
��������	�
����	�
�
����������

���������������������������
������������������ ��!�����"�������

�#"#�� $�%�%#��

�
����&���'���������(((��)����������

© 2010, IJARCS All Rights Reserved 354

ISSN No. 0976-5697

Re-Engineering for GUI Conversion from Markup Language to Programming Language

Dr. E. Kirubakaran
Sr. Deputy General Manager, OutSourcing,

B.H.E.L., Trichy-14, India

e_kiru@yahoo.com

S Manimekalai*
Research Scholar, MTWU, Kodaikannal.

Lecturer in Computer Science,

Government Arts College, Trichy-22, India

mega_somu@yahoo.com

Abstract: Knowledge differs from person to person due to their way of thinking. Now-a-days, all the things are developed based on technology.

A technology which is easy for a person may seem to be difficult for another person. In software development architecture, there involves a

group of persons to develop software, and they work in different phases. Each phase is interlinked with each other to develop the software

successfully. The result produced by a phase is used in another phase to develop the software. Also the technology implemented in one phase

by a person may differ from other person in other phase.

To develop the process, designing phase is necessary and that design is created by the designer involved in that phase. The design is

developed based on their idea and known technology. But it is necessary to convert the design according to the programming language used in

the implementation phase. This conversion may leads to time consuming, when the programmer involves in this conversion since it has lot of

work from identifying the tool to choosing the appropriate tool from the programming language implemented.

In this paper, the conversion of the tools becomes easy by using the re-engineering technique. The Re-Engineering technique is the process

of converting the tools involved in the design from one technology into another automatically using some technique. In other words, alter the

design from one concept to another is termed as Re-Engineering. The snapshot about this re-engineering technique is discussed and

implemented in this paper.

Keywords: Designing, Implementation, Knowledge, phase, Programming language, Re-Engineering, Snapshot, Software Development

Architecture, Technology, Thinking.

I. INTRODUCTION

In Software development architecture, more number of

processes occurs such as analysis, design, implementation,

testing and maintenance. In this paper, re-engineering

technology is explained by converting the design from one

technology to other technology.

Of these processes, the designing and implementation

phase is more important and both are interconnected with

one another. The designing is done by a design team based

upon the analysis done by the analyst team. The designing

must explains about the processes involved in the software

development, technology used in that software, and the

work flow of the software. These things are clearly

explained in the designing and it is referred to as View

Edition.

Basically, the designers are well trained in HTML,

since it is easy to design. It is not necessary for the

designers to know about the programming language

implemented in the development stage. Sometimes, both

may be entirely different. (i.e.,) the designing language is

different from the implemented language. In that situation,

the re-engineering technique helps the programmer to re-

design the software by analyzing the tools used by the

designers which is in HTML language. The programmer

may re-design it in Java language using the techniques such

as AWT or in Applet.

In that situation, the HTML design must be entirely

converted into either AWT or in Applet. It takes more time

to redesign it. To avoid this complexity and to perform the

conversion, we use re-engineering technology. This

technique is implemented to observe the tool and analyze

the control in HTML and then convert it into tool in Java.

The designing is must for GUI Programming, since it acts as

the interactor between the application and the user. So it is

carefully handled using the re-engineering technology.

Figure-1 Conversion of View Edition

Observe the design

from HTML

Retrieve equivalent

class in Java

Convert the tools from

HTML to Java using

the appropriate class

function

S Manimekalai et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,354-359

© 2010, IJARCS All Rights Reserved 355

Each language has its own set of controls to design and

from that design the implementation can be preceded. So,

based upon the language and technology to be implemented,

the re-engineering redesign the view edition and make it

appropriate for further use. In this paper, the design from

the HTML is converted into AWT and Applet is explained

briefly in this paper by first analyzing the tools in HTML

and then retrieves the appropriate classes in Java and then

proceeds the conversion.

II. RELATED WORK

 To implement the concept of re-engineering

technology to convert the design from one technology to

another, we analyze the works done by other researchers

which are related to Re-engineering. The papers we referred

are given below:

The paper [1], shortly describes methods and tools

under development to support a model-based reengineering

process of user interfaces of legacy applications. This

reengineering process enables the use of Human Comptuer

Interaction (HCI) patterns and allows an adaption of user

interfaces to different contexts of use.

