
Volume 4, No.8 , May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 75

ISSN No. 0976-5697

A New Type Of Node Split Rule For Decision Tree Learning
C. Sudarsana Reddy

Department of Computer Science and Engineering,
S.V. University College of Engineering,

S.V. University, Tirupati, India
cheruku1sudarsana2reddy3@gmail.com

Dr. V. Vasu

Department of Mathematics,
S.V. University,
Tirupati, India

vasuvaralakshmi@gmail.com

B. Kumara Swamy Achari
Department of Mathematics,

S.V. University, Tirupati, India
acharykumaraswamy44@gmail.com

Abstract: A new type of node split rule for decision tree learning is proposed. This new type of node splitting rule is named as Sudarsana Reddy
Node Split Rule (SRNSR). SRNSR is very easy to compute. It involves only finding the sum of logarithmic values of non-zero class counts of
values of each attribute. The attribute with the highest logarithmic sum value will be selected as the best node split attribute.
SRNSR is compared with most important and popular node split attribute rules (measures) and its performance is noticed better than the best
node split attribute measures. We have proved that decision trees constructed by using SRNSR node split rule are more efficient and robust.
SRNSR decision trees are balanced, simpler, smaller, stable, and safe and more generalize decision trees.
We propose a new type of node splitting rule called Sudarsana Reddy Node Split Rule (SRNSR) for decision tree classifier construction. SRNSR
improves decision tree classifier construction efficiency. Multi-way splits are applied for categorical attributes and binary splits are applied for
numerical attributes.
Finding best splitting attribute is an important task in decision tree learning. Also it is well known fact that there is no single splitting attribute
rule that gives best performance results for all the problem domains.

Keywords: Decision trees, split attribute, Sudarsana Reddy Node Split Rule (SRNSR), node split rules, classification, data mining, machine
learning.

I. INTRODUCTION

Data mining is a method of finding new relationships
among attributes in the large training data sets. Decision
trees are most important and most popular data classification
tools in data mining, machine learning and pattern
recognition applications. In many real world applications
decision trees are widely used for classification. A critical
problem in building decision trees is the best attribute
selection measure problem. We always prefer to produce
small decision trees with high classification accuracy.

The present paper proposes an easy and a new type of
decision tree node splitting rule. This new type of node
splitting rule is named as Sudarsana Reddy Node Split Rule
(SRNSR). SRNSR is very easy to compute and it involves
only simple additions and logarithmic calculations of class
counts of values of each attribute.

Decision tree induction is the learning of decision trees
from class-labeled training tuples [1]. During decision tree
construction at each internal node, class counts of values of
each attribute are computed. The attribute with the highest
sum of logarithmic class counts of values of each attribute is
selected as best split attribute at the current node.

In this paper, we study the problem of constructing
decision tree classifiers using training data sets containing
categorical (nominal) as well as numerical (continuous)
attributes. Our goal is to construct an efficient decision tree
classifier using a new split attribute rule that is very simple
and easy to understand and implement. Computational cost
of new split attribute rule is very less.

The main goal of node split rule is to find the attribute

that “best” divides the training tuples into subsets. The main
advantage of our new attribute splitting rule, SRNSR, is that
its calculations require only the distribution of the class
values for each attribute. The attribute with maximum sum
of logarithmic values of class counts of values of each
attribute is selected as the best or optimal split attribute.

When decision trees are used for classification they are
called classification trees [2]. Different types of split
attribute rules are used for decision tree learning. Gain, Gain
Ratio, Gini Index, Twoing and miss classification are the
most important split attribute measures. All these measures
are defined in terms of the reduction of impurity from the
parent node to the child nodes. The goodness of a split
attributes increases as the reduction of impurity increases.

A classification rule will be expressed as a decision tree
[4]. The term continuous is used in the literature to indicate
both real and integer valued attributes [5]. Continuous
valued attributes must be discretized prior to attribute
selection [5]. Since the split point must occur on a boundary
we only need to evaluate boundary points between classes
instead of evaluating possibly all g – 1 candidate split points
for a given g number of tuples [5].

II. RELATED WORKS

To build a decision tree it is necessary to find best node
split attribute at each internal node and then split the data
into subsets. Split attributes evaluation rules are divided into
three categories [3].

C. Sudarsana Reddy et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,75-80

© 2010, IJARCS All Rights Reserved 76

a. Information rules
b. Distance measures rules and
c. Dependence measures rules

There exist many attribute selection rules that do not
clearly belong to any category in Ben Bassat’s taxonomy
[3]. No split attribute selection rule is consistently superior
to the others.

Classification is an important data mining problem.
Impurity based split attribute selection methods are widely
used and very popular. Also studies have shown that this
class of split attribute selection methods produces decision
trees with high predictive accuracy. Most previous work in
the database literature uses impurity based split attribute
selection methods. Impurity based split attribute selection
methods calculate the splitting criterion by minimizing the
concave impurity functions.

Decision trees are valuable tools for description,
classification and generalization of data [3]. Greedy top-
down construction is the most commonly used method for
decision tree construction. A decision tree is constructed
from a training data set consisting of tuples. Each tuple is
completely described by a set of attributes and a class label.
The task of constructing a decision tree from the training
data set is called decision tree induction [2]. Discrimination
is the process of deriving classification rules from classified
tuples and classification is the process of applying the rules
to new tuples of unknown class labels [3].

