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Abstract: A software reliability growth model based on non- homogeneous Poisson process (NHPP) is derived with its mean value 
function satisfying conditions similar to those of Goel and Okumoto (1979) and Musa and Okumoto (1984). The model turned out 
to be the (folded) half logistic distribution of Balakrishnan (1985). Reliability performance measures of the model are presented. 
Its parameters are estimated by maximum likelihood and approximate maximum likelihood methods. Asymptotic dispersion ma-
trix, interval estimation also are derived. The results are illustrated with software failure data. The performance of the proposed 
model is evaluated in relation that of Goel and Okumoto (1979) 
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I. INTRODUCTION 

 Software reliability is the probability of failure free opera-
tion of a computer program in a specified environment for a 
specified time. A failure is a departure of a program opera-
tion from program requirements. A software reliability 
model provides a general form in terms of a random process 
describing failures for characterizing software reliability or a 
related quantity as a function of experienced failures over 
time. 

In this backdrop Musa and Okumoto (1984) suggested 
a model for software reliability measurement and named it 
as logarithmic Poisson execution time model (LPETM).  
Motivated by their approach we develop a new software 
reliability model in this paper and present its performance in 
measuring software reliability.  The development of our 
model, the reliability measurement characteristics and esti-
mation procedures associated with it are given in Sections 2, 
3, 4 respectively.  Illustration of the results and the evalua-
tion of the proposed model with a live data are presented in 
section 5. 

II. THE PROPOSED MODEL 

Let  ( ) ( ) ( )N t , t 0 ,m t , tλ≥⎡ ⎤⎣ ⎦   be the counting 

process, mean value function and intensity function of a 
software failure phenomenon. LPETM was derived with the 
following assumptions: 

Assumption (i): There is no failure observed at time t 
= 0. That is, N (0) =0 with probability one. 

Assumption (ii): The failure intensity ( )tλ  will de-
crease exponentially with the expected number of failures 
experienced up to time‘t’ so that the relation between m (t) 
and ( )tλ  is 

                                     

( ) ( )
0 . m tt e θλ λ −=                                

(1) 
Where 0λ  and θ  are the initial failure intensity and 

the rate of reduction in the normalized failure intensity per 
failure respectively. 

Assumption (iii): For a small interval tΔ the prob-
abilities of one, more than one failure during [ ]t,t+ tΔ   

are ( )tλ . 0( )t tΔ + Δ And , respectively, where 0( )tΔ
0( ) 0t

t
Δ

→
Δ

 as 0tΔ → . Note that the probability of no 

failure during [ ]t,t+ tΔ  is given by 1 ( ) 0(t t t)λ− Δ + Δ . 
Using assumptions (i) and (ii) the mean value function and 
intensity function are derived to be 

0
1( ) log( 1)m t tλ θ
θ

= +                                    

(2)                                                            

0

0

( )
( 1

t
t )
λλ

λ θ
=

+
                                                          (3)               

It may be noted that  as . Hence 
this model is also called ‘infinite failures’ model. Using as-
sumptions (i) and (iii) the probability distribution of the sto-
chastic process N(t) is given by 

( )m t →∞ t →∞

[ ] [ ] ( )( )
( ) .

!

y
m tm t

P N t y e
y

−= =                (4)

  
Where m (t) is given by equation (2).                       
              On lines of Goel and Okumoto (1979), let us 

specify that the mean value function m(t) is finite valued, 
non decreasing, non negative and bounded with the bound-
ary conditions 
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0, 0
( )

,
t

m t
a t

=⎧
= ⎨ →∞⎩

 

Here ‘a’ represents the expected number of software 
failures eventually detected. If ( )tλ  is the corresponding 
intensity function, the basic assumption of LPETM says that 
( )tλ    is a decreasing function of as a result of repair 

action following early failures. We model this assumption as 
a relation between  and 

( )m t

( )m t ( )tλ  so that one can be ex-
pressed in terms of the other. Our proposed relation is 

 2 2( ) ( )
2
bt a m
a

λ ⎡= −⎣ t ⎤⎦                                                                                     

Where ‘b’ is a positive constant, serving the purpose of 
constant of proportional fall in ( )tλ . This relation indicates 

a decreasing trend for ( )tλ  with increase in - a char-
acteristic similar to that of LPETM which requires exponen-
tial decrease of 

