F is: 

 0����>? �@ 8 A� �� B6�67�3 �A�� (7) 

Because the term   

>? �@ 8 A� �� B6�67�3 �A� (8) 

CS equation is a constant for a specific dataset; the CS 

can be regarded as a simplification of F-statistic. The two 

methods will guide to the same ranking results for the same 

data set. 

Step 2: Finding the Minimum Gene Subset 

From the importance ranking list, after selecting some 

top genes the data set is attempted to classify with only one 

gene. Each selected feature is given as input into our 

classifier. If no good accuracy is obtained, continued 

classifying the data set with all the possible 2-feature 

combinations within the selected feature. If still no good 

accuracy is obtained, this procedure with 2-features 

combination is repeated and so on, until a good accuracy is 

obtained. 

A. Support Vector Machine (SVM) 

SVM is usually used for classification tasks introduced 

by Cortes [23]. For binary classification SVM is used to find 

an optimal separating hyper plane (OSH) which generates a 

maximum margin between two categories of data. To 

construct an OSH, SVM maps data into a higher 

dimensional feature space. SVM carry out this nonlinear 

mapping with the use of a kernel function. Then, a linear 

OSH is constructed by SVM between two categories of data 

in the higher feature space. Data vectors that were nearest to 

the OSH in the higher feature space are called support 

Form all 

possible 

pairs of 

features 

Calculate 

Classification 

Accuracy for 

each 

combination 

Select 

combination 

with highest 

accuracy 

If 

require 

accuracy 

met? 

Select Current 

feature 

combination 

Form 

combinations 

using 

remaining 

features 

yes�

No 



S. Sasikala  et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,462-473 

© 2010, IJARCS All Rights Reserved   466 

vectors (SVs) and contain all information required for 

classification. In brief, the theory of SVM is as follows [25]. 

Consider training set C � D�4:  E)
F)7�G  with each input 

n i x ; Rn and an associated output yi∈{ -1, +1}. Each input 

x is firstly mapped into a higher dimension feature space F, 

by z=� (x) via a nonlinear mapping �: Rn �F. When data 

are linearly non-separable in F, a vector w ; F exists there 

and a scalar b which describe the separating hyper plane as: 

 

   E)�HI? J) K L� M A 8 N)  OP    (9) 

where ξ( ≥0) are called slack variable. The hyper plane 

that most favorably separates the data in F is one that 

QPBPQPRS AT ? HI? H K 0? RULVSWX�XY�E)�HI? J) K L� M A 8 N)  N) M Z OP 
(10) 

where C is said to be regularization parameter that finds 

the tradeoff among maximum margin and minimum 

classification error. By constructing a Lagrangian, the 

optimal hyper plane according to previous equation, may be 

shown as the solution of 

 

Q[4PQPJS�2�\� � 9 \) 8 AT
G

)7� 9 9 \)\:E)E:@�4)  4:
�G
:7�

G
)7�  

RULVSWX�XY� � E)G)7� \) � Z Z ] \) ] 0 OP   
(11) 

where α1,…..,αL are the nonnegative Lagrangian 

multipliers. The data points i x that correspond to αi>0 are 

SVs. The weight vector w is then given by 

 H � � \)E)J))!�^(    (12) 

For any test vector x  Rn , the classification output is 

then given by 

 E � RP_B�H? J K L� � RP_B� 9 \)E)@�4)  4� K L��)!�^(  
(13) 

To deploy a SVM classifier, a kernel function and its 

parameters are chosen primarily. The superiority of one 

kernel over another is so far, not established by any 

analytical or empirical studies. In the present study, three 

kernel functions have been applied as follows to build SVM 

classifiers: 

[a] Linear kernel function, K(x,z) =� x,z� ; 

[b] Polynomial kernel function K( x, z) =( �x, z �+1) d
 is 

 the degree of polynomial; 

[c] Radial basis function @�4 J� � `ab c8 def�ged�
�,� h  �  is 

the width of the function. 

