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Abstract: This paper focuses on two main issues; first one is the impact of combination of multi-sensor images on the supervised learning 
classification accuracy using segment Fusion (SF). The second issue attempts to undertake the study of supervised machine learning 
classification technique of remote sensing images by using four classifiers like Parallelepiped (Pp), Mahalanobis Distance (MD), Maximum-
Likelihood (ML) and Euclidean Distance(ED) classifiers, and their accuracies have been evaluated on their respected classification to choose the 
best technique for classification of remote sensing images. QuickBird multispectral data (MS) and panchromatic data (PAN) have been used in 
this study to demonstrate the enhancement and accuracy assessment of fused image over the original images using ALwassaiProcess software. 
According to experimental result of this study, is that the test results indicate the supervised classification results of fusion image, which 
generated better than the MS did. As well as the result with Euclidean classifier is robust and provides better results than the other classifiers do, 
despite of the popular belief that the maximum-likelihood classifier is the most accurate classifier. 
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I.       INTRODUCTION 

The classification is defined as information of extracting 
process that analyses the adopted spectral signatures by using 
a classifier and then assigns the spectral vector of pixels to 
categories according to their spectral. Depending on the level 
of pattern classification procedure techniques are used in 
classifying images can be broadly categorized as either 
supervised or unsupervised. In the case of unsupervised 
classification means by which pixels in the image are 
assigned to spectral classes without the user having 
foreknowledge of training samples or a-prior knowledge of 
the area. While In the case of supervised classification, it 
requires the user provide the types of cover sets in the image 
e.g., water, cobble, deciduous forest, etc. As well as a 
training field for each cover type. The training field typically 
corresponds to an area in the image, which has contains of 
the cover type, and the collection of all training fields is 
known as the training set or ground-truth data. These training 
set can be obtained using site visits, maps, aerial photographs 
or even a photo interpretation of a colour composite product 
formed from the satellite image data [1].  

The ground-truth data is then used to assign each pixel to 
its most probable cover type. Many factors in every case, the 
crucial steps are: (i) selection of a set of features which 
describes the best pattern from the original feature set and 
thus can be viewed as a principal pre-processing tool prior to 
solving classification problems [2], (ii) choice of a suitable 
classifier for the comparison of the pattern describing the 
object to be classified and the target patterns and (iii) a third 
stage, that of assessing the degree of accuracy of the 
allocation process. Many factors affect the accuracy of image 
classification and the quality of land cover maps, which is 
often perceived as being insufficient for operational use [3-4]. 
Classification accuracy is a function of training set selection, 
and a good training set has the following characteristics 
[5]:1). It should contain samples describing all classes,2) It 
should have a sufficient number of independent samples for 
each class, and 3) It should be made up of samples that 
completely describe the intra-class variability. 

 
The feature-selection techniques that are most widely 

used in remote sensing generally require the definition of a 
discriminant function and a decision rule. The decision rule 
is a measure of the effectiveness of the considered subset of 
features, and the discriminant function is an algorithm that 
aims at efficiently finding a solution (i.e., a subset of features) 
that optimizes the adopted decision rule. In standard feature-
selection methods, several feature-selection algorithms have 
been proposed for selecting of training set, e.g., [6, 1]. the 
discriminant functions typically adopted are statistical 
measures that assess the separability of the different classes 
on a given training set but do not explicitly take into account 
the stationarity of the features (e.g., the variability of the 
spectral signature of the land-cover classes) [ 7]. This 
approach may result in selecting a subset of features that 
retains very good discrimination properties in the portion of 
the scene close to the training pixels (and therefore with 
similar behavior), but are not appropriate to model the class 
distributions in separate portions on the scene, which may 
present different spectral behavior[8]. In general, Current 
image processing techniques are limited in their ability to 
automatically extract accurate land cover features [9].   

