
Volume 4, No. 10, September-October 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 17

ISSN No. 0976-5697

Logical reconstruction of programming language paradigms

Davor Lauc
Faculty of Humanities and Social Sciences

University of Zagreb Zagreb, Croatia
dlauc@ffzg.hr

Abstract: The concept of programming language paradigms is a one of fundamental concepts of computing, but the present usage of the term is
quite chaotic. Using method of logical reconstruction programming paradigms are modeled by original logical models of computation that are
considered paradigms of programming language paradigms. The space of the programming languages is visualized as a prism, with edges of
imperative, function and logical paradigms corresponding to basic models of computation, and depth axis as degree of modularity of languages.
Actual programming languages are represented as occupying some space in such a model. Finally, the model is evaluated for completeness with
regard to existing programming languages.

Keywords: programming language paradigms, models of computations, logical reconstruction

I. INTRODUCTION

The concept of programming languages paradigm is one
of the most elusive concepts of computing. It was introduced
by Floyd [1] when there already were a large number of
programming languages and programming styles. The
number of programming languages has now increased
manifold with new languages designed almost every day.
The need for precise and complete concept of programming
language paradigms has become evident. However, as the
original concept was not precise and well defined, the present
usage of programming paradigms is quite chaotic. Most of
the usage includes imperative and declarative paradigms;
often, functional, logical, structural and object-oriented
paradigms are also included. A variety of other paradigms
like procedural, visual, modular, process-oriented, event-
driven, automata-based, agent-oriented, concurrent and so on
can be found in scientific, educational and industrial texts.
Some of the usages are overlapping, some may even be
synonymous, but most of them are partial, mentioning only
some of the paradigms. Although a few interesting articles
about programming paradigms have been published,
including an outstanding analysis by van Roy and Hardi [2],
there is no comprehensive analysis of the concept that is both
simple and precise.

As for most fundamental concepts, it is next to
impossible to provide some kind of informal or formal
definition that is non-circular or even meaningful. However,
this concept seems to be the perfect candidate for the "old
fashion" method of philosophical analysis - logical
reconstruction. Instead of taking the linguistic approach for
programming languages and trying to enumerate the different
usages of the term, and then relate them to the vast number
of languages, it is more productive to construct a formal
model that will demonstrate the main features of paradigms
in a precise and complete manner.

Owing to the close connection between programming
languages and logical models (formalizations) of
computation, it is natural to try and reconstruct programming
paradigms on the basis of models of computation. Although
many models of computation are designed, they are

outnumbered by computational languages in the order of
magnitude. Also, models of computation are much more
elegant and basic than programming languages that evolved
facing complex real-world problems. Hence, foundational
concepts, styles and features of programming languages
should be easier to discover in the models of computation
than in vast number of programming languages.

II. PARADIGMS OF PROGRAMMING LANGUAGES

The concept of paradigm of programming was
introduced by Floyd in 1978 at his Turing award lecture [1].
Floyd applied the Kuhnian term paradigm to programming
languages and practices of software development,
entertaining the idea of similarity of activities of
programming and scientific research. The structural
paradigm is the only paradigm explicitly mentioned in his
lecture that is still in use as a programming paradigm
although implicitly functional paradigm was also mentioned.
Floyd gives a few examples of paradigms like dynamic,
branch-and-bound, divide-and-conquer, formula-
manipulation, state-machine and so on. Most of them today
would be characterized either as software development
methodology or specific programming technique. There is no
attempt to define the concept of paradigm or to distinguish it
from similar concepts.