B.  SVM kernel functions 

The classification ability of feature combinations in gait 

applications is obtained with first attempt work of SVM 

kernel function. The three main kernel functions are used for 

our study here. Partial kernel function, influence to data near 

test points. The above mentioned kernel functions are briefly 

explained in this chapter. The most used kernel function for 

SVM is Radial Basis Function (RBF). 

[a] Radial Basis Function Kernel: The B-Spline kernel is 

defined on the interval [−1, 1]. It is given by the 

recursive formula: i�4 E� � 1�'j��4 8 E� 

� HkSlS�mno�HPXk�1)j� p 1)q1r�  

(14) 

In the work by Bart Hamers it is given by: 

 i�4 E� � s 1�
j��4' 8 E'��'7� �  (15) 

 Alternatively, Bn can be computed using the explicit 

expression (Fomel, 2000): 

 

1
�4� � ABt 9 uB K Ai v �8A�6�4 K B K AT 8 i�

j�
67r  

(16) 

Where x+ is defined as the truncated power function: 

 4j� � c4� P��4 w ZZ YXkSlHPRSx  
(17) 

[b] Linear Kernel: The Linear kernel is the simplest kernel 

function. It is given by the inner product <x,y> in 

addition with an optional constant c. Kernel algorithms 

which uses a linear kernel are often equivalent to their 

non-kernel counterparts. i�4 E� � 4yE K W (18) 

[c] Polynomial Kernel: The Polynomial kernel is a non-

stationary kernel. Polynomial kernels are apt for 

problems where all the training data is normalized. 

 i�4 E� � �z 4yE K W�� (19) 

Modifiable parameters are the slope alpha, the constant 

term c and the polynomial degree d. 

C. Extreme Learning Machine 

A new learning algorithm called the Extreme Learning 

Machine for Single-hidden Layer Feed forward neural 

Networks (SLFNs) supervised batch learning. The output of 

an SLFN with ~N hidden nodes (additive or RBF nodes) can 

be represented by 

 �{|�}� � � ~)��[)  L)  }� ���} ; �
 ���[) ; �
 {|)7�   (20) 

 

where [) and L) are the learning parameters of hidden 

nodes and βi is the weight connecting the ith hidden node to 

the output node. G(ai,bi,X) is the output of the ith hidden 

node with respect to the input x. For the additive hidden 

node with the activation function g(x):R→R (e.g., sigmoid 

or threshold), G(ai,bi,X) is given by ���� �� �� � ����? � K ��� �� ; �   (21) 

The weight vector which connects the input layer to the 

ith hidden node is ai and the ith hidden node’s bias is bi. ai.x 

represents the inner product of vectors ai and x in Rn. For an 
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RBF hidden node with an activation function 

g(x):R→R(e.g., Gaussian), G(ai,bi,X) is given by  ���� �� �� � _���dea 8 ��ed
 �� ; �j (22) 

In the above equation ai and bi represents the center and 

impact factor of ith RBF node. The set of all positive real 

values are indicated by R+. A special case of the SLFN is the 

RBF network with RBF nodes in its hidden layer. Each RBF 

node has its own centroid and impact factor and output of it 

is given by a radially symmetric function of the distance 

between the input and the center. 

 In the learning algorithms it uses a finite number of input-

output samples for training. Here, N arbitrary distinct 

samples are considered (xi,ti)∈R
n 

x R
m, where xi is an n x 1 

input vector and ti is an m x 1 target vector. If an SLFN with o| hidden nodes can approximate N samples with zero error, 

it then implies that there exist βi, ai, and bi such that �{|�}:
 � � ~)��[)  L:  }:
 � X: {|)7� �V � A � ?  o  (23) 

Equation (23) can be written compactly as �~ � �     (24) 

Where ��[� � ? ?  [{|  L� � ? ?  L{|  }� � ? ?  }{|�  =   

���[� L� }�� � ��[{|  L{|  }��� � ���[� L� }{� � ��[{|  L{|  }{��
{�{|

 

(25) 

 

~ � �~�y�~{|y
�

{|�*
 and  � � �X�y�X{y

�
{�*

    

(26) 

 

H represents the hidden layer output matrix of the 

network; the ith column of H is the ith hidden node’s output 

vector with respect to inputs x1, x2,…, xN and the jth row of 

H is the output vector of the hidden layer with  respect to 

input xj. 