( )m t

( )tλ with increase in , whereas our 

proposed model requires a quadratic decrease of   

( )m t

( )tλ  

with . According to our proposition we get the follow-
ing differential equation 

( )m t

2 2( ) ( )
2

dm t b a m t
dt a

⎡ ⎤= −⎣ ⎦  

Whose solution  is 

( )
( )

1
( )

1

bt

bt

a e
m t

e

−

−

−
=

+
                                 

(5) 
We propose an NHPP with its mean value function 

given in equation (5). Its intensity function is 

( )2
2( )
1

b t

b t

abet
e

λ
−

−
=

+
                                                                     

(6) 
Our proposed model is derived on lines of Goel and 

Okumoto (1979) specifying a relation between m(t) and λ(t) 
as motivated from LPETM .Our model turns out to be the 
probability model of half logistic distribution of Balakrish-
nan (1985). This model is paid a considerable attention as a 
reliability model recently by many authors and some of 
those published works are Kantam et al.,(1994), Kantam and 
Dharmarao (1994), Kantam and Rosaiah (1998), Kantam et 
al.,(2000), Kantam and Srinivasarao (2004) and the refer-
ences therein.  In short, we abbreviate this model as 
HLSRGM. 

III. RELIABILITY PERFORMENCE MEASURES 

 Using the mean value function m(t)  for HLSRGM, the 
probability distribution of the counting process N(t) is given 
by 

[ ] [ ] ( )( )
( ) . , 0,1,2.....

!

y
m tm t

P N t y e y
y

−= = = (7) 

Where  is given by Equation (5).Here N (t) is ran-
dom number of failures experienced by time ‘t’. Suppose that 
y

( )m t

e failures have been observed during[ ]0, et . Then the con-

ditional distribution of N(t) given  for  is 

the distribution of number of failures during 

( )e eN t y= et t>

[ ],et t .  That is, 

[ ] [ ]
( )

[ ]( ) ( )( ) ( )
( ) / ( )

!

e

e

y y
m t m te

e e
e

m t m t
P N t y N t y e

y y

−
− −−

= = = ×
−

 

(8) 
Let  be the time between K-1 and KkX th failures of the 

software product. And   be the time up to the KkS th failure. 

The probability that   exceeds a real number ‘x’ given 
that the total time up to the (K-1)

kX
 th failure is equal to ‘s’ is 

[ ( ) ( )]
1/ ( / )

k

m s x m s
x kR S x s e− + −

− =
                       

   (9) 
Equation (9) is called the software reliability. If we 

take the negative of derivative of Equation (9) with respect 
to x, we get the conditional density as  

[ ( ) ( )]
1( / ) ( ). m s x m s

k kf X S s x eλ − + −
− = +

              
   (10) 

 
The hazard rate is given by the ratio of density to reli-

ability which becomes 
 

1( / ) ( )k kh X S s xλ− = +
                (11) 

 
In equations (9), (10) and (11) the expressions for m(t) 

and λ(t) are given by the respective quantities of HLSRGM. 

IV. ESTIMATION BASED ON INTER FAILURE 
TIMES 

We may recall that the mean value function and inten-
sity function of HLSRGM are given by 

( )
( )

1
( ) , 0, 0, 0

1

bt

bt

a e
m t a b t

e

−

−

−
= > > ≥

+
 

 (12) 

( )2
2( )
1

bt

bt

abet
e

λ
−

−
=

+
                  (13) 

The constants ‘a’, ’b’ which appear in the mean value 
function and hence in NHPP, in intensity function (error 
detection rate) and various other expressions are called pa-
rameters of the model. In order to have an assessment of the 
software reliability  ‘a’,’ b’ are to be known or they are to be 
estimated from a software failure data. Suppose we have ‘n’ 
time instants at which the first, second, third..., nth failures of 
software are experienced. In other words if    is the total 

time to the k
kS

th failure,  is an observation of random vari-

able and ‘n’ such failures are successively recorded, the 
ks

kS
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joint probability of such failure time realizations 

    is 1 2 3, , ,.... ns s s s
 

( ).

1
( )n

n
m s

k
k

L e sλ−

=
= ∏                    (14) 

 
The function given in equation (14) is called the likeli-

hood function of the given failure data. Values of ‘a’, ‘ b’ 
that would maximize L are called maximum likelihood es-
timators (MLEs) and the method is called maximum likeli-
hood (ML) method of estimation.  Accordingly ‘a’, ‘b’ 
would be solutions of the equations 

 
log log0 , 0L L

a b
∂ ∂

= =
∂ ∂

. 