 Comparable work of extracting user interface models

from existing applications and reengineering was also done

by Vanderdonckt et. al. [2,3]. They focussed on web-pages

and applications written in the programming language

C(++).

Other related work was done by Mainetti et.al. [4].

They are focussing on the redesign of web applications, also

including code analysis to derive object models and business

logic. To assist the reengineering of character based user

interfaces to graphical user interfaces a model based

approach was proposed by Tucker and Stirewalt [5]. It

focusses on batch-command systems and utilizes an

intermediate model comparable to data flow diagrams to

determine required user input and application flow. It seems

to have been abandoned though.

The main principle to achieve this is to translate HCI

patterns into machine-readable attributed components when

and where appropriate. We call these components “pattern

instance components (PIC)” [6] as they contain an instance

of their respective pattern. PICs are used to

semiautomatically transform parts of abstract or concrete

interfaces to follow a certain pattern. Arnout's [7] research

on object-oriented pattern components inspired our

proceeding, which is e.g. described in [8].

Taking it as input we are able to derive an AUI of this

application in an UIML [9] related dialect. See USGP in

[10] for details, we do not want to discuss that matter in this

paper. In paper [11], they present a new tool for

reengineering telecommunication systems, recovering the

current architecture, and extracting state machines reflecting

the system behavior. The tool is based on a structure graph

of the architecture and allows architectural modifications

with according code changes. The modifications are

specified as graph transformations using FUJABA enabling

the generation of a Java prototype, which is accessible via a

GUI based on the Graphical Editor Framework (GEF) plug-

in for the Eclipse workbench.

There exist several graph-based reengineering tools.

The comparison with other projects following a graph-based

approach, such as Rigi [12], Bauhaus [13], and GUPRO

[14], shows that most of these tools lack the support

provided by a high-level specification language. Hence,

graph transformations cannot be specified in a declarative

way. These projects also concentrate on reverse engineering

and do not support software restructuring. The approach in

[15] shows how refactorings for object-oriented software

can be defined by using graph rewrite rules using FUJABA

and AGG [16] for tool validation. AGG is a general tool

environment for algebraic graph transformation following

the interpretative approach.

The AGG environment consists of a graphical user

interface and an interpreter, which can be used for the

specification and prototypical implementation of Java

applications with complex graph-structured data. The paper

at hand presents a very similar approach but aims at the

reengineering of programs written in a different kind of

programming language. As they consider the software on a

higher architectural level, without going into a detailed

analysis of every single statement, the studied re-design

transformations are also different. The FUJABA Tool Suite

RE [17] is a collection of reengineering tools and plug-ins. It

allows the parsing of Java source code and supports

different kinds of static and dynamic analyses, such as

recognition of design patterns and anti-patterns [18].

The paper [19], presents an approach of a software

framework to support software developing engineers by

handling procedural software. The framework offers

practical assistance for separating the control flow from the

numerical functionality. Especially by long-lived and

growing software tools, it allows to implement a flexible

and clear documentable workflow, based on a configurable

state machine. A rudder design tool illustrates the approach.

This tool has been continuously developed over years with

several changes of the responsible engineer.

Web sites are rarely de-signed and developed to fit such

a large variety of contexts of use as each context (e.g., each

computing platform, each device) has its own set of

constraints. This paper[20] describes a model-based

approach for reengineering web pages into a presentation

and a dialog model stored with XIML, a model-based user

interface specification language. These models are then

further exploited to reengineer other user interfaces either

for the same context of use (by changing presentation design

options) or for different contexts of use (by changing

properties of computing platform model). For this purpose,

three key elements of the presentation model (i.e.

presentation units, logical windows, and abstract interaction

objects) and two key elements of the dialog model (i.e.,

navigational structure and transition) were defined.

To address these demands, ad hoc development is no

longer acceptable in terms of the cost and time required for

software engineering and maintenance. Forward engineering

[21] has been consequently considered as a good candidate

for producing quality web sites. For instance, model-based

approaches [22, 23, 24] can produce a user interface (UI) for

a web site by exploiting knowledge captured in various

models, such as the presentation and dialog models.