In real applications, the number of training samples, N, 

is always greater than the number of hidden nodes o|�and, 

therefore, the training error cannot be brought exactly to 

zero but can come up to a nonzero training error. The hidden 

node parameters ai and bi (input weights and biases or 

centers and impact factors) of SLFNs need not be tuned 

during training and may simply be assigned with random 

values according to any continuous sampling distribution. 

Equation (22) then becomes a linear system and the output 

weights are estimated as ~� � � � �   (27) 

In the above equation � ��represents that the Moore-

Penrose is generalized inverse [15] of the hidden layer 

output matrix H. The ELM algorithm which consists of only 

three steps, can then be summarized as 

ELM Algorithm: Given a training set � � D�})  X)�e}) ; �
 X) ; �* P � A �  oF Activation 

function g(x), and hidden node numbero|, 

[a] Assign random hidden nodes by randomly generating 

parameters (ai,bi) according to any continuous sampling 

distribution, i=1,….,�o| 

[b] Calculate the hidden layer output matrix H. 

[c] Calculate the output weightβ: ~� � � � �   

 

The universal approximation capability of ELM has 

been analyzed by Huang et al. [7] using an incremental 

method and it shows that single SLFNs with randomly 

generated additive or RBF nodes with a wide range of 

activation functions can universally approximate any 

continuous target functions in any compact subset of the 

Euclidean space Rn. _�4� � ��j!��� is the sigmoidal function 

used as activation function in ELM. 

[I] Relevance Vector Machine 

The relevance vector machine (RVM) classifier [28], is 

a probabilistic extension of the linear regression model, 

which provides sparse solutions. It is analogous to the SVM, 

since it computes the decision function using only few of the 

training examples, which are now called relevance vectors. 

However training is based on different objectives. 

The RVM model y(x ; w) is output of a linear model with 

parameters w = (w1,  . . . , wN)T , with application of a 

sigmoid function for the case of classification: 

E�^/�4� � ��9 �
@�4 4

{


7� �� 

 

(28) 

where �(x) = 1/(1+exp(−x)). In the RVM, sparseness is 

achieved by assuming a suitable prior distribution on the 

weights, specifically a zero-mean, Gaussian distribution 

with distinct inverse variance �n for each weight ωn: 

m��e\� � � o�{

7� �
eZ \
��� 

(29) 

The variance hyperparameters � = (�1,..., �N) are 

assumed to be Gamma distributed random variables: 

m�\� � � �[QQ[�\
e[ L�{

7�  

(30) 

The parameters a and b are implicitly fixed and usually 

they are set to zero (a = b = 0), which provides sparse 

solutions. 

Given a training set D4
 X
F
7�{  with X
 ; DZ AF training 

in RVM is equivalent to compute the posterior 

distribution�m�� \eX�. However, since this computation is 

intractable, a quadratic approximation log�m�� \eX� � �� 8��y � �� 8 ����  is assumed and computed matrix � and 

vector � as: � � � y1  K ¡��� (31) � � � ¢£¤¥ (32) 

with the N × N matrix � described as [�]ij = K(xi, xj ), 

A = diag(�1, . . . , �N), B = diag(�1, . . . , �N), �n = 

yRVM(xn)[1−yRVM(xn)] and ˆt = ��+B¡1(t−y). The 

parameters � are set to the values �MP that maximize the 

logarithm of the following marginal likelihood ¦�\� � §Y_m�\eX�
� 8 AT ¨o§Y_T© K ª«�e¬eK ¤¢¬��¤­  