 
Substituting the expressions for m(t), λ(t) given by eq-

uations (12) and (13) in equation (14), taking logarithms, 
differentiating with respect to ‘a’, ‘b’ and equating to zero, 
after some  joint simplification we get 

( )
( )
1

1

n

n

bs

bs

e
a n

e

−

−

⎡ ⎤+
⎢=

−⎢ ⎥⎣ ⎦
⎥                  (15) 

 

( ) ( )
1

1 1

. 2 .( ) 2 1 0
11 1

k k

nn n

bs bsn n
k n

k bsbs bsk k

s e s eng b s
b e e

− −−

−− −= =

⎡ ⎤=∑ − − ∑ − − =⎢ ⎥−+ + ⎣ ⎦
n
e

   

(16) 
MLE of ‘b’ is an iterative solution of equation (16) 

which when substituted in equation (4.4) gives MLE of ‘a’. 
In order to get the asymptotic variances and co-variance of 
the MLEs of ‘a’, ‘b’ we need the elements of the informa-
tion matrix which can be obtained through the following 
second order partial derivatives. 

2

2 2

log L n
a a

∂ −
=

∂
                                (17) 

( )
22

2

2log

1

n

n

bs
n

bs

s eL
a b e

−

−

∂
=

∂ ∂ +
                                               

(18) 

( ) ( )
2

2 2
2 2 3 21

(1 )log 2 (1 )2 2
1 1

k kn n
n k

n k

bs bsbs bs n
bs bs k

n kbs bsk

se eL n e ease se
b b e e

− −− −
− −

− −=

⎡ ⎤ ⎡ ⎤− +∂ − − +⎢ ⎥ ⎢= − + ∑
⎢ ⎥ ⎢∂ + +⎣ ⎦ ⎣

⎥
⎥
⎦

(19) 
 
Expected values of negatives of the above three deriva-

tives would be the following information matrix 
 

2 2

2

2 2

2

log log

log log

L L
a aE b

L L
a b b

⎡ ⎤∂ ∂
− −⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂⎢ ⎥

− −⎢ ⎥∂ ∂ ∂⎣ ⎦

 

 
Inverse of the above matrix is the asymptotic variance 

covariance matrix of the MLEs of ‘a’,‘ b’. Generally the 

above partial derivatives evaluated at the MLEs of ‘a’, ‘b’ 
are used to get consistent estimator of the asymptotic vari-
ance covariance matrix.  

In order to overcome the numerical iterative way of 
solving the log likelihood equations and to get analytical 
estimators rather than iterative, some approximations in es-
timating the equations can be adopted from Kantam and 
Dharmarao (1994),  Kantam and Sriram (2001) and the ref-
erences therein. We use two such approximations here to get 
modified MLEs of ‘a’ and ‘b’.Equation (4.5) can be written 
as 

( ) ( )21 1

. 2 .2 0
1 1

k n

k n

z zn n
k n

k z zk k

z e nz eb s n
e e

− −

− −= =
∑ − − ∑ + =

+ −
                

(20) 
Let us approximate the following expressions in the 

L.H.S of equation (20) by linear functions in the neighbor-
hoods of the corresponding variables. 

. . , 1,2,...., .
1

k

k

z
k

k k kz

z e z k
e

α β
−

− = + =
+

n                               

   (21) 

2

. .
1

n

n

z
n

n n nz

z e z
e

γ δ
−

− = +
−

                     

(22) 
Where the intercepts and slopes k n,β δ  in equations 

(21) and (22) are to be suitably found. With such values, 
equations (21) and (22) when used in equation (4.9) would 
give an approximate MLE for ‘b’ as 

1

1 1

2 2
ˆ

2 . 2

n

k n
k

n n

k k k
k k

n n
b

s s n

α γ

β δ
=

= =

+ ∑ −
=
∑ − ∑ + n ns

  (23) 

We suggest two methods to get the slopes and inter-
cepts in the R.H.S of equations 

 (21) and (22) 
 

Method  I 

Let 
1( )
1

z

z

eF z
e

−

−

−
=

+
 

, 1, 2,...,
1i

ip i
n

= =
+

n  

(1 )( ) i i
i i

p pF u p
n
−′ = −  

(1 )( ) i i
i i

p pF u p
n
−′′ = +  

Given a natural number ‘n’ we can get the values of  

iu and ui′ ′′    by inverting the above equations through the 
function F(z). If G (.), H (.) are the symbols for the L.H.S of 
equations (21) and (22) we get 

