
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 183

ISSN No. 0976-5697

Concepts and Features of Aspect-Oriented Programming using Aspect.Net Framework: A
New Approach to Modularization

Sakshi Mundra*1, Vaibhav Vyas2 and Versha Bansal3
AIM and ACT, Asst.Professor, AIM and ACT,

Banasthali University Jaipur ,India
saakshi.mundra@gmail.com*1, vaibhavvyas4u@yahoo.com2, 3varshabansal80@gmail.com

 Abstract: Aspect Oriented Programming methodology is based on the idea that computer systems can be programmed very efficiently by specifying
the various concerns of a system and some description of their relationships separately and then relying the mechanisms in the underlying AOP
environment to weave them together into a coherent program automatically. The term Aspect Oriented Programming includes Multidimensional
Separation of Concerns, along with Subject Oriented Programming, Adaptive Programming and Composition Filters. Multidimensional Separation of
Concerns (MDSOC) permits the encapsulation of various kinds of concerns simultaneously and the integration of separate concerns. The
Aspect.NET Framework is implemented as an add-in to visual studio.NET. Now, the user can use Aspect.NET in combination to the integration
development environment provided by Visual Studio.NET and all its various features for the development of software applications using AOP
methodology.

I. INTRODUCTION

Aspect-oriented programming (AOP) is a programming
paradigm which aims at increasing modularity by allowing the
separation. In other words, we can say that an aspect is a
common feature that's typically scattered across methods,
classes, object hierarchies, or even entire object models. AOP
introduces concern abstraction [1].

 AOP provides separation of crosscutting concerns by
introducing a new unit of modularization—an aspect, that
crosscuts other modules. With AOP, you implement
crosscutting concerns in aspects instead of fusing them in the
core modules [1]. For example, the logging concern affects
every significant module in the system which is one of the
examples of cross-cutting concerns that affects every module
with access control requirements.
 AOP allows the architect to address future potential
requirements without breaking the core system architecture,
and to spend less time on crosscutting concerns during the
initial design phase, since they can be woven into the system
as they are required without compromising the original design
[1].This flexibility justifies the use of AOP in real life
environments like in a banking system, which is a realization
of the following concerns: customer and account management,
interest computation, ATM transactions, and many more.

II. RELATED WORK

With the arrival of the concept of object orientation, a
single concern can be modularized into a single unit which can
be a class, a function or a procedure. However, even with the
current methodologies, there is a significant gap between
knowing the system goals and implementing them completely
[2]. The current methodologies, like OOPs, make initial design
and implementation very much complex that the actual
implementation of the ultimate goal remains as a dream only.
OOP implementation creates a coupling between the core and

crosscutting concerns that is undesirable. In OOPs, the core
module can be loosely coupled, but it cannot make the
coupling of crosscutting concerns to be weakened. This is
because a concern is implemented in two parts: the server-side
piece and the client-side piece. OOP modularizes the server
part quite well in classes and interfaces [2].

However, when the concern is to relate the client part, of a
cross-cutting nature, consisting of the requests to the server, it
is spread all over of the clients. An example to explain this is
the logging module which must be independent of other each
and we must be able to replace one with the other so as to
reduce complexity. This task is only possible with the
introduction of the term aspect.

Using AOP, none of the core module will contain calls to
logging services—they don’t even need to be aware of the
presence of logging in the system. The logging logic now
resides inside the logging module and clients no longer
contain any code for logging, as it is separately handled in an
aspect. With such modularization, any changes to the
crosscutting logging requirements affect only the logging
aspect, isolating the clients completely. So, with AOP, a
minimal coupling is required with each concern which further
reduces code tangling and code scattering.

III. USED METHODOLOGIES

This paper is focused mainly on Study of Aspect .NET
framework and Aspect oriented Programming in a .Net
framework and then developing a web application of Aspect
Oriented Programming using Aspect .NET tool and Microsoft
Visual C#. AOP is supported by java also but the Microsoft
.NET platform is based on the principles of peer-to peer multi-
language programming [3]. For any of the .NET languages, a
very comfortable toolkit for software development and
maintenance is provided- Microsoft .NET framework and
Visual Studio.NET. Aspect.net supports two types of
crosscutting implementation:

Sakshi Mundra et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,183-185

© 2010, IJARCS All Rights Reserved 184

a. Static: Enables the developer to add variables and
methods to existing types.

b. Dynamic: Enables the developer to define additional
implementation to run at well defined points in the
program.

IV. PROPOSED WORK

After investigated all the issues affecting design of a
website, a new proposal is developed to sort out the tangling
of code (Code tangling is caused when such a module is
implemented that handles multiple concerns simultaneously).
This is done by following AOP concept in Aspect.NET
platform which provides an integrated development
environment and also provides a variety of code-behind
language to choose from [4].

A. Aspect:
An aspect is a modular unit of crosscutting concerns and

it contains advice. Advice has the same meaning as in
AspectJ, but as there are no language extensions to C#, so the
advice must be proper C# code. Aspects are declaratively
complete, therefore any variable or method which a piece of
advice uses, it must be declared within the advice or as an
abstract method or variable.
 During the designing of a web application, the aspects for
cross-cutting concerns are designed separately. When the
application runs, and if there is a call of authentication, then an
automatic weaving of these aspects are done with the
functional features. A general outlay can be designed as like
this:

A logging module is a common module for various kinds
of users in a web-application. Every time when a user needs to
login, the system must check the various validations and
whether the username and passwords entered, are correct or
not. So, these non-functional modules span across multiple
modules and programmer needs to take care of them every
time when he/she is about to perform any changes in the
functional modules. So using Aspect, all the non-functional
modules can be tested and compiled simultaneously in a single
module, called aspect while reducing complexity and
redundancy [4].

