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Abstract: The paper presents the feedback control design for controlling the inflow into the freeways to reduce traffic congestion using hybrid 
dynamics based on sliding control methodology. Earlier approaches for designing ramp metering based on discretized linearized methods or non 
linear designs using lumped parameters have limitations which are overcome using sliding mode control. The sliding controller design provides a 
systematic approach to the problem of maintaining stability and consistent performance.  One of the most common handicaps for applying sliding 
mode control to real applications is chattering problem. This problem has been dealt by using boundary layer approach. Accordingly, we propose a 
novel sliding mode control without chattering. The proposed sliding mode control removes the chattering phenomenon by replacing a sign function 
with a continuous function. The simulation results for the model are also presented. 
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I. INTRODUCTION  

The steadily increasing traffic congestions on freeways 
worldwide have led to the use of several control mechanisms. 
Basically, these are formed by controlling the number of 
vehicles entering the freeway from an on-ramp (ramp 
metering), and/or by changing the free speed limit of the 
vehicles between the specified sections of the road (variable 
speed limiting). Ramp metering is the most common type of 
control mechanism. It has been recognized as an effective way 
for relieving freeway congestion which is typically the result 
of either a surge of demand during peak commuting hours or a 
temporary reduction of the road capacity.  

Designing of ramp metering improves the traffic flow on 
the freeways by controlling the flow of traffic from the 
entrance ramp. Ramp metering has been studied for more than 
45 years now [1], [2], [3] and [4]. Optimizing techniques 
studying ramp metering are covered in [5], [6] and [7]. 
Simulation based analysis on ramp metering is given in [8] 
and [9]. A local feedback control law for on-ramp metering is 
studied in [10]. Fuzzy logic based freeway ramp control is 
covered in [11]. Ramp metering has been used in most of the 
developed countries like France [12], Germany [13], Italy 
[14], United Kingdom [15], USA [16] and New Zealand [17]. 

The objective of the ramp meter design is to control the 
inflow into the freeways so as to reduce the congestion and 
jams on the highways. Ramp meters can be pre-programmed 
or can operate in an actuated mode using real time data. The 
feedback control law can be designed based on the actual 
instantaneous traffic parameters so that the traffic flow can be 

maximized and congestion is avoided. A freeway with 
entrance ramp is shown in Fig. 1. 

Freeway traffic flows can be controlled by lumped 
parameter system approach owing to the space discretized 
system models. Earlier models based on lumped parameters 
fail to utilize the rarefaction behavior of the traffic. These 
results in zero outflow from a section when traffic density is at 
jam density, thereby meaning that traffic would never come 
out of jam. Moreover, these models do not satisfy the entropy 
conditions required by the distributed parameter hybrid 
dynamic model. This is the major limitation for the control 
design in the past. 

 
Figure 1.  Freeway with Entrance Ramp. 

But Godunov based model for feedback ramp metering 
[18] reproduces the rarefaction behavior and a feedback 
control design for ramp metering system is presented which 
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provides asymptotic behavior for the closed loop system. The 
entropy consistent lumped parameter model uses the Godunov 
based switching ODEs to produce a hybrid dynamic model. A 
uniformly stable feedback control law for the various 
switching states has been designed. 

But in real world, there are modeling inaccuracies which 
have an adverse effect on the non linear control systems. 
Robust control is one of the major approaches to deal with 
model uncertainties and a simple approach to robust control is 
sliding control methodology. Our contribution in this paper is 
to modify the control laws to achieve the trade-off between 
tracking performance and parametric uncertainties. The sliding 
controller design presented provides a systematic approach to 
the problem of maintaining stability and consistent 
performance. One of the most common handicaps for applying 
sliding mode control to real applications is chattering problem. 
This problem has been dealt by using boundary layer 
approach. Accordingly, we propose a novel sliding mode 
control without chattering. The proposed sliding mode control 
removes the chattering phenomenon by replacing a sign 
function with a continuous function. It is also designed to 
move the state to the sliding surface in the infinite time 
without chattering. Simulation results for the model are also 
presented. 