( ) ( ) , 1,2,...,k k
k

k k

G u G u k n
u u

β
′′ ′−

= =
′′ ′−

 

( ) . , 1,2,...,k k k kG u u k nα β′ ′= − =  
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( ) ( )n n

n n

H u H u
u unδ
′′ ′−

=
′′ ′−

 

( )n nH u .u .n nγ δ′ ′= −  

It can be seen that the evaluation of k k n, , , nα β δ γ  is 
based on only a specified natural number ‘n’ and can be 
computed free from any data. Given the data observations 
and sample size using these values along with the sample 
data in equation (4.12) we get an approximate MLE of ‘b’. 
Equation (4.4) gives approximate MLE of ‘a’. 

 
Method II. 

In this method we consider the Taylor series expansion 
up to the first derivative of the functions G (.), H (.) around 

 and    respectively where u is the 
solution of the following equations 

, ( 1,2,.... )iu i n= nu i

1 , 1,2,....., .
1

i

i

u

iu

e p i n
e

−

−

−
= =

+
 

Accordingly the expressions for the slopes and inter-
cepts of equation (4.10) and (4.11) are given by 

 
( ) ( )k i k iG , G , 1,2,...... .i iu u u iβ α β′= = − = n

n nδ

 

( ) ( )n nH u , H u . .n n uδ γ′= = −  
 
where  are the derivatives of ( ) ( )G . , H .′ ′

( ) ( )G . ,H .  respectively. These are 

( ) ( )
( )2

1
G z

1

z z

z

e e

e

− −

−

+ −
′ =

+

z

 
 

As mentioned in method I, here also the

 

 

 
 
 slopes and in-

tercepts can be calculated free from magnitudes of data ob-
servations. These values when used in equation (4.9) would 
give another approximate MLE of ‘b’ and subsequently an-
other approximate MLE of the parameter ‘a’ from equation 
(4.4). Thus given software failure data in the form of inter 
failure times of a finite number of failures in terms of kX or 

kS  we can get estimates of the parameters ‘a’, ‘b’, of 
HLSRGM by exact ML method as iterative solution of 
equation (4.5) and an approximate MLE by two methods of 
approximation as described above. In the case of approxima-
tions, the basic principle is, some expressions of the estimat-
ing equations are approximated by linear functions.  The 
larger the size of the sample the closer the approximation. 
Hence the exactness of the approximation becomes finer for 
large values of ‘n’. Therefore, approximate MLEs and exact 
MLEs differ little, when the number of experienced software 
failures is large. As supported by Bhattacharya (1985), we 
can consider approximated expressions of log L for the ele-
ments of the information matrix in order to get the asymp-

totic variances and covariance of the estimators of a, b. 
Hence 

2

2 2

LogL n
a a

∂ −
=

∂
             (24) 

( )
2

2
2

1

n

n

bs

bs

LogL be
a b e

−

−

∂
=

∂ ∂ +
                       

   (25) 

( ) ( )
( )

2

2 32 2
1

. . 22 1
1 1

k n
n

k n

bs bsn
bsk n

bs bsk

s be s abeLogL n e
b b e e

− −
−

− −=

∂ −
= − + −

∂ + +
∑

           
(26) 

Estimated variances and covariance of are ob-
tained from the elements of the inverse of the matrix evalu-

ated at a . 

ˆâ and b

ˆˆ ,b
2 2

2

2 2

2

LogL LogL
a a b
LogL LogL

a b b

⎡ ⎤−∂ −∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥−∂ −∂
⎢ ⎥

∂ ∂ ∂⎣ ⎦

             (27) 

which can be used to get the estimated asymptotic vari-
ance of estimate of any reliability characteristic like mean 
value function, intensity function, reliability function etc., In 
all these cases a software reliability characteristic is a para-
metric function say  g(a, b). Estimated asymptotic variance 
of estimate of g(a, b) is given by 

Est.Asy.var.