(33) 

with C = B-1 + �A-1�T . This, gives the following update 

formula: 

\
 � A 8 \
�®®�
�  
(34) 

The RVM learning algorithm iteratively evaluates 

formulas (29),(30) and (32). After training, the value of 
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yRVM(x) = y(x; �) can be used to estimate the reliability of 

the classification decision for input x. Values close to 0.5 

are near the decision boundary and consequently are 

unreliable classifications, while values near 0 and near 1 

should correspond to reliable classifications. In this 

experiment, the reliability measure is used �¯�^/ � eT��^/�4� 8 Ae (35) 

which uses values near 0 for unreliable classifications 

and near 1 for reliable classifications. 

IV. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the RVM 

algorithm for multicategory cancer diagnosis� Lymphoma 

and Leukemia Datasets are used in this paper. The detains of 

the dataset is given below 

A. Dataset description 

[a] Lymphoma dataset 

The lymphoma microarray data has three subtypes of 

cancer, i.e., CLL, FL, and DLCL. When applying the 

proposed method to this data set, the clustering result with 

two best partition eigenvectors is obtained. Seen from 

cluster results the three classes are correctly divided. Then 

two sets of l=20 genes are selected according to |Ri,1| and 

|Ri,2|  respectively. (Here set have to be two.) From the two 

sets of 20 genes each, the two-gene combinations is chosen 

that can best divide the lymphoma data. Two pairs of genes 

have been found: 1) Gene 1622X and Gene 2328X, and 2) 

Gene 1622X and Gene 3343X, which perfectly divide the 

lymphoma data. Since the results are similar to each other, 

only the result of one group is shown. Gene ID and gene 

names of the selecting genes in the lymphoma data set are 

shown in Table I, where the group and the rank of genes are 

also shown.  

 
TABLE I: GENE IDS (CLIDS) AND GENE NAMES IN THE TWO MICROARRAY 

DATA SETS 

Data set 
Gene ID/ 

CLID 
Gene Name 

Gene Rank 

G1 G2 

Lymphoma 

GENE 

1622X 

*CD63 antigen 

(melanoma 1 antigen); 

Clone=769861 

3 / 

GENE 

2328X 

*FGR tyrosine 

Kinase; 

Clone=728609 

/ 3 

GENE 

3343X 

*mosaic protein 

LR11=hybrid; 

Receptor gp250 

precursor; 

Clone=1352833 

/ 4 

[b] Leukemia dataset 

The leukemia data set contains 5000 genes and 38 

samples including 11 Acute Myeloid Leukemia (AML) and 

27 acute lymphoblastic leukemia (ALL) samples. The 

original data set is retrievable from: http://www.broad. 

mit.edu/cgi-bin/cancer/ datasets.cgi. Maximum 10 clusters 

are calculated because this data set contains only 38 

samples. 

B. Experimental process 

As introduced in [6], for a microarray data with n genes, 

each ANOVA classifier produces a hyperplane w, which is a 

vector of n elements, each corresponding to the expression 

of a particular gene. The absolute magnitude of each 

element in w can be considered as a measure of the 

importance of each corresponding gene. Each ANOVA-

RVM classifier is first trained with all of the genes, then the 

gene corresponding to the bottom 10 percent, wij, are 

removed. Each classifier is then again trained after the 

removal of genes. This process is repeated with iterations 

and a rank of all of the genes based on the statistical 

significance of each class can be obtained. 

SVM is a machine classification technique that directly 

minimizes the classification error without requiring a 

statistical data model. This technique is popular since its 

implementation is very easy and achieves consistently high 

classification accuracy when applied to many real-world 

classification situations. The SVM algorithm can be used for 

both classification and regression (model fitting) problems. 

In classification, an SVM classifier can separate data that 

are not easily separable in the original data space by 

mapping data into a higher dimensional (transformed) space. 