II. MATHEMATICAL MODEL   

In Lighthill-Whitham-Richards (LWR) model [19] and 
[20], the traffic state is represented from a macroscopic point 
of view by the function  which represents the traffic 
density (number of vehicles per unit length of road)  at 
position x and time t. The flux or flow of rate, f (number of 
vehicles per unit time passing point x at a time t) which is the 
product of traffic density and the traffic speed v, i.e. f = ρ v. 
The dynamics of the traffic are represented by a conservation 
law expressed as: 

 

 (1) 

or 

 (2) 

   
Greenshield’s model [21] and [22] predicts the 

uninterrupted traffic flow and explains the trends that are 
observed in a real traffic flows. It assumes a linear relationship 
between traffic density and traffic speed. 

 

 (3) 

 
where   is the free flow speed and ρmax is the maximum 

density. Free flow is the speed when traffic density is zero 
because there are no vehicles on the roadway. This free flow 
speed is the maximum speed. As the density increases, the 
flow also increases to some maximum flow conditions. When 
the traffic density reaches maximum, it corresponds to a traffic 
jam and the speed is zero. The maximum flow occurs when 

the traffic is flowing at half of free flow speed. Fig. 2 gives the 
fundamental diagram of Greenshield’s model. 

 

Figure 2.  Fundamental diagram of Greenshield,s model. 

A space discretized model of (1) or (2) for the ramp 
metering is presented in Fig. 3. Here u(t) is the ramp inflow 
into the freeway, fi is the upstream inflow and fo is the 
downstream outflow. 

Assuming unit length for the section, the ODE for the 
space discretized model for the ramp metering, is given by 

 
Figure 3.  Space Discretized Model. 

 (4) 

  
As per Greenshield’s model, the outflow traffic    is 

given by 
 

 (5) 

Substituting (5) in (4) establishes that when traffic density 
is equal to jam density and the value of  becomes zero, the 
rate of increase in traffic density is positive. For positive 
inflow, the density can increase according to (4). When the 
traffic density is equal to jam density for the section, two 
issues need to be addressed: 

a) The inflow from upstream can increase the density 
above the jam value, and 

b) The outflow is zero from the section not allowing for 
the traffic to be dissipated to downstream. 

The LWR model does not have these limitations as can be 
seen in Fig. 4 which shows the traffic characteristics where 
traffic density is shown on the x-axis, time on the y- axis and 
traffic density is assumed to be piecewise constant. Here the 
upstream traffic density ρ0 is lower, middle section has jam 
density ρm, and downstream has ρ= 0 (zero density). When the 
time increases, the shockwave travels upwards and the 
rarefaction is towards the downstream thereby dissipating the 
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jam. 

 
Figure 4.  Traffic Characteristics. 

Godunov’s model is used to address these two issues. 
Godunov proposed a way to make use of the characteristic 
information within the framework of a conservative method. 
Rather than attempting to follow characteristics backwards in 
time, Godunov suggested solving Riemann problems [22] 
forward in time. Solutions to Riemann problems are relatively 
easy to compute, give substantial information about the 
characteristic structure, and lead to conservative methods 
since they are themselves exact solutions of the conservation 
laws and hence conservative. 

The Godunov method is based on solving the Riemann 
problem. A Riemann problem in the theory of hyperbolic 
equations is a problem in which the initial state of the system 
is defined as: 

 

 (6) 

In other words: the initial state is constant for all negative 
x, and constant for all positive x, but differs between left and 
right. For solving the Riemann problem, the initial condition is 
a piecewise constant function with two values ρℓt for the 
upstream (left)  and ρrt for downstream (right) densities [23]. 
From the junction of the two densities either a shockwave or a 
rarefaction wave can emanate. A shockwave develops if f ′ (ρℓt 
) > f ′ (ρrt ) [32]. A rarefaction develops if f ′ (ρℓt ) < f ′ (ρrt ). 
The rarefaction can be entirely to the left, or to the right or in 
the middle as shown in Fig. 5. 

 

 
Figure 5.  Left, Middle and Right Rarefaction. 

The speed of the shockwave is given by (7), in which, xs(t) 
is the position of the shockwave as a function of time. If the 
shock speed is positive, then the inflow at junction between 
the two traffic densities will be a function of upstream traffic 
density, whereas if the shock speed is negative, then the in flow 
at junction between the two traffic densities will be a function 
of downstream traffic density. 