Using aspect, the logging process can be seen like this:
Logging:-Whenever any user login to the system, then a
logging aspect log file is created which records users’
activities during login to logout session.Null textbox
validation-This validation is used by the programmers during
login to check whether a specified textbox contains a null
value or not. Using aspect, the validation is checked in the
aspect and aspect will display an alert message in case, if a
null value is found.
(a). Password validation – when any of login function or

registration function called, then password validation
aspect checks if password field contains appropriate
length for password or not. If not, then the alert message
will be sent by the password validation aspect.

Whenever any user performs a common function, the same
page opens every time. So to reduce the same coding at each

page, we can better make a dll that will be called at a point-cut
and will be weaved every time at the joint-point.

The whole aspect architecture can be seen like this:

B. Project Architecture:

Figure: 1

To understand the actual application and powerful
implementations of an aspect, consider this algorithm:

Suppose an enterprise wants to transmit some messages to
all the employees working in it. It, by default wants to display
‘Hello’ in the initial of the message and ‘Bye’ after the end of
the message. So, a part of engaging some employees in this
time-taking task, aspect.net can easily submit the task very
efficiently like this:

a. Create a class Politeness which will call the methods
to display our desired messages.

b. Create two methods to deliver the messages, one which
is common for all the employees and the other would
be specific for every employee.

c. Create an Aspect at the join point-%modules so that the
common terms can be introduced for each employee
with the respective messages delivered to them. Use a
point-cut at the calling of SayHello() and SayBye()
functions. Introduce an advice ‘before’ with a message
‘Hello’.

d. Now introduce an advice ‘after’ with a message ‘Bye’
after the deliver function. This advice will be capable
of introducing ‘Bye’ after every displayed message

%aspect Politeness
Public class Politeness
{
%modules
Public static SayHello ()
{
System.Console.Writeline(“Hello”);
}
Public static SayBye ()
{
System.Console.Writeline(“Bye”);
}
%rules
%before %call *
%action public static void sayHelloAction
{
Politeness.sayHello()
}
%after %call *

 Aspect Source Code

<Aspect>
<target>
<Person>
</target>
…….
</Aspect>

Basic Source
Code

 AOP Engine

 Aspect
Assembly

Sakshi Mundra et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,183-185

© 2010, IJARCS All Rights Reserved 185

%action public static void SayByeAction
{
Politeness.SayBye()
}

Suppose, here the project name is Aspect1, taken by
default. You will see the following aspect definition file
template generated by Aspect.NET Framework named Aspect.
an. “.an” is the extension for the Aspect.NET AOP meta-
language (Aspect.NET.ML) files [5].
%aspect Aspect1
using System;
class Aspect1
{
%modules
%rules
}

Here ‘Aspect1’ aspect consists of:- the aspect header
%aspect Aspect1 . Aspect.NET converter will convert it to the
header of the class named Aspect1.

a) The modules part where you should specify the
modules of the aspect, as public static methods;

b) The rules part where the aspect’s weaving rules are
specified. Each weaving rule consists of the weaving
condition (%before %call *, %after %call *) and
action.

The condition is used to determine the set of join points in
the target app subject to the aspect weaving (before call of
each method, or after call of each method, accordingly).

If you like, you can start creating aspect from C# source,
without using Aspect.NET.ML at all [6]. In this case, you
should choose the “Aspect.NET module” kind of project, and
will start from the following C# code template generated by

Aspect.NET:
using System;
using System.Collections.Generic;
using System.Text;
using AspectDotNet;
namespace Aspect1
{
[
AspectDescription("MyAspect description")
]
public class MyAspect : Aspect
{

}

The user can use either Aspect.NET.ML form, or directly
C# custom attributes form for defining aspects [6]. In the
Aspect.NET Framework, both kinds of aspect definition
projects are supported.The diagram presented below shows the
flow of the process in both cases.

%aspect Test //ML%aspect Test //ML
 %aspect Test //ML

 Figure: 2

V. CONCLUSION

It is apparent from this paper that implementation of
Designing an application in aspect.net framework is much
sorted out in comparison to object-oriented concepts. As it
separates out the functional code and non-functional code, so
the complexity reduces.

VI. REFERENCES

[1]. Ramnivas Laddad, “AspectJ in action, Practical Aspect-Oriented
Programming-2003”.

[2]. Aspect-oriented Programming
http://www.en.wikipedia.org/wiki/Aspect-oriented
programming.

[3]. Howard Kim, AspectC#: An AOSD implementation for C#,
Department Of Computer Science Trinity College Dublin

[4]. Vladimir O. Safonov, “Aspect .NET 2.1 User Guide”,
St.Petersburg University, 2007.

[5]. Deepika et al., Investigating the Web Application of AOP
Using Aspect.Net Framework International Journal of
Advanced Research in Computer Science and Software
Engineering 2 (8), August- 2012, pp. 109-112

[6]. Miguel Katrib Mora, Yamil Hernandez Saa, “Aspect
Oriented programming in .Net based on attributes”,
Computer Science Department. University of Havana, PP-54-
70-03/07, 2007.

%aspect Test //ML language
public class Test
{
%modules
private static void TestRun()
{
WriteLine(”test”);
}

public class Test: Aspect//Attribute annotation
{
[AspectAction(“%before %call Write*")]
public static void TestRunAction()
{
Test.TestRun();
}

Aspect.ML

C t

 Aspect Library (DLL)
 C#
Compiler