Kernel functions are used by SVM to find a hyperplane that 

maximizes the distance (margin) between the two classes, 

while minimizing training error. The resultant model is 

sparse, depending only on a few training samples (the 

“support vectors”). The number of support vectors gets 

increase linearly with the available training data, requiring 

much higher computational complexity when classifying 

very large data sets (e.g., tens or hundreds of thousands of 

input variables).  

The SVM was implemented with the use of Platt’s 

sequential minimal optimization algorithm in commercial 

software (Matlab, ver. 5.0; The Math Works, Natick, MA). 

For classification of the gene expression data, Gaussian 

(nonlinear) kernels of various widths were tested, and a 

Gaussian kernel with width = √(2 × number of input 

variables) was chosen that gave the highest area under the 

receiver operating characteristic curve using 10-fold cross-

validation.  

Because SVM does not model the data distribution, but 

instead directly minimizes the classification error, the 

resultant output is a binary decision. Although a binary 

decision is enough for many applications, it is difficult to 

arrive at a meaningful disease-versus-no disease cutoff for 

cancer classification. This problem can be solved with a new 

machine learning classifier, the RVM. The RVM has the 

same functionalities as in the SVM within a Bayesian 

framework. This classifier is a sparse Bayesian model that 

gives probabilistic predictions through Bayesian inference. 

Its decision function depends on fewer input data (i.e., more 

sparse) than a comparable SVM, since SVM reduces the 

training error under the constraint of maximum smoothness, 

requiring more decision points. The advantage of a sparser 

classifier is that its results are more generalizable (i.e., it 

decreases overfitting). RVM predications are more 

consistent than SVM predictions because they are directly 

generated through Bayesian inference, whereas SVM can 

provide pseudo probabilistic outputs (i.e., between 0 and 
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1.0) only through postprocessing. In classification, RVM 

gives output as probabilities of class membership rather than 

point estimates like SVM. This gives a conditional 

distribution that permits the expression of uncertainty in the 

prediction. 

The RVM was implemented with the use of a 

commercially available algorithm (SparseBayes ver. 1.0; 

Microsoft Research, Cambridge, UK, for Matlab, The Math 

Works). For classification of the gene expression data, a 

Gaussian kernel with width = √(2 × number of input 

variables) was chosen because it gave the highest ROC 

curve with 10-fold cross-validation. 

[a] Training and Testing Machine Learning Classifiers 

The proposed technique uses Ten-fold cross-validation 

to train and test RVM and SVM classifiers to avoid training 

and testing on the same data. First, affected and healthy 

genes were randomly divided into 10 approximately equal, 

exhaustive, and mutually exclusive subsets. Next, classifiers 

were trained on 9 subsets and then tested on the 10th subset. 

This sequence was repeated 10 times, using each subset 

serving as the test set one time, so that each tested gene was 

never part of its training set and was tested only once. The 

test results from tested genes were then used to plot the bias-

corrected ROC curve. Sensitivities at 75% and 90% 

specificities are calculated and tabulated in table 2. 

As the dimensionality of the experimental data sets 

(number of parameters) is comparatively large but the size 

of the data sets (number of observations) is relatively small, 

sequential forward selection and backward elimination 

techniques are used to reduce the data dimension to alleviate 

the “curse of dimensionality” (reduced classifier 

performance caused by the forced inclusion of irrelevant 

parameters in the solution set). For the simplicity, for RVM 

these techniques were carried out using RVM and for SVM 

these techniques were performed using SVM, although 

RVM can be optimized using SVM and vice versa. For 

forward selection, with an empty feature set it is started and 

sequentially added parameters that improved the 

performance of the feature set the most, until peak 

performance was reached. For backward elimination, with 

the full-dimensional feature set it is started and sequentially 

deleted the parameters that improved the performance of the 

feature set the most, until performance began to decline. 