 

 (7) 

 
The shockwave and rarefaction conditions analysis gives 

us the Godunov based ODE model for traffic. The ODE for 
Godunov method is in line with the conservation law, and is 
given by (8), where we have assumed unit length for the 
section.  As shown in Fig. 6, the inflow fi (t) will be a 

  
Figure 6.  Godunov Based Model. 

 (8) 

function of upstream density ρlt and downstream density ρrt 
and shall be given by (9) where a new function F is obtained 
from Godunov method. Here the upstream and downstream 
traffic densities are with respect to the left junction.  

 
 (9) 

 
For the right junction, the out flow fo (t) is given by (10). 

 
 (10) 

 
The function  is given by the Godunov 

method in (11) [23]. 
 

 (11) 
  
Here, the flow -dictating density ρ# is obtained from the 

following [23]: 
 

Case 1  
Case 2  

Case 3  
 

Case 4  
Here is obtained as the solution to  
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In each of the first three cases, the value is either ρlt, or ρrt. 
Note in particular that in cases 1 and 2, it is irrelevant whether 
the solution is a shock or rarefaction, since the value of ρ s is 
the same in either case. This shows that using Godunov's 
method with entropy-violating Riemann solutions does not 
necessarily lead to entropy-violating numerical solutions. In 
case 4, ρ s is neither ρlt, nor ρrt, but is some intermediate value 
ρs satisfying the Godunov dynamics. 

Godunov model described above calculates the density of 
the free way segment which is calculated on the basis of 
densities on both the sides viz. upstream traffic density  (left)  
and downstream  traffic density (right)  i.e. the known 
boundary conditions. But in real life situations, the traffic 
density is not known and there are modeling inaccuracies or 
structured uncertainties. Robust control is one of the major 
approaches to deal with model uncertainty.  

A. Sliding Control Methodology: 
A simple approach to robust control is the sliding control 

methodology [26] in which nth order differential equation is 
replaced by equivalent first order differential equation and 
then perfect performance can be achieved in the presence of 
arbitrary parameter inaccuracies. For the class of systems to 
which it applies, sliding controller design provides a 
systematic approach to the problem of maintaining stability 
and consistent performance in the face of modeling 
imprecision. 

The idea behind the sliding control is to pick up a well 
behaved function of the tracking error, s, and then select the 
feedback control law u such that s2 remains a Lyapunov like 
function of the closed loop system, despite the presence of 
model imprecision and of disturbances. The controller design 
procedure then consists of two steps. First, a feedback control 
law u is selected so as to verify sliding condition. However, in 
order to account for the presence of modeling imprecision and 
of disturbances, the control law has to be discontinuous across 
the sliding surface, S(t). Since the implementation of the 
associated control switching is necessarily imperfect, this 
leads to chattering.  In practice, chattering is undesirable since 
it involves high control activity and further may excite high 
frequency dynamics neglected in the course of modeling. 
Thus, in a second step the discontinuous control law u is 
suitably smoothed to achieve an optimal trade-off between 
control bandwidth and tracking precision: while the first step 
accounts for parametric uncertainty, the second step achieves 
robustness to high frequency unmodeled dynamics. 

Consider the first order differential system, 
 

 (12) 
where x(t) is the output of interest, f(t) is not exactly 

known and u(t) is the control input. 
As the dynamics of f which can be non-linear or time 

varying is unknown, we take estimated value as .  
The error estimated on f is assumed to be bounded by the 

function  
 

 (13) 
 

So the time varying surface s(t) is written as 
 

 (14) 
where s(t)  is the tracking error and xd is the desired state. 
The simplified first order problem of keeping the scalar s 

at zero can be achieved by choosing the control law of (12) 
such that outside of s(t) is 

 

 (15) 

where,  is strictly a positive constant.   denotes that 
the squared distance to surface measured by s2  decreases 
along all trajectories. 

The behavior of sliding condition is shown in Fig. 7: 

 
Figure 7.  Sliding Mode Exponential Convergence. 

So (15) can be written as: 
 

 (16) 

III. HYBRID DYNAMICAL MODEL AND CONTROL 
DESIGN 

The ODE model for the ramp metering system can be 
written as: 

 

 (17) 

 
This is a switched hybrid system [25], where the switching 

happens autonomously based on the values of ρℓt , ρ, and ρrt . 
The function F(ρℓt , ρ) can have three distinct values, f(ρℓt), 
f(ρ), or f(ρs). Similarly, F(ρ, ρrt ) can have three distinct values. 
Hence, the dynamics can be written as:  

 

 (18) 

where q ∈ {1, 2, · · · , 9} and the different Gq functions can 
be obtained from (11), (17) & (18). 

