
Volume 4, No. 9, July-August 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 175

ISSN No. 0976-5697

Making Mutation Adaptive in Genetic Algorithm
Suyash Raghava

Department of Computer Science
Amity University Haryana Gurgaon, India

suyashraghava.research@gmail.com

Abstract: In classical Genetic Algorithm the nature of mutation is random so it only serves the purpose of adding diversity to the current
generation and to avoid problems like premature convergence. In this paper it is shown that how mutation can be made adaptive so that when it
occurs, it mutates the chromosome in a way so as to produce overall healthier chromosomes. The theory of adaptive mutation proposes that
mutation may occur as a direct consequence of stress in the environment so that it can adapt to it. In this paper the mutation will follow up the
theory of adaptive mutation and will try to mutate the chromosomes in a way so that it produces better results.

Keywords: Artificial Intelligence; Genetic Algorithm; Evolutionary Algorithm; Adaptive Mutation; Travelling Salesman Problem.

I. INTRODUCTION

Traditional Genetic Algorithm uses mutation operator
that involves a probability that a bit of a chromosome will be
changed from its original state. This type of mutation
involves randomness and adds diversity to the current
generation of the population. This type of mutation mimics
the random mutation that occurs in the nature. More can be
read about classical Genetic Algorithm here [1].

In this paper a new approach towards mutation is
introduced which follows the theory of Adaptive mutation.
This paper introduces how mutation is made adaptive by
detecting a pattern among the high performing chromosomes
and then mutating the current population according to it.

II. ADAPTIVE MUTATION

The theory of Adaptive mutation proposes that mutation
may occur as a direct consequence of stress. This mutation
that may occur might allow adaptation to that stress.

Adaptive mutation can be simply understood, as some
phenotypic feature that may undergo some external pressure,
will learn to adapt to it permanently with course of time
through mutation. More can be read about biological aspect
of adaptive mutation here [2].

III. THE PROBLEM USED

To test the adaptive mutation design, the famous
Travelling Salesman Problem is used.

In the algorithm 26 cities are generated and a randomly
generated distance is allocated between each city. The
allocated distances are symmetric. The 26 cities are labeled
from A-Z. Chromosome length is 26. Each chromosome
represents a possible route. Each chromosome contains all
26 cities with no repetition, as shown in Figure-1 the
chromosome constitutes a valid route.

Figure 1. Example of a Chromosome

IV. ADAPTIVE DESIGN

To accomplish adaptive mutation a detectPattern()
function is used which collects data of healthy chromosomes
from each generations till the mutation and then detects a
pattern among them. Finally when the mutation occurs it
mutates the low performing chromosomes to resemble the
detected pattern and hence improves the performance of the
algorithm.

A. detectpattern():
This function follows the following algorithm to compute

a healthy pattern.
Process: P1

a. Store fittest chromosome of each generation in a
multidimensional array

Repeat P1 for each generation
Process: P2

b. If (Mutation)
a) Find city c that repeats itself most in ith

column
b) Store c in an array of size 26 at ith

position
Repeat P2 for i in range (0,25)

After completion of this algorithm a single dimension

array will be obtained which will contain all the position of
the cities that can produce better results.

B. Mutation Operator:
The mutation operator causes the main mutation. The

adaptiveMutation() function is used in the code to implement
the adaptive mutation operator. In this function random
numbers are generated from (0,25) which select the position
of cities from array such that no same city is selected.

It performs mutation by inserting cities obtained from
array into the chromosomes of current generation at the same
position as they were in the array. Cities in the chromosome
those are same as that of the ones, which are inserted in the
chromosome, are simply deleted so that a proper path is
created without any repetitive city.

The mutation probability for the algorithm is set to 0.50.
As the population is sorted from highest to lowest performing
chromosome, so only half of the population is affected.

Suyash Raghava, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,175-177

© 2010, IJARCS All Rights Reserved 176

The mutation probability is also adaptive. It is adaptive in
a sense that mutation will only affect those chromosomes that
are not performing well and will leave the high performing
ones unaltered. More can be read about it here [3].

V. TESTING

To test the new operator, its performance is compared to
traditional mutation operator in Genetic Algorithm. The
program runs normally till the point where mutation has to
occur and then it splits into two parts. These parts run the
instances of the algorithm, one with adaptive mutation and
other one with traditional mutation. In this manner both
mutations act on the same initial population. This makes the
testing more efficient.