[b] Sensitivity and Specificity 

The "sensitivity" and "specificity" are medical analysis 

terms in screening tests for diseases. When a single test is 

performed on a person, the respective person may in fact 

have the disease or the person may be disease free. The test 

result may be positive, representing the presence of disease, 

or the test result may be negative, indicating the absence of 

the disease. The Table II below displays test results in the 

columns and true status of the person being tested in the 

rows. 
TABLE II: MEDICAL ANALYSIS POSSIBILITY GRAPH 

Test Result (T) 

 
Positive 

(+) 
Negative (−) 

True status of 

nature (S) 

Disease (+) a b 

No Disease (−) c d 

Though these tests are normally quite accurate, they 

still make errors that may need to account for. 

Sensitivity: It can be defined as the probability that the 

test says a person has the disease when in fact they do have 

the disease. This is P(T- |S+ ) =
�+j°. Sensitivity is a measure 

of how likely it is for a test to pick up the presence of a 

disease in a person who has it. 

Specificity: It can be defined as the probability that the 

test says a person does not have the disease when in fact 

they are disease free. This is P(T- |S- ) =
�±j� 

C. Results for Lymphoma dataset 

The sensitivity of the different machine learning 

approaches for the two different specificities are observed 

and tabulated in table III for the Lymphoma datset. The 

RVM observations are made for both the forward and 

backward techniques as explained before. The observed 

sensitivity is plotted in graph and shown in fig 2. 

 
TABLE III:  SENSITIVITIES AT FIXED SPECIFICITIES FOR CLASSIFYING 

ANCER AFFECTED GENES FROM HEALTHY GENES OF LYMPHOMA 

DATASET 

 

Technique 

Sensitivity at 75% 

Specificity 

(%) 

Sensitivity at 90% 

Specificity 

(%) 

SVM 89 75 

ELM 90 77 

RVM (backward) 93 80 

RVM (Forward) 92 79 

 

 

 
 

Figure 2: Comparison of sensitivity of finding defected genes among three 

approaches 
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TABLE IV: TESTING ACCURACY (%) FOR THE SVM, ELM AND RVM 

ALGORITHMS ON THE LYMPHOMA DATASET 

 

# Genes SVM ELM 
RVM 

(backward) 

RVM 

(Forward) 

10 83.21 85.25 86.32 87.94 

20 83.92 85.94 86.56 88.57 

30 84.55 86.22 87.69 89.31 

40 85.17 86.56 88.01 90.18 

50 85.94 87.34 88.65 91.34 

60 86.57 88.01 88.92 91.95 

70 86.99 88.69 89.55 92.65 

80 87.66 89.05 89.99 92.97 

90 88.32 89.87 90.57 93.41 

100 88.87 90.27 92.12 93.82 

Average 86.12 87.72 88.83 91.21 

 

The average testing accuracy of the SVM, ELM and 

RVM are observed in table IV. The testing accuracy is 

calculated for the lymphoma dataset by varying the number 

of gene samples for the input. The testing accuracy for the 

lymphoma datasets are plotted in graph for comparison and 

it is shown in fig 3. 

 

 
 

Figure 3: Comparison of Average testing accuracy among three approaches 

for Lymphoma dataset 

 
TABLE V: TRAINING TIME (IN SEC) FOR THE SVM, ELM AND RVM 

ALGORITHMS ON THE LYMPHOMA 

 

# Genes SVM ELM 
RVM 

(backward) 

RVM 

(Forward) 

10 442 425 403 390 

20 466 448 422 410 

30 482 464 446 431 

40 512 486 469 452 

50 520 499 472 449 

60 534 512 493 479 

70 549 528 502 489 

80 561 542 527 518 

90 587 564 549 530 

100 603 582 561 549 

Average 525.6 505 484.4 469.7 

 

 
 

Figure 4: Comparison of Average training time among three approaches for 

Lymphoma dataset 

The average training time taken by the three different 

techniques for the lymphoma dataset is compared in figure  

D. It clearly shows that the proposed RVM approach 

is processed in very less time when comparing with the 

other two approaches.  

