
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 333

ISSN No. 0976-5697

Memory Reclamation by Garbage Collectors: SPECjvm 2008
Nitan S. Kotwal

PG Department of Computer Science & IT
University of Jammu, India
nitankotwal@hotmail.com

Shubhnandan S. Jamwal
PG Department of Computer Science & IT

University of Jammu, India
jamwalsnj@gmail.com

Abstract: In earlier languages the memory management is done explicitly by the programmer himself. Now with the advent of modern object
oriented languages like Java and C# the programmer is relived from explicitly managing the memory. A special program thread known as garbage
collector takes care of managing the memory implicitly. The process of automatically reclaiming memory from dead objects (the objects that are not
referenced from program or any other live object) is known as garbage Collection (GC). There are various metrics that affect the performance of the
mutator. In the current research paper we have experimentally tested the four garbage collectors on various benchmarks of SPECjvm2008 and
calculated how much memory is reclaimed after each (minor and major) collection.

Keywords: Collectors, Minor Collection, Major Collection, Mutator, Benchmarks, Memory Reclaimed.

I. INTRODUCTION

GC is the process of automatic memory reclamation in
which memory is reclaimed from the dead objects and added
to the pool of free memory. Garbage collectors are gaining
importance in modern compilers. Languages like Java and
C# have incorporated garbage collectors for automatic
memory management. There are four garbage collectors in
JDK 1.7.0.

The selection of a particular collector depends on the
class of the machine. If the machine class is server then by
default Parallel collector is selected. If the machine class is
client the default collector is serial collector.

The other collectors are Parallel Old, Conc Mark Sweep.
We have also a choice to explicitly activate the garbage

collector through command line.
a. Serial Collector: With serial collector both young and

old generations are collected serially in a stop the
world fashion and is usually adequate for small
applications (requiring heap up to 100 mb). In this
collector application execution is halted while
collection is taking place [1].

b. Parallel Collector: With parallel collector minor
collections are performed simultaneously while the
major collections are performed serially. It is suitable
for those applications that have large data sets. The
parallel collector is appropriate on multiprocessor
systems. It is selected by default on server-class
machines. It can be enabled explicitly with option -
XX:+UseParallelGC[1].

c. Parallel Old Garbage Collector: The parallel
compacting collector was introduced in J2SE 5.0
update 6. With ParallelOld collector minor as well as
major collections are performed parallel with the use of
multiple CPU’s in stop the world fashion. The
difference between parallelOld collector and the
parallel collector is that parallelOld collector uses a

new algorithm for old generation garbage collection. It can
be enabled explicitly with option -XX:+Use Parallel Old
GC [1].

d. Concurrent Mark-Sweep (CMS) Collector: With CMS
collector minor collection are performed in the same way
as performed by the parallel collector. While major
collection is done concurrently with the execution of the
application. The CMS collector is appropriate if
application needs shorter garbage collection pauses and
can afford to share processors with the garbage collector
thread when the application is running. It can be enabled
explicitly with option -XX:+UseConcMarkSweepGC[1].

II. REVIEW OF LITERATURE

Sunil Soman and Chandra Krintz [2] showed that
application performance in garbage collecting languages is
highly dependent upon the application behavior and on
underlying resource availability. Given a wide range of diverse
garbage collection algorithms, no single system performs best
across all programs and heap sizes. They further presented a
Java Virtual Machine extension for dynamic and automatic
switching between diverse, widely used GC for application
specific garbage collection selection. Further they described a
novel extension to extant on-stack replacement (OSR)
mechanisms for aggressive GC specialization that is readily
amenable to compiler optimization.

J. Singer, G. Brown, I. Watson, and J. Cavazos [3] after
obtaining and analyzing the results found that the no single
garbage collector based on different algorithm is best suited for
the all the different types of application.

Clement R. Attanasio, David F. Bacon, Anthony Cocchi,
and Stephen Smith [4] observed that when resources are
sufficient, all the collectors behave in similar manner. But when
memory is limited, the hybrid collector (using mark-sweep for
the mature space and semi-space copying for the nursery) can
deliver at least 50% better application throughput. Therefore

Nitan S. Kotwal et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,333-337

© 2010, IJARCS All Rights Reserved 334

parallel collector seems best for online transaction
processing applications.

Katherine Barabash, Yoav Ossia, and Erez Petrank [5]
presented a modification of the concurrent collector, by
improving the throughput of the application, stack, and the
behavior of cache of the collector without foiling the other
good qualities (such as short pauses and high scalability).
They implemented their solution on the IBM production
JVM and obtained a performance improvement of up to
26.7%, a reduction in the heap consumption by up to 13.4%,
and no substantial change in the pause times (short). The
proposed algorithm was incorporated into the IBM
production JVM.

Tony Printezis, and David Detlefs [6] showed that the
use of mostly-concurrent algorithm for older generation
decreases pauses for old-generation collection for those
programs whose promotion rates are sufficiently low to
allow a collector thread running on a separate processor to
meet its deadlines.The young generation collection is also
slowed , but this slowdown can be more than offset by the
offloading of collector work to the other processor.