In the study the developed system User Graphic Interface 
UGI ALwassaiProcess software was designed to automatic 
classification by select any number and size of regions that 
will be the training data of the test image. This is the crucial 
program for the image of classification, this deals with how 
to select the training data automatically which describes the 
best pattern and by this way allow us to determine the 
interesting class of user of image. The program offers the 
selections of any size of the training data; it means that the 
user can decide the increase of the successful of classification 
by this experiment. Also, in this paper there are comparisons 
of various classifiers which have been discussed with their 
accuracies evaluated on their respected classification. 
QuickBird MS and PAN have been used in the study to 
demonstrate the enhancement and accuracy assessment of 
fused image by using the Segment Fusion algorithm 
developed and tested with their effectiveness evaluated in 
[10-16]. The remaining sections are organized as follows. 
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Section 2 describes the basic terms in supervised image 
classification; Section 3 describes the supervised image 
classification methods; section 4 presents the data sets that 
used in the experimental analysis and classification results of 
fused image and Section 5 conclusions.   All of the image 
classification speeds have been calculated, that using the 
same training data for each image test. The computer 
hardware used to record the image classification algorithm 
speeds are an Intel® Core ™ i5-245OM CPU@ 2.50 GHz 
with Turbo Boost 3.10 GHz and 4.00GB RAM installed. The 
ALwassaiProcess software was running on operating system 
Microsoft Windows 7 64-bit respectively. 

II.       BASIC TERMS IN SUPERVISED IMAGE 
CLASSIFICATION 

In this section we would explain some basic terms about 
supervised image classification in general. A digital image is 
composed by pixels or points, and these points usually 
represent values in a multidimensional space. Each point can 
be represented as: 

 

Where is the value of pixel  in the band or feature  
(the term feature is more used since band is more related 
with spectral bands). The vector  is also called the feature 
vector or measurement vector. Feature Space is the set of all 
possible feature vectors. Usually the value of a pixel  in a 
band  is the brightness or gray level for that pixel, but for 
some classification tasks one may want to use other features, 
for example, texture measures, etc. In this case it would be 
necessary to normalize the values in the feature space so all 
feature space dimensions will be the same. 

Classification is a method by which unique labels are 
assigned to pixels based on the values of the vector . This 
decision is made by applying a discriminant function  
associated with class to vector , and choosing the 
largest . In other words: for all classes  in 
a classification task the pixel  is classified as class if its  

 is the largest value for all , or: 
    (1.1) 

The total number of classes in supervised classification 
is determined by the nature of the problem and by user's 
decision. The discriminant function depends on the chosen 
classification method. Some discriminant functions used in 
the different classifiers in this ALwassaiProcess software 
will be presented. Classification can also be considered as 
the partition of the feature space in mutually exclusive parts. 
Pixels are assigned to classes based on this partition.  

Here is a little more formal definition of the above, 
which is known as Bayesian Classifier, The classes in a 
classification task can be denoted by: 

 
Where  is the total number of classes and the 

probability that the correct class for  is  is given by: 
 

Where is called the a-posteriori probability. To 
decide which class  is the best (or has the least 
classification error) for the pixel  we should select the 
largest  on other words, select from between the 

probabilities that the correct class for pixel  is for all  
the highest one, or [17]: 

 (1.2) 
The problem is that these we need to determine 

the class for pixel  are unknown. If we have enough 
samples from all classes we can estimate the probability for 
finding a pixel from class  in position , denoted by 

. If there are classes, there will be also  values 
for  denoting the relative probabilities that the pixel 
 belongs to the class . The relation between  and 

 is given by Bayes' theorem [17]: 
 

Where  is the probability that class  occurs in 
the image. Also called a-priori probability and  is the 
probability of finding a pixel from any class at position . 
By comparison the ) are posterior probabilities. 
Using (1.2) it can be seen that the classification rule of (1.1) 
is [17]: 

        
(1.3) 

And substituting 
                                          

             (1.4) 
Where  is the natural logarithm, so that (1.3) is 

restated as [17]: 
           (1.5) 

Where  the discriminant function and is calculated 
differently for the different classification schemes. When 

 is not available it is considered as equal to 1 for all 
classes. 

III.     SUPERVISED IMAGE CLASSIFICATION 
METHODS 

This study implied different discriminant functions 
considered as the classification strategy and will be used to 
classifier the training set from each of the defined  classes 
as below. In the following different discriminant functions 
the training data will be extracted by having certain regions 
and they will have their RGB values represented by the 
mean red, the mean blue and the mean green values 
separately. Supposing the mean vector is a n-dimension 
vector, where n is the number of features (or image bands). 
The mean vector  for class is calculated for each feature 
as: 

 

Where  is the number of samples and  is the jth 
sample 

A. Parallelepiped Classifier (Pp) : 
The Pp classifier is a very simple supervised classifier, 

also known as a box or Level-Slice classifier. The Pp 
classifier method is implemented by defining a Pp classifier 
-like subspace (i.e., hyper-rectangle) for each class. The 
boundaries of the Pp classifier, for each feature, can be 
defined by the minimum and maximum pixel values in the 
given class, or alternatively, by a certain number of standard 
deviations on either side of the mean of the training data for 
the given class [18, 19]. The classification is done by 
checking whether the pixel is inside or outside the bounds 
for each feature space lies inside any of the parallelepipeds. 
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An example illustrating the specification of the topology of 
a Pp classifier in the case of a two-dimensional feature space 
is shown in Fig. 1. 