[a]    Results for Leukemia dataset 

The sensitivity of the different machine learning 

approaches for the two different specificities for the 

leukemia dataset are observed and tabulated in table VI. The 

observed sensitivity is plotted in graph and shown in figure 

5. 
TABLE VI: SENSITIVITIES AT FIXED SPECIFICITIES FOR CLASSIFYING 

CANCER AFFECTED GENES FROM HEALTHY GENES OF LEUKEMIA 

DATASET 

 

Technique 

Sensitivity at 75% 

Specificity 

(%) 

Sensitivity at 90% 

Specificity 

(%) 

SVM 92 77 

ELM 94 80 

RVM (backward) 96 83 

RVM (Forward) 95 92 

 

 

 
 

Figure 5: Comparison of sensitivity of finding defected genes among three 

approaches for Leukemia dataset 

 

The average testing accuracy of the SVM, ELM and 

RVM are observed in table VII. The testing accuracy is 

calculated for the leukemia dataset by varying the number of 
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gene samples for the input. The testing accuracy for the 

leukemia datasets are plotted in graph for comparison and it 

is shown in figure 6. 
 

TABLE VII:  TESTING ACCURACY (%) FOR THE SVM, ELM AND RVM 

ALGORITHMS ON THE LEUKEMIA DATASET 

 

# Genes SVM ELM 
RVM 

(backward) 

RVM 

(Forward) 

10 83.92 87.88 88.21 89.54 

20 84.21 88.21 88.84 90.22 

30 84.63 88.79 89.24 90.84 

40 84.92 89.12 89.67 91.31 

50 85.35 89.57 89.97 91.85 

60 85.97 89.91 90.44 92.22 

70 86.54 90.35 90.81 92.87 

80 86.91 90.74 91.87 93.55 

90 87.84 91.55 92.64 94.15 

100 88.62 92.02 93.77 95.99 

Average 85.89 89.81 90.54 92.25 

 

 
 

Figure 6: Comparison of Average testing accuracy among three approaches 

for Lymphoma dataset 

 
TABLE VIII:  TRAINING TIME (IN SEC) FOR THE SVM, ELM AND RVM 

ALGORITHMS ON THE LEUKEMIA DATASET 

 

# Genes SVM ELM 
RVM 

(backward) 

RVM 

(Forward) 

10 421 418 394 366 

20 457 421 406 384 

30 465 450 422 412 

40 501 467 440 419 

50 524 494 469 447 

60 534 503 478 452 

70 558 524 492 479 

80 564 537 512 498 

90 578 541 521 506 

100 591 579 554 531 

Average 519.3 493.4 468.8 449.4 

 
 

Figure 7: Comparison of Average training time among three approaches for 

Lymphoma dataset 

 

The average training time taken by the three different 

techniques for the leukemia dataset is compared in figure 7. 

It clearly shows that the proposed RVM approach train the 

system in very less time when comparing with the other two 

approaches.  

V. CONCLUSION 

In this paper, a fast and efficient classification method 

called the RVM algorithm for a multicategory cancer 

diagnosis problem based on microarray data is presented. Its 

performance has been compared for the raw data and 

ANOVA preprocessed data for the two benchmark medical 

datasets which are lymphoma and leukemia datasets. It is 

found that RVM performs better with high accuracy when 

the data is preprocessed and given as input. The previous 

methods inevitably involve more classifiers, greater system 

complexities and computational burden, and a longer 

training time. RVM can carry out the multicategory 

classification directly, without any modification. Study 

results are consistent with our hypothesis that, even when 

the number of categories for the classification task is large, 

the RVM algorithm achieves higher classification accuracy 

than the other algorithms with less training time and a 

smaller network structure. It can also be seen that RVM 

achieves more balanced and better classification for 

individual categories as well. It is also found that the 

sensitivity of the RVM is high when compared to the SVM 

and ELM and so this proposed system can be directly 

implemented for the defective cancer gene classifications. 
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