The analysis of Floyd's concept of paradigm should take
into consideration that it was introduced in an informal style,
aimed at the designers of programming languages and
educators, and was not a formal introduction to a new
concept. His usage of Kuhn's concept of paradigm should be
taken metaphorically. In spite of the fact that Kuhn's
paradigms do not have very precise meanings, it seems
impossible to apply them directly to programming languages.
Computer programming is hardly an empirical science and
although there are communities connected with the specific
programming paradigm that bears some similarities to
communities formed by the empirical scientist, important
features of paradigms as conceived by Thomas Kuhn are
missing. The development of paradigm does not resemble the
development of science, i.e., it would be implausible to
search for periods of normal programming and

Davor Lauc, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 17-20

© 2010, IJARCS All Rights Reserved 18

"programming" revolutions. Although there are significant
differences among programming paradigms, they are
definitely not incommensurable. One of most evident proofs
of this is the existence of multi-paradigm programming
languages, which are present even in Floyd's analysis.

Regardless of the original concept, programming
paradigms today represent the important concepts of
programming and computing in general. The concept is
mainly introduced in advanced programming textbooks or
articles discussing programming languages in general. Due to
various unsystematic usages of the concept, it is hard to trace
the origins of the present usage of programming paradigms
and nearly impossible to list them all, but the following list
of paradigms should be good enough for the purpose of this
paper:

a. Imperative paradigm - the most important and
widespread programming paradigm, characterized by
programming statements that change program state. It
is often contrasted with declarative paradigm.

b. Declarative paradigm - often defined negatively as
programming without describing imperative control
flow. Alternatively, it is defined as programming
without the possibility to use/change the program
state. It may also be defined as programming that
defines what the computation should do and not how.
Sometimes it is used as synonymous with logic
paradigm.

c. Procedural paradigm - sometimes synonymous with
structural and sometimes even with imperative
paradigm, characterized by organizing code around
subroutines - procedures.

d. Functional paradigm - characterized by computation
by valuation of functions, without changes of state -
side effects. Sometimes included as a part of
declarative paradigm.

e. Logic programming - characterized by use of logical
statements for computing, stating relations and
queering them without defining how queries are
answered.

f. Object oriented paradigm - characterized by objects -
data structures consisting of data and methods that
change them, so that changing state of one object does
not affect other objects.

There are other usages of the term paradigms in
literature and programming practices, but most of them are
excluded from this analysis. In order to obtain precision,
every formal analysis of concept has to exclude some
meanings of the analyzed concept, so we will not consider
the following four groups of programming styles or
languages as part of our definition of programming
paradigm. The first group includes various software
development methodologies, that is, ways or principles of
developing programming systems. This includes parts of
structural paradigm like top down method that defines how
programmers should attack a problem. Likewise, newer
methodologies like rapid application development or extreme
programming are not considered paradigms according to our
logic. Of course, software methodologies are related to
programming paradigms as some paradigm support or even
to enforce specific methodology, but it does not make them
paradigms. The second excluded group is related to the way
programmers interact with software development systems -
so systems like visual programming or automated

programming are not considered paradigms. The third group
is connected with the interaction between program and
machine (program environment) as well as between program
and user. That excludes parallel programming and systems
like event driven programming. The fourth excluded group
includes languages that are not Turing complete, like
standard SQL and domain specific languages.

Thus, our definition of programming paradigm should
define general features and properties of programming
languages that can be read/analyzed from written program
code alone, regardless of the process by which the code is
achieved or how it will be executed by the machine. In a
way, this resembles famous positivistic distinction between
context of discovery and context of justification. It seems
plausible to try to find features of those paradigms in models
of computation that can be seen as archetypical programming
languages, or paradigms of programming language
paradigms.

III. MODELS OF COMPUTATION

Like most other fundamental concepts, ideas of
computation can be traced back to antiquity, and then from
the bold imagination of Descartes, Pascal and Leibniz to the
logicians and mathematicians like Charles Babbage, Leopold
Kronecker and David Hilbert. The contemporary concept of
computation owes its existence to the research in
mathematical logic embarked upon by Kurt Gödel, Alonzo
Church, Alan Turing and Emil Post in the 1930s. They have
designed, by and large independently, four models of
computation - (partial) recursive functions, lambda calculus,
Turing machine and (Post) production systems. It was soon
proved that those models are equivalent in computational
power, in the sense that any computation that can be done by
one of them can be done by all. The importance of this is best
expressed by Gödel saying "...with this concept, one has, for
the first time, succeeded in giving an absolute notion to an
interesting epistemological notion, i.e., one not depending on
the formalism chosen" [3].