The following feedback linearization based model for the 
ramp metering control that attempts to keep the mainline 
traffic density at ρs, which is taken to be the flow maximizing 
density is given in (19). For the Greenshield’s model this 
critical density is ρm /2. 
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 (19) 
 

We propose the control law using sliding mode as 
 

 (20) 
where sgn( s(t)) is defined as  
 

 (21) 

and , which is the sliding surface. 
 

This control algorithm causes chattering which must be 
eliminated for the controller to perform properly. This can be 
achieved by smoothing out the control discontinuity in the thin 
boundary layer neighboring the switching surface by 
introducing the saturation function. Saturation function is a 
continuous approximation of sign function [26]. 

The saturation function  can be defined as: 
 

 (22) 

 
The saturation function determined by the system 

dynamics is proposed for the use inside the boundary layer to 
reduce chattering around the switching surface and using a 
continuous control within the boundary layer. Accordingly, we 
further modify the control law proposed in (20) after 
incorporating the saturation function to remove chattering and 
is given in (23). 

 
 (23) 

IV. SIMULATIONS 

The control law developed has been implemented by using 
MATLAB.  The feedback linearization based model for the 
ramp metering control is consistent with the conservation law 
as well as the Godunov conditions which are used for making 
the hybrid model.  Further, sliding mode control is applied 
using a sign function in the control law. But this leads to 
chattering which is undesirable. The chattering has been 
removed by using saturation function modifying the control 
law.  

The ordinary differential equation (ODE) given in (17) 
which uses the hybrid control scheme developed in this study 
is implemented in this simulation. The lower and upper limits 
of traffic flow are taken as zero and 75% of the maximum 
flow is applied at the inflow of the control. 

The simulation was run with different initial values of 
traffic density viz. ρ0 =50, 20, 10 with jam density, ρm= 86 and 
the simulation results are depicted in the following figures. As 
shown in the ‘Density using Hybrid Control’ plot, the traffic 
density converges to the desired critical density that 
maximizes the flow. The desired result is obtained as the 
stead y state traffic d ensity o f 4 3  (i.e ρm/2) is achieved. The 
chattering phenomenon is clearly shown in the ‘Density using 

Sliding Mode’ plot. The chattering occurs at the steady state 
traffic density of 43 due to uncertainties. The chattering 
reduction using the saturation function is also shown in 
‘Density using Saturation Function with Sliding Mode 
Control’ plot. Here the value of φ is taken as 2.0 for applying 
boundary layer conditions. 

The simulation results are shown in Fig. 8 to Fig. 16. 

 
Figure 8.  Freeway segment traffic density using the hybrid based control, ρ0 

= 50. 

 
Figure 9.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 50. 

 
Figure 10.  Freeway segment traffic density using chattering reduction of  
sliding mode control by adopting non linear saturation function, ρ0 = 50. 
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Figure 11.  Freeway segment traffic density using the hybrid based control, ρ0 

= 20. 

 
Figure 12.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 20 

 
Figure 13.  Freeway segment traffic density using chattering reduction of  
sliding mode control by adopting non linear saturation function, ρ0 = 20. 

 
Figure 14.  Freeway segment traffic density using the hybrid based control, ρ0 

= 10. 

 
Figure 15.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 10. 

 
Figure 16.  Freeway segment traffic density using chattering reduction of  
sliding mode control by adopting non linear saturation function, ρ0 = 10. 



Bhawna Sharma et al, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,153-159 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                      159 

V. CONCLUSIONS 

The paper presents a sliding mode feedback control design 
of an isolated ramp based on Godunov dynamics. Sliding 
Mode Control is used to achieve the trade-off between 
tracking performance and parametric uncertainties. The sliding 
controller design presented provides a systematic approach to 
the problem of maintaining stability and consistent 
performance. One of the most common handicaps for applying 
sliding mode control to real applications is chattering problem. 
This problem has been dealt by using boundary layer 
approach. Accordingly, a novel sliding mode control without 
chattering has been presented. Simulation results for the model 
are also presented. 
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