( ) ( ) ( ) ( )
2 2

ˆ ˆˆ ˆ, .Est.Asy.Var .Est.Asy.Var 2 . .cov ,g g g gg ab a b ab
a b a b
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

ˆˆ

 (28) 
 

( ) ( )
( )

2 2

22

1 .
H z

1

z z

z

e z e z e

e

− −

−

− − −
′ =

−

With the help of asymptotic optimum properties of 
MLEs, we can get the ( )1 α−

z−

%  equitable confidence in-
tervals for ‘a’,’b’ or any parametric function of ‘a’,’b’ using 
the elements of inverse of the matrix (27) or the R.H.S of 

equation (28) evaluated at .That is, ˆˆ,a b
( )1-ˆ ˆz Est.Asy.Vara aα⁄2±  

( )1- /2
ˆ ˆz .Est.Asy.Varb bα±  

NTDS   DATA 

( ) (1- /2
ˆ ˆˆ ˆ, z .Est.Asy.Var ,g a b g a bα

⎡ ⎤± ⎣ ⎦)  

Where  z1- /2α    is the (  percentile of stan-
dard normal distribution. 

)1 / 2 thα−

Using the result namely 
( )
( )

ˆˆ,
2 l      follows a 

chi-square distribution with 2 degrees of freedom, 

og
,

L a b

L a b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )100 1 %α−  equitailed confidence interval for the para-
metric function L(a, b) is 
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( ) ( ) ( )
* *

2 2ˆ ˆˆ ˆ, . , , .
U L

L a b e L a b L a b e
− −

< <                    (29) 

where   are respectively *,L U * ,1
2 2
α α

−    percentiles 

of a chi-square distribution with 2 degrees of freedom. The 
procedure of interval estimation described above can be 
adopted by using the exact MLEs of ‘a’, ‘b’ and the corre-
sponding estimated variances, covariance of the MLEs with 
the help of equations (15) through (19). 

 

V. ILLUSTRATION AND EVALUATION OF THE 
MODEL 

We apply the results to the software failure data of Na-
vel Tactical Data system (NTDS) borrowed from Jelinski 
and Moranda (1972), given in the following table. 

Table I: Software failure data 

Phase Error No 
n 

(check out) 

Time be-
tween er-

rors 
xk days 

Cumulative 
time 

Sn =Σxk 
days 

Production 
phase 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

9 
12 
11 
4 
7 
2 
5 
8 
5 
7 
1 
6 
1 
9 
4 
1 
3 
3 
6 
1 

11 
33 
7 

91 
2 
1 

9 
21 
32 
36 
43 
45 
50 
58 
63 
70 
71 
77 
78 
87 
91 
92 
95 
98 

104 
105 
116 
149 
156 
247 
249 
250 

Test phase 27 
28 
29 
30 
31 

87 
47 
12 
9 

135 

337 
384 
396 
405 
540 

user phase 32 258 798 
Test phase 33 

34 
16 
35 

814 
849 

 
 We confirm the suitability of our model to the data by a 
test of goodness of fit known as Q-Q plot. We have taken 
the first 26 observations for the Q-Q plot. The correlation 

coefficient between sample and population quantiles is 0.97 
for our HLSRGM also indicating that the model fits well for 
the data. Solving equations (4.4) and (4.5) by Newton-
Raphson(N-R) method for the NTDS data, ( Program listing 
for N-R method is given), the iterative solutions for MLEs 

of ‘b’, ‘a’ are  ˆ ˆ0.011827, 29b a= = . Using equations 
(4.6), (4.7), (4.8) we get the estimated asymptotic variance 
covariance matrix of the MLEs of ‘a’, ‘b’ as 

32.346894 0.000018747ˆˆ,
0.000018747 0.000000475

a b
−⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

 

Using equations of the approximate MLEs namely 
(2.4.10), (2.4.11), (2.4.12) we get the values of approximate 
MLEs of ‘a’, ‘b’ as follows: 

                 â b̂
Method I:    27.59124139 0.014067485 
Method II:    28.31665782 0.012618822 
The asymptotic dispersion matrix ,  by Method I is â b̂

 
 

1 1

29.27987 0.000000176ˆˆ ,
0.000000176 0.000007611

a b ⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
 

The asymptotic dispersion matrix ,  by Method II is â b̂

2 2

30.83973515 0.000000187ˆˆ ,
0.000000187 0.000006124

a b ⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Various quantities of interest can be obtained by substi-
tuting the estimates of ‘a’,’ b’ in the appropriate equations of 
section 4. 