However, the fact that those models have equal
computational power does not make them equally convenient
for solving different computational problems, something that
is obvious to every student trying to use those models.
Owing to differences in those models, they can be seen as
"paradigms" of the models of computation, i.e., all other
models of computation resemble some of them in the key
features. Without examining those well-known models in too
much detail, the following analysis describes some of their
key features.

The most well-known model of computation is the
Turing machine, designed by Alan Turing [5]. It is a model
of abstract machine that manipulates symbols on
(potentially) infinite tape. The key feature of a Turing
machine is that computation is fully determined by a finite
set of instructions that change the state of instructions and
symbols on tape, which together can be considered as the
state of machine. Which instruction will be executed depends
solely on the state of the machine. So the whole process of
computation can be seen as a step-by-step process that
transforms the state of machine according to instructions,
leaving the machine in a distinct determined state after every
instruction. Computation is defined by the list of such state-
changing instructions. Solving computational problems
involves representing input and output symbols, and writing

Davor Lauc, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 17-20

© 2010, IJARCS All Rights Reserved 19

instructions that gradually transform input symbols to the
desired output.

Turing machine can serve as a paradigm for other
models of computation based on transforming its states like
register machines, push-down automaton, random access
machines and so on. The indication of closeness of those
models is the relative triviality of equivalence proofs among
them.

Recursive function is the model of computation with a
substantially different approach from the Turing machines.
Computation is done by combining a few primitive functions
(zero, successor and projection) through composition,
primitive recursion and minimalization. There is no
instruction that changes states, and the computation is
defined by a set of descriptions or definitions of functions
that combine to form the main function and perform the
desired computation. Computational problems are solved by
defining functions that combined, mostly by composition or
recursion, computes right values for given arguments.

Resembling the approach to computation is the lambda
calculus, a very elegant model of computation that defines
function as lambda terms combined by abstraction and
application that are computed using (beta) reduction.
Computation is done by designing lambda terms, which
when applied to other lambda terms, results in desired
values. In order to solve computational problems, values and
arguments are represented by lambda terms and then define
sets of lambda terms that are combined to perform the
desired computation.

The other models of computation that are based on
functions can be seen as same paradigms as recursive
functions and lambda calculi.

The fourth archetypical model of computation designed
in the 1930s is the post canonical system, today considered
as the string-rewriting system. In this system, computation is
done by rewriting a set of rules, which when applied to input
strings, transforms them to give the desired results.
Computational problems are solved by writing a set of rules
that are not like recursive functions and lambda calculi
combined into one "main" function that perform the
computation; instead, all the transformations that are
applicable are applied. The whole family of rewriting-
systems, including type-0 grammar in Chomsky hierarchy
and Markov algorithms, naturally belongs to this paradigm.
However, models like logic programming and constrain
programming that seem substantially different, share style
and features of this paradigm.

IV. MODELS OF COMPUTATION AS PARADIGMS OF
PROGRAMMING LANGUAGES PARADIGMS

Three computation paradigms could be identified from
the analyzed models of computation. Using the terminology
of programming paradigms, there are the imperative
paradigms exemplified by the Turing machine and the
functional paradigms with exemplars of lambda-calculus and
recursive functions. The third paradigm could be called
logical with exemplars of string-rewriting systems.

The main feature of pure imperative paradigm is the
existence of an explicit machine or program state, and
computation is performed by changing the state with the
execution of instructions until the final state is achieved. On
the other side of the spectrum, there are pure functional and
logical paradigms that are stateless, and computation is done

by describing or declaring the computational problem. Such
paradigms are typically named declarative. ‘Declarativeness’
being a matter of degree can be imagined as one axis in the
universe of programming languages. The differences
between functional and logical paradigms can be measured
by the organization of declarative statements that are
considered in computational request. If there exists one main
function that is executed, the paradigm is functional; if many
statements, regardless of their order, are considered, the
paradigm is logical. The three main paradigms can be
visualized by the following diagrams:

Figure: 1

Programming languages can be seen as occupying some
areas of the diagram. They can occupy a small space close to
the vertices that would make them pure exemplars of the
corresponding paradigm, like Lispkit Lisp or Unlambda for
functional paradigm. However, most of the real-life, complex
programming languages occupies larger area that makes
them more or less multi-paradigm languages.