 

 
Fig. 1: Pp Classifier Example 

B. Mahalanobis Distance Classifier (MD): 
Classification is performed on MD classifier from each 

pixel to the signatures centers. Basically the classifier 
assigns class  to pixel  if: 

 
The discriminant function for the Mahalanobis distance 

classifier is as follows [19-20]: 
=       (1.6) 

Where  is the MD classifier for class .  and 
 are the mean vector and the inverse covariance matrix 

for the data of class . For a MD classifier signature we need 
some of the components shown in equation 1.6: the classes' 
mean and inverse of the covariance matrix . The data 
will be stored in separate planes in the depth direction, one 
for the mean and one for the inverse of the covariance 
matrix. The classification is done by choosing the lowest 

 for all class  .  

C. Maximum-Likelihood Classifier (ML): 
The ML classifier assumes that the classes are unimodal 

and normally distributed. Its discriminant function is given 
by [19]: 

  
(1.7) 

Often the analyst has no useful information about the 
in which case a situation of equal prior probabilities is 

assumed; as a result  can be removed from (1.7) 
since it is then the same for all . In that case the 1/2 
common factor can also be removed leaving, as the 
discriminant function [19]: 

     (1.8) 

 
Implementation of the ML decision rule involves using 
either (1.7) or (1.8) in (1.5).  For a ML classifier signature 
we need some of the components shown in equation 1.8: the 
classes' mean vector  and inverse of the covariance matrix 

. To help with the analysis of the signature's 
distributions and speed calculation of the likelihoods, the 
covariance matrix  and the negative of the logarithm of its 
determinate will also be stored in the signature. The data 
will be stored in separate planes in the depth direction, one 
for the mean, one for the covariance matrix, one for the 
inverse of the covariance matrix and one for the negative 
logarithm of the determinate of the covariance matrix. The 
classification is done by choosing the maximum  for all 
class  . N is the number of features in the image. 

D. Euclidean Distance Classifier (ED): 
The ED is a particular case of Minkowski sometimes is 

also called Quadratic Mean. Classification is performed on 
ED classifier from each pixel to the signatures centers. 
Basically the classifier assigns class  to pixel  if: 

 
The discriminant function for the EC classifier takes the 

following form and has the unit circle detailed in [21]: 

       (1.9) 

IV.     EXPERIMENTAL RESULTS 

A. Test data sets: 
The images that are going to be fused and classified in 

this study are downloaded from http://studio.gge. 
unb.ca/UNB/images. These remote sensing images are taken 
by QuickBird satellite sensor which collects one 
panchromatic band (450-900 nm) of the 0.7 m resolution 
and blue (450-520 nm), green (520-600 nm), red (630-690 
nm), near infrared (760-900 nm) bands of the 2.8 m 
resolution. The coverage of the images was over the 
Pyramid area of Egypt in 2002 as shown in Fig.2. Before the 
image fusion, the raw MS were resampled to the same 
spatial resolution of the PAN in order to perform image 
registration. The test images of size 864 by 580 at the 
resolution of 0.7 m are cut from the raw images. The 
classification is tested on resulted image fused by using the 
SF algorithm as shown in Fig.2.  
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Figure. 2: Experimental Test Images over the Pyramid Area of Egypt in 2002. Quickbird Data MS and Quickbird PAN, Image Fused Resulted By SF Algorithm. 

B. Supervised Image Classifiers: 
In the supervised classification, the acquisition of ground 

truth data for training and assessment is a critical component 
in process. In the study the developed system was designed 
to extract the training data test by having certain regions 
selected as decried below. The classification consists of the 
following steps: 
a. Step 1: Select the number and the size of regions that 

will be the training data the image as shown in Fig.3. 
The author has selected twelve classes as shown in 
Fig.4, and the size of each region selecting for the 
training data is 4 × 4 pixels was chosen.  

b. Step 2: Experts the Image; Experts training data; and 
Select discriminant function as shown in Fig.5.  

c. Step 3: apply the decision rule between the pixels in the 
image and every reference class  according to the 
selected discriminant function as shown in Fig.6. 

d. Step 4: Assign each pixel  to the reference class  that 
has the decision rule between pixel and reference 
class  then stored in separate planes in the depth 
direction.  

e. Step 5: selected different five regions of each reference 
class  for the accuracy assessment of image 
classification as shown in Fig.7 

f. Step 5: The Accuracy Assessment of Image 
Classification as shown in Fig.8. 