S Manimekalai et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,354-359

© 2010, IJARCS All Rights Reserved 356

In the paper [20], they first report on what the

assumptions are for adopting a model-based approach for

forward engineering. Then, we describe a model-based

approach for reverse engineering web pages implemented as

an automatic or mixed-initiative process in the VAQUITA

software, with an eye to applying forward engineering

subsequently. Reengineering methods are then considered to

produce new UIs for other contexts of use, thus creating a

capability to rapidly produce UIs for different computing

platforms, various access devices, etc.

Cross-platform development is not new as several

environments provide support for this purpose: Galaxy [25]

and Open Interface [26] render the same UI on different

platforms with their native look & feel, while SUIT [27]

employs a unique UI definition that can be processed on

multiple platforms. However, not one of these systems truly

adopts a model-based approach, although SUIT's common

definition holds some presentation abstractions. CT-UIMS

[28] pioneered the platform model by supporting some AIO

[29] redistribution for OSF/Motif large screen and small

Macintosh screens. AUIDL [30, 31, 32] is probably the first

set of abstractions for reverse and re-engineering UIs: from

internal hierarchical structures, type and variable

declarations, a UI can be recovered in IDL with a

presentation model (based on OO paradigm) and a dialog

model (based on Milner’s process algebra).

In the paper [33], we put forward a methodology for

reengineering the architecture of a legacy software system.

The proposed approach is not restricted to any specific

source and target architectures, or programming language. It

consists in (1) achieving a representation of the source code

through its categorization and structuring, (2) transforming

it into the new intended architecture, and (3) generating the

code for the target platform. First, the code is categorized

according to its purpose by pre-defined rules and

represented as a model that is an instance of a type graph.

Then, this representation is transformed into the intended

target architectural paradigm using graph transformation

techniques. The generation of the target code is not covered

in this report but will be studied in the near future. The

approach attempts to address problems that are repeatedly

encountered in legacy reengineering industry projects.

In the paper[34], they first show how we use Rational

Rose to produce UML diagrams of SNiFF+ projects.

Afterwards we give a quick introduction to the Information

Exchange Model that is used for the intermediate format and

its representation in the industry standard CDIF.

The quality of the Software RefineryTM KBSE

environment derives significantly from the quality of its

embedded Refine programming language. While Refine

provides strong support for many modern high-level

programming paradigms (functional, logic, object-oriented

and metaprogramming), a number of improvements seem

appropriate. Suggested improvements are (i) motivated

through analysis of Refine’s existing capabilities, (ii)

embodied in suggested language changes, and (iii) validated

by implementation feasibility studies is discussed in

paper[35].

III. METHODOLOGY

A. Proposed Method

The aim of the proposed method is to convert the View

Edition GUI Tools from HTML to Java AWT and Applet.

The summary of the proposed method is as follows:

The first step of this conversion is that carefully observe the

input objects in HTML. Then extract the equivalent classes

in Java for the input objects. Then convert the input objects

into appropriate tools available in Java. Thus the tools are

converted into appropriate programming language

implemented to develop the process.

The tools are designed in HTML by using <input> tag.

These tools are converted into java by using the awt

package. In that package, there exist many built-in classes

for Textbox, Radiobutton, Checkbox, Label and so on.

The first step involves only in conversion which

discards the designing such as alignment, color, height,

width and so on. The second step of the re-engineering

process is to monitor the designs which are designed in CSS

(Cascading Style Sheet). Now these are examined and the

converted design in first step is now implemented with these

styles using the suitable methods in AWT and Applet.

The styles applied in cascading style sheet is done in

either internal style sheets or external style sheets using

font-color, font-family, text-height, etc., Whereas in java

these are available in Font class with parameters such as

dialog, style and size. And the colors are applied by using

setBackground and setForeground properties.

By using the above two steps, the re-engineering

technique is used to convert the design from HTML to

Java’s AWT and Applet including the styles applied in the

HTML design. A mock-up that illustrates the re-

engineering technology is given below in which both the

HTML design and the Java design are shown.