The metrics for charting real programming languages on
diagrams can be some standardized measurement of the
length of proof of the Turing completeness in the
computational models. The shorter and more elegant the
proof, the closer is the language to the corresponding
paradigm. The opposite is also true, and the implementation
of some computational models is easier and more elegant in
the programming language that belongs to the same
paradigm. Another indicator of the closeness of some
programming paradigms to the corresponding computational
paradigms can be the formal semantics of the programming
languages. Although all three major approaches can naturally
provide meaning to all paradigms, it is the most elegant and
straight forward to model the functional paradigm in
denotational semantics, the imperative in operational
semantics and the logical paradigm in axiomatic semantics.

There are two important and successful paradigms,
namely structural and object-oriented paradigms that do not
fit naturally into the above model. It is not surprising because
they have evolved over a decade-long struggle of applying
computation to various real-world problems, something
models of computation were neither designed nor imagined
for. However, important features of those and similar
paradigms can be reduced to the concept of modularity.
Modularity can be defined as the possibility to isolate one

Davor Lauc, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 17-20

© 2010, IJARCS All Rights Reserved 20

part of computation from another. Like the imperative-
declarative axis, modularity is a matter of degree, so it can be
visualized as a third dimension of the above diagram. Some
programming languages are only modular, some completely
non-modular, but most of the contemporary languages
occupy larger spaces supporting, but not completely
enforcing, modularity.

V. CONCLUSION

There are many properties by which the above model
could be evaluated like precision, simplicity, fruitfulness and
so on, but the property of completeness seems to be the most
interesting. Completeness of the model means finding out
whether every programming language, which exists now or
will be designed later, can be naturally represented as
occupying some of the space of the model. Two concepts of
completeness could be identified, stronger and weaker
completeness. Stronger completeness claims that there does
not exist, nor will exist, a programming language that will
exit the borders of the model or be completely outside of the
model. The stronger completeness collapses to the famous
Church-Turing thesis in the sense that every existing
programming language is equivalent to the existing models
of computation, as every future programming language will
be.

The weaker completeness is a softer notion, meaning
that the model represents all the main programming
paradigms, in the meaning fixed above. Is there a paradigm

or programming language that does not map naturally to the
model? This paper claims that a model is complete in this
sense for existing languages, but it does not mean that new
paradigms will not emerge that would require modification
of the model. This could either be the discovery of a
completely new model of computation, which has not
happened in the last 70 years, or the design of a new
important feature like modularity that would dramatically
change world of computing.

VI. REFERENCES

[1] Floyd, R.W.: ‘The paradigms of programming’, Journal of
Personality Communications of the ACM archive, 22/8, pp.
455-460. 1976.

[2] van Roy, P. Haridi, S.: ‘Concepts, Techniques, and Models of
Computer Programming’, MIT Press. 2004.

[3] Gödel, K.: ‘Remarks before the princeton bicentennial
conference on problems in mathematics.’ In [4], pp. 84-88.
1946.

[4] Davis, M., editor. The Undecidable. Raven Press, Hewlett,
New York. 1965.

[5] Turing, A. [1936]. On computable numbers with an
application to the entscheidungsproblem. Proc. London Math.
Soc., 42:230-265. In [4], pp. 116-154. 1965

	INTRODUCTION
	PARADIGMS OF PROGRAMMING LANGUAGES
	MODELS OF COMPUTATION
	MODELS OF COMPUTATION AS PARADIGMS OF PROGRAMMING LANGUAGES PARADIGMS
	CONCLUSION
	REFERENCES