 

 
Figure.3: Illustrate Step 1: Select The Number And The Size Of Regions for The Training Data The Image 
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Figure.5: Illustrate Step 2: the Automatic Classification Process: Experts The Image; Experts Training Data; And Select Classifier Methods. 

 
Figure.6: Illustrate Step 3: Apply The Decision Rule Between The Pixels In The Image And Every Reference Class  According To The Selected Discriminant 

Function. 

 
Figure.7: Illustrate Step 4:  The Selected Different Five Regions Of Each Reference Class For Accuracy Assessment Of Image Classification 
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Figure 8: Illustrate Step 5: The Accuracy Assessment Of Image Classification. 

C. Classification Results Of Fused Image: 
To evaluate the performance of the proposed active 

learning strategies the four classifiers were applied for both 
MS QuickBird and fusion data after the fusion process. To 
the description of classification error, it is necessary to 
configure the error matrix and decide the measurements. 
Generally, there are descriptive statistic and analytic statistic 
from the error matrix. Overall accuracy, producer’s accuracy 
(omission error) and user’s accuracy (commission error) as 
well as Kappa statistic belong to descriptive statistic. In this 
study, as limited time, we focus the accuracy assessment of 
image classification only on the Overall accuracy for fused 
image. For such purpose, we first selected different five 
regions that have a 4×4 size for each reference class set is 
shown above in Fig.4. Table (1- 4) and Table (5-8) list the 
error matrix for both classified results, respectively. The 
overall measured accuracies of the Pp, MD, ML and ED 
classifiers for MS were 59.735%; 64.60%; 59.108% and 
87.257% respectively, and for fused image classified results 
were 63.498%; 60.838%; 58.363 % and 91.476% 
respectively. Fig. 9 show the classified results for fusion 
image and MS QuickBird image by the four classifiers. 

The Pp classifier is quick and easy to implement but the 
classification results has error, because some pixels lie 
inside more than one Pp or outside all Pps, therefore a pixel 

in those regions not classified. The classification results of 
the ML and MD classifiers are not surprising when we 
consider the fact that both ML and MD classifiers use class 
variances in each spectral band for calculating distances for 
classification. Both MD and ML classifiers use parametric 
rules that require normally distributed data and well defined 
variances for image data and each training class, while most 
image data do not show normal distribution, and most of the 
training classes have high variances of pixel values in each 
band. The ML and MD classifiers rules can be quite 
diagnostic in distinguishing different features with image 
data that show normal distribution and have well defined 
variances in each spectral band for each surface object. 
However, when those assumptions are violated, their 
performances are less than desirable. Classification accuracy 
results of the supervised ED classifier are presented in Table 
8 with the overall accuracy of 91.476percent. The mapping 
result of the ED classifier shows much higher overall 
accuracy of 91.476 % compared to that of the ML classifier 
(58.363 %) or MD classifier (60.838%) and Pp classifier 
(63.498%). In general, the supervised classification results 
of fusion image generated better than did the MS QuickBird. 
The best results overall accuracies with ED classifier than 
the other did.  

 
Table (1): Error Matrix for MS QuickBird Classified Result By Pp Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.6999 0.1  0.0625 0.1375        0.9999 
C2  0.4499  0.1625 0.3874        0.9998 
C3 0.3624  0.5124       0.125   0.9998 
C4 0.1093 0.2343  0.6093   0.0156    0.0312  0.9997 
C5 0.0375    0.9624        0.9999 
C6 0.2874     0.6124 0.075  0.025    0.9998 
C7   0.0125   0.0125 0.9749      0.9999 
C8 0.0222   0.0444 0.2222 0.0888  0.6222     0.9998 
C9         0.9999    0.9999 
C10 0.3249  0.075   0.125 0.3499   0.125   0.9998 
C11 0.2 0.0125 0.25  0.2      0.3374  0.9999 
C12 0.0375 0.0125  0.5624 0.125       0.2625 0.9999 