HTML DESIGN:

Figure-2: Design in HTML

S Manimekalai et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,354-359

© 2010, IJARCS All Rights Reserved 357

AWT DESIGN:

Figure-3: Design in AWT

APPLET DESIGN:

Figure-4: Design in Applet

B. Algorithm

Start the Process

Step-1:

Function: read ()

{

Count = Count the number of lines

Open the HTML Output Design

Read the First Line

Identify the Tag, Attribute and its value

Control = Control Name

Eg: <input type=text name=t1>

}

Step-2:

Function: readstyles ()

{

Read the height and width of the controls in HTML

Observer the color of the form

Height = height of the control

Width = width of the control

Color = color of the form

}

Step-3:

Function: conversion

{

Search for the equivalent class in Java

Identify the controls

Javacontrol = Control Name

If(Control ==Javacontrol)

{

 Create Object in Java

 Eg: TextField t1=new TextField(20);

 Fix the height and width of the control using

 setBounds(x, y, Width, Height);

 Change the color of the form using

 setBackground(Color.COLOR);

count = count--;

}

}

Step-4:

Function: Repeat

{

If(Count != 0)

{

 Goto Step-1 to read the next line

}

Else

Show the result in Java

Stop the process.

IV. EXPERIMENTAL RESULTS

The technique Re-Engineering is used to re-design the

forms from one technology to another which helps the

programmer to implement the code according to their

platform. The designer just creates the tools in their

platform. In this paper, this technique is implemented in

software development architecture in which the designer

designs the forms in HTML language which is easy for

them.

But the programmer who implements the design may

need to convert the design according to their programming

language. If they want to convert it into GUI Applications

such as AWT and Applet, then the re-engineering technique

is implemented to automatically convert the design from

HTML and generate the output in GUI Applications (i.e)

AWT and Applet.

This process is done by reading the design in HTML

line by line and then converts it into AWT and Applet. Thus

the programmer who wants the design in AWT and Applet

may easily get the design in less time using the Re-

Engineering technology. Each programming language has

its own set of functions to develop the applications. These

functions are stored in the memory to convert the design

based upon the selected programming language. This

conversion is generated by matching the controls and styles

applied in one technology (HTML) with the functions in

other technology (AWT and Applet).

Thus this paper provides efficient tools to convert the

view edition into GUI application using Re-Engineering

technique.

S Manimekalai et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,354-359

© 2010, IJARCS All Rights Reserved 358

V. CONCLUSION

The aim of the paper was to convert the view edition

from HTML to Java platform. In Java, the commonly used

GUI Tools are AWT and Applet. So conversion from

HMTL to AWT and Applet is explained in this paper.

The conversion is made possible by creating and

maintaining the design tools for each programming

language. Then the conversion process is carried out by

analyzing and identifying the appropriate controls from the

destination language such as AWT and Applet, which are

suited for the control in the Source language such as HMTL.

This conversion is done by implementing the concept of

Re-Engineering which reduces the time for the programmer

to convert the design according to their language.

In future, the re-engineering technology can be

implemented to convert the code from one language to

another language is developed to improve the progress of

Re-Engineering.

VI. REFERENCES

[1] “ Model-based Reengineering of User Interfaces

Andreas Wolff, Peter Forbrig”, University of Rostock

Institute of Computer Science Albert Einstein Str. 21,

18059 Rostock, Germany

[2] J. Vanderdonckt, L. Bouillon, N. Souchon, Flexible

Reverse Engineering of Web Pages with VAQUITA, in

Proceedings of IEEE 8th Working Conference on

Reverse Engineering WCRE'2001 (Stuttgart, 2-5

october 2001, IEEE Press, Los Alamitos, 2001, pp. 241-

248.

[3] L. Bouillon, J. Vanderdonckt, J. Eisenstein, Model-

Based Approaches to Reengineering Web Pages, in

Proceedings of 1st International Workshop on Task

Models and Diagrams for user interface design

TAMODIA'2002, INFOREC Printing House,

Bucharest, 2002, pp. 86-95.