A. Evaluation of the Model 

Now we make an attempt to evaluate the performance 
of our model in relation to the GOM by two criteria namely 
Mean square Error (MSE) and Akaike’s Information crite-
rion (AIC)(Akaike,1974), defined as follows: 

( ) ( ) 2
n

i

i=1

ˆm t
MSE = im t

n k
−⎡ ⎤⎣ ⎦
−∑

 

1 2

ˆˆ,AIC= - 2logL 2
, .... n

a b k
s s s

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
 

where ( )ˆ im t   is the estimated value of m(t) at esti-
mates  of ‘a’, ‘ b’ ; K is the number of parameters estimated 
(here K=2). For the NTDS data the values of MSE, AIC for 
our model by the three methods of estimation and for GOM 
by exact ML method of estimation are as follows: 

Table II: NTDS data 

HLSRGM 
ML MML1 MML2 

GOM 
(ML)  

MSE: 
AIC: 

3.9999 
168.60 

3.868 
169.07 

3.8264 
168.78 

5.3995 
169.38 

 
We find that MSE, AIC of our model are smaller than 

those of GOM. Regarding methods of estimation within our 
model we find that MMLE based on method-II of our model 
gives a least value of MSE. Hence method-II is preferable. 
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As mentioned earlier one of the basic assumptions 
common to LPETM and HLSRGM is that the failure inten-
sity decreases non linearly with the expected number of fail-
ures experienced. Accordingly the specific relations between 
mean value function and intensity function of LPETM, 
HLSRGM are 

LPETM: ( ) ( )
0. m tt e θλ λ −=                       

   (30)       
         

HLSRGM: ( ) ( )2 2

2
bt a m
a

λ ⎡= −⎣ t ⎤⎦                   

(31) 
The solutions of these two relations when solved for m (t) 
(using the fact ( ) ( )m t tλ′ =  ) would be 

LPETM: ( ) ( 0
1 log 1m t tλ θ )
θ

= +                 (32) 

HLSRGM: ( ) ( )
( )

1

1

bt

bt

a e
m t

e

−

−

−
=

+
                

  (33)d 
The limiting values of m(t) as   in the above 

two equations are    respectively. Though the theoreti-
cal basis of these two models is similar, the asymptotic be-
havior of the mean value functions is different. We know 
that the mean value function of GOM is given by 

t →∞
,a∞

GOM:                              (34) ( ) (1 btm t a e−= − )
And its limiting value is ‘a’. Thus HLSRGM has a si-

milarity with GOM with respect to the mean value function 
in the limit, and another similarity with LPETM in develop-
ing the mean value function as presented in equations (32), 
(33). We therefore, thought of comparing the relative suit-
ability of these three models for a live data. Reparameteriz-
ing and rewriting the mean value functions of the three 
models we can get the following equations. 

GOM:   
( )log 1

m t
bt

a
⎛ ⎞

− − =⎜ ⎟
⎝ ⎠

                            

 (35) 

LPETM: 
( )

1
m t

ae b− = t         
 (36) 

HLSRGM:    
( )
( )

log
a m t

bt
a m t
⎡ ⎤−

− ⎢ ⎥+⎣ ⎦
=                 (37) 

Wherein equation (36), ‘a’ is the notation for 1/θ and 
‘b’ is the notation for 0.λ θ  of equation (32). If the expres-
sions on the LHS of the equations (35) through (37) are con-
sidered as dependent on‘t’, these indicate that each LHS is a 
linear function of ‘t’ with slope ‘b’. Hence if observations 
on t, m(t) in a live data are available and the value of ‘a’ for 
that data is known or assigned by a specific procedure the 
correlation between each [LHS, ‘t’] indicates the strength of 
closeness between the data and the respective model. Be-
cause, in a way ‘a’ is the limiting value of m(t), a reasonable 
substitute for ‘a’ can be the maximum number of experi-
enced faults by a given software in the given maximum 
time. For the NTDS data we may take ‘a’ as 34 so that the 

values of the correlation coefficient between the following 
pairs of variables, 

GOM:  
( )

, log 1
ˆ

m t
t

a
⎡ ⎤⎡ ⎤
− −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
 

LPETM:  
^
( )

, 1
m t

at e
⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

HLSRGM:  
( )
( )

ˆ
, log

ˆ
a m t

t
a m t

⎡ ⎤⎡ ⎤−
−⎢ ⎥⎢ ⎥+⎢ ⎥⎣ ⎦⎣ ⎦

 

are –0.3954, 0.88, 0.9537 respectively where ˆ 34a = ; 
t, m(t) are columns 3 and 1 of NTDS DATA table. This 
shows that our HLSRGM is the best suitable model for the 
NTDS DATA with respect to explaining the reparameter-
ized linear relations given in Equations (5.6), (5.7), and 
(5.8). 
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