VI. IMPLEMENTATION

Code is implemented by keeping functional approach in
mind. Traditional Genetic Algorithm used in my code uses
following main functions.
a. initialPopulationGenerator(): Simple function that

generates random initial population. The initial size of
the population is set in the beginning. In this paper the
initial population size is thousand chromosome.

b. selection(): It performs three functions. Firstly, it
computes the fitness of each chromosome and creates a
new data structure that contains all the fitness value of
each chromosome. Secondly, it sorts the population
from highest to lowest performing chromosome.
Thirdly, it removes the low performing chromosomes.

c. orderedCrossover(): When dealing with problems like
Travelling Salesman it should be kept in mind that any
changes that are made in chromosome should not cause
repetiton among the cities in a chromosome. To
overcome this constraint this function performs
ordered crossover on the current generation of
population.

d. traditionalMutation(): This function performs
traditional mutation. Swap mutation is used, as in
travelling salesman problem we have to make sure that
in the chromosome no repetition occurs as it would be
an invalid path. In swap mutation two genes are
randomly selected and then their positons are
interchanged.

e. setcities(): This function is used to generate random
cities labelled from A-Z. The cities generated are
assigned random distances. The distance allocated are
symmetric. In this way this function creates a virtual
database of cities and their distances.

Only initialPopulationGenerator() and setcities() are
called once in the beginning. All the other functions in the
algorithm are inside a loop. A single iteration represents a
current generation and the genetic operation that are
performed on it.

There is no special fitness operator used but there is a
function chromosomeDecoder(), which accepts a
chromosome, decodes it and calculates the fitness associated
with it and returns the fitness value. The fitness value is
calculated simply by adding the distances between the cities
hence the total distance covered in route represents the
fitness of the chromosome. Smaller distances means better
performance.

Algorithm goes normally till the mutation is
encountered. After that the algorithm splits into two parts. In
one instance adaptive mutation is applied and in other
traditional mutation. Both instances of algorithms run
parallel. This makes it easier to evaluate and compare the
performance and also as both the mutation operators are
applied on the same generation of the population, which in
turn makes the testing more accurate.

VII. PERFORMANCE

Figure 2 represents the performances of both the
algorithms, traditional and adaptive, over each successive
generation after mutation has occurred. It can be clearly seen
from the figure that the new operator performs better than
the traditional operator over each successive generation.

The adaptive mutation operator not only improves the
overall fitness of the population but also the low performing
chromosomes are affected and perform better. As it can be
seen from the figure that algorithm converges in fewer
generations as compared to traditional algorithm.

Figure 2. Maximum fitness comparison between traditional and adaptive

mutation.

VIII. CONCLUSION

This paper introduced a completely new approach
towards mutation in Genetic Algorithm. The adaptive
approach presented in the paper opens up a lot of scope for
future work on both mutation operator and way the selective
pressure is implemented in algorithm. It is notable how the
algorithm converges in fewer generations as compared to
traditional approach. After rigorous testing and analysis of
result it can be seen that algorithm can perform much better
with adaptive approach towards mutation rather than just
making it random as done in traditional mutation.

This approach helps to solve one of the major pitfalls of
Genetic Algorithm of mutation being random. Now the
change that will occur in the population is not random but
controlled by the overall performance of the algorithm. A
good feature of new operator is that it will only change those
chromosomes that are not performing well whereas the
healthy chromosomes will be left unchanged. All these
features increase overall efficiency of the algorithm.

Suyash Raghava, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,175-177

© 2010, IJARCS All Rights Reserved 177

IX. ACKNOWLEDGMENT

I would like to thank my father Dr. Arun Kumar
Raghava for helping me with biological aspect of adaptive
mutation and Mr. Akhilesh Kumar for introducing me to
Genetic Algorithm.

X. REFERENCES

[1] Goldberg DE , ”Genetic Algorithms in search optimization
and Machine Learning,” Addison Wesley, 1989.

[2] Susan M. Rosenberg, ”Evolving responsively: Adaptive
Mutation,” Macmillan Magazines Ltd, Volume 2, July 2001.

[3] S. Marsili Libelli, P. Alba, “Adaptive mutation in Genetic
Algorithms,” Soft computing (2000) 76-80, Springer-Verlag,
2000.

[4] Grefenstette JJ, ”Optimization of control parameters for
genetic algorithm,”IEEE Trans syst Man Cybern 16, 1986.

[5] Davis L, ”Handbook of Genetic Algorithms,” New York:
Van Nostrand Reinhold,1990.

	INTRODUCTION
	ADAPTIVE MUTATION
	THE PROBLEM USED
	ADAPTIVE DESIGN
	detectpattern():
	Mutation Operator:

	TESTING
	IMPLEMENTATION
	initialPopulationGenerator(): Simple function that generates random initial population. The initial size of the population is set in the beginning. In this paper the initial population size is thousand chromosome.
	selection(): It performs three functions. Firstly, it computes the fitness of each chromosome and creates a new data structure that contains all the fitness value of each chromosome. Secondly, it sorts the population from highest to lowest performing...
	orderedCrossover(): When dealing with problems like Travelling Salesman it should be kept in mind that any changes that are made in chromosome should not cause repetiton among the cities in a chromosome. To overcome this constraint this function perf...
	traditionalMutation(): This function performs traditional mutation. Swap mutation is used, as in travelling salesman problem we have to make sure that in the chromosome no repetition occurs as it would be an invalid path. In swap mutation two genes ...
	setcities(): This function is used to generate random cities labelled from A-Z. The cities generated are assigned random distances. The distance allocated are symmetric. In this way this function creates a virtual database of cities and their distances.

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