[4] Mainetti, Paiano, Pandurini: User-Centered reverse

engineering: Genesis-D project, in proceedings of Web

Maintenance and Reengineering 2006, CEUR

Workshop Proc. 193

[5] Tucker, K. and Stirewalt, R.: Model based userinterface

reengineering, in Proc. 6th WCRE, 1999.

http://citeseer.ist.psu.edu/tucker99model.html

[6] Rathsack, Wolff, Forbrig: Using HCI-Patterns with

Model-based Generation of Advanced User-Interfaces,

Proc. of MDDAUI 2006, Models 2006, Genova, Italy

[7] Arnout, Karine: From Pattern to Components, PhD

dissertation, Swiss Institute of Technology, Zurich 2004

[8] Wolff, A.; Forbrig, P.; Dittmar, A.; Reichart, D.: Tool

Support for an Evolutionary Design Process using

Patterns, Proc. of Workshop on Multi-channel Adaptive

Context-sensitive Systems 2006, Glasgow, GB, p. 71-

80

[9] UIML, User Interface Markup Language

http://www.uiml.org

[10] Müller, Andreas: Spezifikation geräteunabhängiger

Benutzerschnittstellen durch Markup-Konzepte, PhD

dissertation, University of Rostock, 2003

[11] RePLEX: A Model-Based Reengineering Tool for

PLEX Telecommunication Systems Christian Fuss,

Christof Mosler, Marcel Pettau

[fuss|mosler|pettau]@i3.informatik.rwth-aachen.de

http://www.se.rwth-aachen.de Department of Computer

Science 3 (Software Engineering) RWTH Aachen

University, Germany

[12] H. A.M¨uller, K.Wong, S. R. Tilley. Understanding

Software Systems Using Reverse Engineering

Technology. In The 62nd Congress of L’Association

Canadienne Francaise pour l’Avancement des Sciences

ACFAS 1994. Pp. 41–48. Montreal, Canada, May 1994.

[13] R. Koschke. Atomic Architectural Component

Recovery for Program Understanding and Evolution.

Doctoral thesis, Institute of Computer Science,

University of Stuttgart: Stuttgart, Germany, Stuttgart,

Germany, 2000. 414 pp.

[14] J. Ebert, B. Kullbach, V. Riediger, A. Winter. GUPRO

– Generic Understanding of Programs: An Overview.

Electronic Notes in Theoretical Computer Science

72(2), 2002. URL:

http://www.elsevier.nl/locate/entcs/volume72.html.

[15] T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens.

Formalizing refactorings with graph transformations.

Journal on Software Maintenance and Evolution:

Research and Practice, pp. 247–276, 2005.

[16] FUJABA – From UML to Java and Back Again. 1999.

http://www.fujaba.de/.

[17] FUJABA Tool Suite RE. 2005. http://wwwcs.uni-

paderborn.de/cs/fujaba/ projects/reengineering/.

[18] J. Niere, W. Sch¨afer, J. P. Wadsack, L. Wendehals, J.

Welsh. Towards Pattern-Based Design Recovery. In

Proc. of the 24th International Conference on Software

Engineering (ICSE), Orlando, Florida, USA. Pp. 338–

348. ACM Press, May 2002.

[19] Software Development and Reengineering outside of

the IT Industry using a Procedural Workflow

Framework Wilfried Abels, TU Hamburg-Harburg,

Hamburg/Germany, w.abels@tu-harburg.de Lars

Greitsch, TU Hamburg-Harburg, Hamburg/Germany,

lars.greitsch@tu-harburg.de

[20] Model-Based Approaches to Reengineering Web Pages

Laurent Bouillon, Jean Vanderdonckt Université

catholique de Louvain Belgian Lab. of Computer-

Human Interaction IAG-ISYS, Place des Doyens, 1 B-

1348 Louvain-la-Neuve, Belgium +32-10/47.{8349,

8525} {bouillon, vanderdonckt}@isys.ucl.ac.be Jacob

Eisenstein University of Southern California

Department of Computer Science 941 W. 37th Place

Los Angeles, CA 90089-0781 USA +1 213 740 4496

jacob@isi.edu

[21] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J.

Vanderdonckt, “Computer-Aided Window

Identification in TRIDENT”, Proc. of the 5th IFIP

TC13 Conf. on Human- Computer Interaction

Interact’95 (Lillehammer, 25-29 June 1995), Chapman

& Hall, London, 1995, pp. 331-336. Accessible at

http://www.info.fundp.ac.be/cgi-publi/pub-specpaper?