Stephen M Blackburn, Perry Cheng, and Kathryn S
McKinley [11] analyzed that the overall performance of
generational collectors as a function of heap size for each
benchmark is mainly dictated by collector time. Mark Sweep
does better in small heaps and Semi Space is the best in
large heaps. But the results are not satisfactory in small
memory. Garbage collection algorithms still trade for space
and time which needs to be better balanced for achieving the
high performance computing.

Stephen M Blackburn, Perry Cheng and Kathryn S
McKinley [7], experimental design shows key algorithmic
features and how they match program characteristics to
explain the direct and indirect costs of garbage collection as
a function of heap size on the SPEC JVM benchmarks. They
find that the contiguous allocation of copying collectors
attains significant locality benefits over free-list allocators.
The reduced collection cost of the generational algorithms
together with the locality benefit of contiguous allocation
motivates a copying nursery for newly allocated objects.
The above mentioned advantages dominate the overheads of
generational collectors compared with non-generational.

Jurgen Heymann [8] presented an analytical model that
compares all known garbage collection algorithms. The
overhead functions are easy to measure and tune parameters
and account for all relevant sources of time and space
overhead of the different algorithms.

Kim, T., Chang, N., and Shin, H. [9] observed the
memory management behavior of several Java programs
from the SPECJVM98 benchmarks. The important
observation is that the default heap configuration used in
IBM JDK 1.1.6 results in frequent garbage collection and
the inefficient execution of applications.

Dimpsey et al.[10] describe the IBM JDK version 1.1.7
for Windows. This is derived from a Sun reference JVM.
The changes were incorporated in order to improve the
performance of applications executing in server. Physical
memory in the system was also taken into consideration.

They set the default initial and maximum heap size to values
that are proportional to the amount of physical memory in the
system. However, they do not explain what values are used or
how they were chosen. They also make modifications to reduce
the number of heap growths because they are quite costly in
their environment. If the memory reclaimed after a garbage
collection is less than 25% of physical memory or if the ratio of
time spent collecting garbage to time spent executing the
application exceeds 13%, the heap is grown by 17%. They
report that ratio-based heap growth was disabled if the heap
approached 75% of the size of physical memory, but they do not
explain what was done. It was reported that when starting with
an initial heap size of 2 MB, this approach increases throughput
by 28% on the Volano Mark and pBOB benchmarks.

III. EXPERIMENTATION

A. Benchmarks:
The current research is carried on SPECjvm2008 benchmark

suite. All the eleven benchmarks available in SPECjvm2008 are
studied in real JVM and no simulators are being used in the
experimentation. All the benchmarks specified in the
SPECjvm2008 are executed over a wide range of heap size
varying from 20 mb to 400 mb with an increment of 20 mb size.
Each of the benchmark is executed 10 times in a fixed heap size
and the arithmetic mean is obtained. The performance of the
Serial, Parallel, ParallelOld, ConcMarkSweep collectors is
measured over different heap sizes.

The Processor used in current research is Intel(R) Core(TM)
Duo CPU T2250 @ 1.73GHz. 32 bit system with 2038
megabyte RAM. The frequency of the memory is 795MHz. The
operating System used Microsoft Windows XP Professional
Version 2002 Service Pack 2.

Java used for performing the tests is jdk1.7.0_04,
Ergonomics machine class is client. JVM name is
JavaHoTSpot(TM) Client VM in which the maximum heap size
is estimated at 247.50 MB.

The issues considered for optimization in the current
research are

B. Memory Reclamation:
Memory reclamation is defined as the process of freeing

memory after each collection. Memory can be reclaimed after
minor and major collection is over.
a. Minor collection: When young generation fills up it

causes minor collection. After minor collection the
memory allocated to the objects in young generation are
freed and added to the pool of free memory. But there are
still some objects that are garbage (no longer alive) but
that cannot be reclaimed. These objects are moved to
tenured generation and sometimes may be referenced from
the tenured or permanent generations.

b. Major collection: Those objects that cannot be reclaimed
after minor collection are reclaimed after major collection.
The major collection occurs when the tenured generation
fills up.

Nitan S. Kotwal et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,333-337

© 2010, IJARCS All Rights Reserved 335

IV. RESULTS

A. Memory Reclamation by Minor Collection:
It has been observed that Serial and ConcMarkSweep

collectors are reclaiming more memory in case of Compiler,
Compress, Crypto, and XML benchmarks. Serial collectors
is reclaiming more memory in Sunflow benchmark. Whereas
ConcMarkSweep collector reclaims more memory in case of
Scimark.large and Xml benchmarks. Parallel and
ParallelOld collectors are reclaiming more memory in case
of Serial benchmark. In rest of the benchmark the level of
significance of difference is very less. In general for all the
collectors the percentage
of memory reclamation increases with the size of heap. The
result for memory reclamation in minor collection for Serial,
Parallel, ParallelOld, and ConcMarkSweep collectors in
Benchmarks of SPECjvm2008 is shown in “Fig. 1”.