C.Total 2.0811 0.8092 0.8499 1.4411 2.0345 0.8387 1.4154 0.6222 1.0249 0.25 0.3686 0.2625 11.9981 
Overall accuracy 0.6999 0.4499 0.5124 0.6093 0.9624 0.6124 0.9749 0.6222 0.9999 0.125 0.3374 0.2625 0.59735 
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Table (2): Error Matrix for MS QuickBird Classified Result By MD Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.6874    0.3124        0.9998 
C2  0.1   0.8999        0.9999 
C3   0.7624  0.15  0.0875      0.9999 
C4    0.3906 0.5937      0.0156  0.9999 
C5     0.9999        0.9999 
C6      0.9999       0.9999 
C7      0.0125 0.9874      0.9999 
C8     0.4   0.6     1 
C9         0.9999    0.9999 
C10   0.2125   0.1125 0.05   0.6249   0.9999 
C11     0.5999      0.3999  0.9998 
C12    0.025 0.7749       0.2 0.9999 

C.Total 0.6874 0.1 0.9749 0.4156 4.7307 1.1249 1.1249 0.6 0.9999 0.6249 0.4155 0.2 11.9987 
Overall accuracy 0.6874 0.1 0.7624 0.3906 0.9999 0.9999 0.9874 0.6 0.9999 0.6249 0.3999 0.2 0.646025 

Table (3): Error Matrix for MS QuickBird Classified Result By ML Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.15    0.8499        0.9999 
C2  0.0125   0.9874        0.9999 
C3   0.7499  0.15  0.1      0.9999 
C4    0.3437 0.5      0.1562  0.9999 
C5     0.9999        0.9999 
C6      0.9999       0.9999 
C7       0.9999      0.9999 
C8    0.4    0.6     1 
C9         0.9999    0.9999 
C10   0.1875   0.1 0.075   0.6374   0.9999 
C11     0.5999      0.3999  0.9998 
C12    0.025 0.7749       0.2 0.9999 

C.Total 0.15 0.0125 0.9374 0.7687 4.862 1.0999 1.1749 0.6 0.9999 0.6374 0.5561 0.2 11.9988 
Overall accuracy 0.15 0.0125 0.7499 0.3437 0.9999 0.9999 0.9999 0.6 0.9999 0.6374 0.3999 0.2 0.591083 

Table (4): Error Matrix for MS QuickBird Classified Result By ED Classifier 

Euclidian C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.9749    0.025        0.9999 
C2 0.0375 0.7874   0.1625      0.0125  0.9999 
C3   0.9999          0.9999 
C4   0.0781 0.9218         0.9999 
C5  0.25  0.05 0.6999        0.9999 
C6      0.8999     0.1  0.9999 
C7       0.9999      0.9999 
C8        1     1 
C9         0.9624 0.0375   0.9999 
C10   0.2874       0.7124   0.9998 
C11 0.0375 0.0375 0.2125       0.025 0.6874  0.9999 
C12 0.0125  0.0375 0.0875 0.0375       0.8249 0.9999 

Total 1.0624 1.0749 1.6154 1.0593 0.9249 0.8999 0.9999 1 0.9624 0.7749 0.7999 0.8249 11.9988 
overall accuracy 0.9749 0.7874 0.9999 0.9218 0.6999 0.8999 0.9999 1 0.9624 0.7124 0.6874 0.8249 0.872566667 

Table (5): Error Matrix Classified Result for Fusion Image By Pp Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.9749 0.025           0.9999 
C2 0.025 0.5249  0.0625 0.3249      0.0625  0.9998 
C3 0.125  0.8624    0.0125      0.9999 
C4  0.5 0.0312 0.3125 0.0312  0.0937    0.0312  0.9998 
C5  0.3124  0.0125 0.6499      0.025  0.9998 
C6   0.0375   0.8124 0.025   0.125   0.9999 
C7   0.0125   0.125 0.8624      0.9999 
C8 0.1555    0.2444   0.1333 0.0222   0.4444 0.9998 
C9         0.9999    0.9999 
C10 0.2874  0.2375   0.1625    0.3124   0.9998 
C11 0.1625 0.075 0.1125  0.0375 0.0125    0.0125 0.5499 0.0375 0.9999 
C12 0.05 0.025 0.0375 0.0125 0.175      0.075 0.6249 0.9999 