RP-95-021

[22] R.E.K. Stirewalt, “MDL: A Language for Binding

User- Interface Models”, in [26], pp. 159-184.

S Manimekalai et al, International Journal of Advanced Research in Computer Science, 1 (4), Nov. –Dec, 2010,354-359

© 2010, IJARCS All Rights Reserved 359

[23] P. Szekely, P. Luo, and R. Neches, “Beyond Interface

Builders: Model-Based Interface Tools”, Proc. of ACM

Conf. on Human Aspects in Computing Systems

InterCHI’93, ACM Press, New York, 1993, pp. 383-

390

[24] J. Vanderdonckt and P. Berquin, “Towards a Very

Large Model-based Approach for User Interface

Development”, Proc. of 1st Int. Workshop on User

Interfaces to Data Intensive Systems UIDIS’99, IEEE

Computer Society Press, Los Alamitos, 1999, pp. 76-

85.

[25] J. Eisenstein and A. Puerta, “Adaptation in Automated

User- Interface Design”, Proc. of ACM Int. Conf. on

Intelligent User Interfaces IUI’2000 (New Orleans, 9-

12 January 2000), ACM Press, New York, 2000, pp.

74-81.

[26] M.M. Moore and S. Rugaber, “Domain Analysis for

Transformational Reuse”, Proc. of 4th Working Conf.

on Reverse Engineering WCRE’97 (6-8 October 1997),

IEEE Computer Society Press, Los Alamitos, 1997.

[27] “Open Interface™”, Neuron Data, 156 University

Avenue, Palo Alto, CA 94301, 1992.

[28] F. Lonczewski and S. Schreiber, “The FUSE-System:

an Integrated User Interface Design Environment”,

Proc. of 2nd Int. Workshop on Coputer-Aided Design of

User Interfaces CADUI’96 (Namur, 5-7 June 1996),

Presses Universitaires de Namur, Namur, 1996, pp. 37-

56. Accessible at ftp://hpeick7.informatik.tu-

muenchen.de/pub/papers/sis/fuse_ca dui96.ps.gz

[29] M.M. Moore, “Representation Issues for Reengineering

Interactive Systems”, ACM Computing Surveys, Vol.

28, No. 4, December 1996. Article # 199. Accessible at

http://www.

acm.org/pubs/articles/journals/surveys/1996-28-

4es/a199- moore/a199-moore.html

[30] Generation and Interaction”, Proc. of Interact’90,

Elsevier Science Pub., Amsterdam, 1990, pp. 651-657.

[31] E. Merlo, J.F. Girard, K. Kontogiannis, P. Panangaden,

and R. De Mori, “Reverse Engineering of User

Interfaces”, Proc. of 1st Working Conference on

Reverse Engineering WCRE’93 (Baltimore, 21-23 May

1993), R.C. Waters, E.J. Chikofsky (eds.), IEEE

Computer Society Press, Los Alamitos, 1993, pp. 171-

179.

[32] E. Merlo, P.-Y. Gagné, and A. Thiboutôt, “Inference of

graphical AUIDL specifications for the reverse

engineering of user interfaces”, Proc. of Int. Conf. on

Software Maintenance (19-23 September 1994), IEEE

Computer Society Press, Los Alamitos, 1994, pp. 80-

88.

[33] Software Reengineering at the Architectural Level:

Transformation of Legacy Systems R. Correia1;2, C.

Matos1;2, M. El-Ramly1, R. Heckel1, G. Koutsoukos2,

L. Andrade2 1Department of Computer Science,

University of Leicester, U.K. 2ATX Software, Lisboa,

Portugal frmc20,cmm22,mer14,reikog@le.ac.uk

fgeorgios.kousoukos,luis.andradeg@atxsoftware.com

[34] SNiFF+ Talks to Rational Rose Interoperability using a

Common Exchange Model Sander Tichelaar and Serge

Demeyer, Software Composition Group, University of

Berne, Switzerland, {tichel,demeyer}@iam.unibe.ch

[35] Refine “Refine” – Towards a More Expressive

Reengineering Tool Development Platform Paul A.

Bailes Ian Peake Centre for Software Maintenance

School of Information Technology and Electrical

Engineering The University of Queensland QLD 4072

AUSTRALIA