B. Memory Reclamation by Major Collection:
Serial and ConcMarkSweep collectors reclaims more

memory in case of Startup, compress, crypto, mpegaudio,
scimark.small, serial, and sunflow benchmarks. Serial
collector is reclaiming more memory in case of compiler,
derby, scimark.large benchmarks. While for xml benchmark
the level of significance of difference is very less. In general
for serial collector the percentage of memory reclamation by
major collection increases relative to the increase in the size
of the heap while for ConcMarkSweep collector, percentage
of memory reclamation by major collection increases
relative to the increase in the size of the heap except for
derby where it decreases relative to the increase in the size
of the heap. For parallel and parallelold collectors,
percentage of memory reclamation by major collection
decreases with the increase in the size of the heap except for
compiler, scimark.large, and xml benchmarks whereas it
increases with the increase in the size of heap. The results
are shown in “Fig. 2”.

V. CONCLUSION

It is observed that if the size of the heap is increased the
percentage of memory reclaimed after minor collection also
increases for all the collectors. But in case of major
collection if we increase the size of heap for serial collector,
it is observed that for most of the benchmarks memory
reclaimed after major collection increases. This is also true
in case of concmarksweep except for derby. In case of
parallel and parallelold collectors for most of the
benchmarks memory reclaimed after major collection
decreases as the heap size increases except for compiler,
scimark.large, and xml. From the results obtained we
conclude that the memory reclaimed after minor and major

collection are not related to one another. We also wish to
perform these tests for DaCapo-9.12-bach benchmark suite.

VI. REFERENCES

[1]. Sun Microsystems (2006) “Memory Management in the Java
HotSpot Virtual Machine”. [Online]. Available:
http://java.sun.com/j2se/reference/whitepapers/memorymanage
ment_whitepaper.pdf

[2]. S. Soman and C. Krintz, “Application-specific Garbage
Collection”, J. of Sys. and Software, Elsevier Science Inc. New
York, NY, USA, vol. 80, No. 7, pp. 1037-1056, July 2007.

[3]. J. Singer, G. Brown, I. Watson, and J. Cavazos, “Intelligent
Selection of Application-Specific Garbage Collectors”, In Proc.
Of the 6th International Symposium on Memory Management,
ACM New York, USA, pp. 91-102, 2007.

[4]. C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith, “A
Comparative Evaluation of Parallel Garbage Collector and
Implementations”, LCPC'01 Proc. of the 14th Int. Conf. on
Languages and Compilers for Parallel Computing, Springer-
Verlag Berlin, Heidelberg, LNCS 2624, pp. 177–192, 2003.

[5]. K. Barabash, Y. Ossia and E. Petrank, “Mostly Concurrent
Garbage Collection Revisited”, OOPSLA '03 Proc. of the 18th
Annual ACM SIGPLAN Conf. on Object-Oriented Prog.,
Systems, Languages, and App., pp. 255-268, ACM New York,
NY, USA , 2003.

[6]. T. Printezis, and D. Detlefs, “A Generational Mostly
Concurrent Garbage Collector”, In Proc. Of the 2nd
International Symposium on Memory Management, ACM New
York, USA, vol. 36, no. 1, pp. 143-154, Jan. 2001.

[7]. S. M. Blackburn, P. Cheng and K. S. McKinley, “Myths and
Realities: The Performance Impact of Garbage Collection”,
Proc. of the Joint Int. Conf. on Measurement and Modeling of
Compu. Sys., June 12–16, ACM Press, New York, NY, USA,
2004.

[8]. J. Heymann, “A Comprehensive Analytical Model for Garbage
Collection Algorithms”, ACM SIGPLAN Notices, vol. 26, No.
8, August 1991.

[9]. Kim, T., Chang, N., and Shin, H., “Bounding Worst Case
Garbage Collection Time for Embedded Realtime Systems”,
RTAS '00 Proc. of the Sixth IEEE Real Time Tech. and Appl.
Symp.(RTAS 2000), pp. 46, IEEE Compu. Society
Washington, DC, USA, 2000.

[10]. Dimpsey, R., Arora, R., Kuiper, K., “Java Server Performance:
A Case Study of Building Efficient Scalable Jvms”, IBM
Systems J., vol. 39, No. 1, pp. 151-174, 2000.

[11]. O. Agesen and D. L. Detlefs. “Finding References in Java
Stacks”, Submitted to OOPSLA’97 Workshop on Garbage
Collection and Memory Manag., Atlanta, GA, October 1997.

Nitan S. Kotwal et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,333-337

© 2010, IJARCS All Rights Reserved 336

Figure. 1 Memory Reclamation after minor collection in Benchmarks of SPECjvm2008.

Nitan S. Kotwal et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,333-337

© 2010, IJARCS All Rights Reserved 337

Figure. 2 Memory Reclamation after major collection in Benchmarks of SPECjvm2008.

	INTRODUCTION
	REVIEW OF LITERATURE
	EXPERIMENTATION
	RESULTS
	CONCLUSION