C.Total 1.7803 1.4623 1.3311 0.4 1.4629 1.1124 0.9936 0.1333 1.0221 0.4499 0.7436 1.1068 11.9983 
Overall accuracy 0.9749 0.5249 0.8624 0.3125 0.6499 0.8124 0.8624 0.1333 0.9999 0.3124 0.5499 0.6249 0.634983 
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Table (6): Error Matrix Classified Result for Fusion Image By MD classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.5874    0.3374       0.075 0.9998 
C2  0.0875   0.4749      0.4374  0.9998 
C3   0.4749       0.3624 0.1625  0.9998 
C4    0.25 0.0156     0.0625 0.2031 0.4687 0.9999 
C5     0.9624      0.0125 0.025 0.9999 
C6      0.15    0.8499   0.9999 
C7      0.2625 0.6249   0.1125   0.9999 
C8        0.2888    0.7111 0.9999 
C9         0.9999    0.9999 
C10          0.9999   0.9999 
C11     0.0125     0.0625 0.9249  0.9999 
C12    0.0125      0.0125 0.025 0.9499 0.9999 

C. Total 0.5874 0.0875 0.4749 0.2625 1.8028 0.4125 0.6249 0.2888 0.9999 2.4622 1.7654 2.2297 11.9985 
Overall accuracy 0.5874 0.0875 0.4749 0.25 0.9624 0.15 0.6249 0.2888 0.9999 0.9999 0.9249 0.9499 0.608375 

Table (7): Error Matrix Classified Result for Fusion Image By ML Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.3999    0.4374       0.1625 0.9998 
C2  0.0875   0.4499      0.4624  0.9998 
C3   0.4624       0.3624 0.175  0.9998 
C4    0.2031      0.0468 0.0781 0.6718 0.9998 
C5     0.9249      0.0375 0.0375 0.9999 
C6      0.1125    0.8874   0.9999 
C7      0.2 0.6249   0.175   0.9999 
C8        0.2888    0.7111 0.9999 
C9         0.9999    0.9999 
C10          0.9999   0.9999 
C11          0.0625 0.9374  0.9999 
C12          0.0125 0.025 0.9624 0.9999 

Column total 0.3999 0.0875 0.4624 0.2031 1.8122 0.3125 0.6249 0.2888 0.9999 2.5465 1.7154 2.5453 11.9984 
Overall accuracy 0.3999 0.0875 0.4624 0.2031 0.9249 0.1125 0.6249 0.2888 0.9999 0.9999 0.9374 0.9624 0.583633 

Table (8): Error Matrix Classified Result for Fusion Image By ED Classifier 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 R. Total 
C1 0.9624 0.025   0.0125        0.9999 
C2  0.8749   0.1      0.025  0.9999 
C3   0.9999          0.9999 
C4   0.1093 0.8906         0.9999 
C5  0.1   0.8999        0.9999 
C6      0.9499    0.05   0.9999 
C7       0.9999      0.9999 
C8        1     1 
C9         0.9999    0.9999 
C10   0.2375       0.7624   0.9999 
C11   0.1625        0.8374  0.9999 
C12    0.2        0.7999 0.9999 

C total 0.9624 0.9999 1.5092 1.0906 1.0124 0.9499 0.9999 1 0.9999 0.8124 0.8624 0.7999 11.9989 
Overall accuracy 0.9624 0.8749 0.9999 0.8906 0.8999 0.9499 0.9999 1 0.9999 0.7624 0.8374 0.7999 0.914758 
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Figure.9: The Left Side Classified Result Of MS Quickbird And The Right Side kClassified Result Of Fusion Image With Color Code Of Each Land Class By: (a) 

Pp Classifier (b) MD classifier; (c) ML Classifier; (d) ED Classifier. 

V.     CONCLUSION 

In the study there are four supervised classifications are 
introduced as the following: Pp, MD, ML and ED 
classifiers. The supervised classification of the MS 
QuickBird Classified image has the lowest accuracy in 
comparison of the Fused Image Classified Result. When two 
data sets combined together (MS and PAN images) by using 
the SF algorithm in feature-level image fusion, confusion, 
problem was solved effectively. Another advantage of 

feature-level image fusion is its ability to deal with 
ignorance and missing information. 

The MD classifier produced results very similar to that 
of the ML classifier and they have the least accurate of all 
according to experimental result of this study. Because they 
use a parametric rule that requires data normal distribution 
and well defined covariance’s for each band in image data 
and each training class. Out of all four supervised classifiers 
ED Classifier generate more accurate classification results 
than other classifiers do, despite the popular belief that the 
ML classifier is the most accurate classifier.  

  
(a) PpClassifier                            

 
(b) MD Classifier 

 
(c) ML Classifier 

 
(d) ED Classifier 
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