Number of tuples that are correctly classified by a
decision tree classifier is known as its accuracy, whereas the
number of misclassified tuples is the error. The accuracy of
a classifier on a given test set is the percentage of test set
tuples that are correctly classified by the classifier [1]. The
accuracy of a classifier refers to the ability of a given
classifier to correctly predict the class label of new or
previously unseen data [1].

Minimum description length (MDL) is also used for
deciding which attribute splits to prefer over others.
Information Gain and Gini index are concave [3].

The total number of misclassified tuples has been
explored as attribute selection criteria by many authors. Two
examples under this category are - sum minority and
inaccuracy [3]. Additional tricks are needed to make this
measure useful.

Max minority (Maximum of the number of misclassified
tuples on two sides of a binary split) and sum of impurities
(which assigns an integer to each class and measures the
variance between class numbers in each partition).

Most of the attribute evaluation measures assume no
knowledge of the probability of the training data tuples. The
optimal decision rule at each decision tree node is used. A
rule that minimizes the overall error probability is
considered assuming that complete probabilistic information
about the data is known.

A hard split divides the data into mutually exclusive
partitions [3]. A soft split, on the other hand, assigns a
probability that each tuple belongs to a partition, thus
allowing tuples to belong to multiple partitions. C4.5 uses a
simple form of soft splitting [3].

III. PROBLEM STATEMENT

There exist many node split rules or measurement
techniques for selecting the best split attribute during

decision tree induction. All these rules or measures are
defined in terms of the reduction of impurity from the parent
node to the child nodes. Reduction of impurity is the
difference between impurity of the parent node before split
and sum of the impurities of its child nodes after split.

Reduction of impurity = Impurity of parent node before
split – Sum of impurities of child nodes after split.

Information Gain (or Gain), Gain Ratio, Gini Index,
Twoing are the most important and popular rules of node
splitting attribute rules. Computational complexity of these
rules is very high because many multiplications, divisions
and square operations are needed.

The present study proposes a new node split rule or
measure called Sudarsana Reddy Node Split Rule (SRNSR)
for selecting the best split attribute during decision tree
construction. This new rule or measure is very easy to
compute and understand. Computational complexity of this
rule is very less. It overcomes many of the problems of
existing node split rules or measures for selecting the best
split attribute during decision tree induction.

IV. EXISTING NODE SPLIT RULES

The problem of building a decision tree can be expressed
recursively. Initially the selected split attribute rule is
applied to each attribute of the training data set and then best
split attribute is selected and placed at the root node. Tuples
at the root node are divided into subsets based on the
categorical values of the split attribute or if the split attribute
is numerical then tuples at the root node are divided into two
subsets based on the best value of best split attribute. Same
process is repeated for all internal nodes.

Existing split attribute measures for selecting the best
split attributes:

Information Gain (or Gain), Gain Ratio, Gini Index,
Twoing are the most important rules of node splitting
attribute rules. Each rule has its own advantages and
disadvantages. No one rule is best in all cases.

A. Information Gain (or Gain):
Gain is predominantly used as a measure for selecting

the best split attribute. Information gain is the most
popularly used node split rule or measurement technique for
selecting the best split attribute. Its main disadvantage is that
it deviates to select attributes with a large number of distinct
values. This deviation decreases the performance and
accuracy of the learned decision tree classifier.

The attribute with the maximum information gain is
selected as a split attribute. Information gain is a popular
way to select best split attribute.

Gain = Information (Parent) – Sum of information
details of all children.

B. Gain Ratio:
The information gain measure is biased toward tests with

many outcomes [1]. That is, it prefers to select attributes
having a large number of values [1]. The attribute with the
maximum gain ratio is selected as the splitting attribute [1].

When an attribute have the same value nearly for all
training instances, the split information of it will be zero or
very small. Hence, Gain ratio is undefined or very large.

C. Sudarsana Reddy et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,75-80

© 2010, IJARCS All Rights Reserved 77

C. Gini Index
The main disadvantage of the Gini index is that it tries to

put tuples of the majority class into one subset and the
remaining tuples into the other subset.

The Gini index is used in CART [1]. The Gini index
measures the impurity of D, a data partition or set of training
tuples, as

Where pi is the probability that a tuple in D belongs to

class Ci and is estimated by . The sum is computed over
m classes. The Gini index considers a binary split for each
attribute [1]. When considering a binary split, we compute a
weighted sum of the impurity of each resulting partition [1].
For example, if a binary split on A partitions D into D1 and
D2, the Gini index of D given that partitioning is

D. Twoing rule:
An alternative measure of node impurity is the twoing index

where L and R refer to the left and right sides of a given
split respectively, and p(i|t) is the relative frequency of class
i at node t. Twoing attempts to segregate data more evenly
than the Gini rule, separating whole groups of data and
identifying groups that make up 50 percent of the remaining
data at each successive node.

V. PROPOSED NODE SPLIT RULE

The decision tree classifier is built recursively in a top-
down manner, starting from the root. At each node both
categorical and numerical attributes are considered. For each
node, attribute split rule is applied and the sum of
logarithmic values of class counts of all the values of each
attribute are computed. The attribute with the highest
logarithmic sum value is selected as the best split attribute.
The node is assigned that best split attribute. If the best split
attribute is categorical then tuples at the current node are
divided into subsets based on the distinct values of the best
attribute. If the best attribute is numerical attribute then
tuples at the current node are divided into two (binary)
subsets based on the best value of the best split attribute.
Same process is repeated at each internal node.

Decision tree is a classification tool. Decision trees are
constructed based on the node split attribute rules. Split
attribute rules are used to select best split attribute at each
internal node of the decision tree.

A. Information Gain (or Gain):
The main disadvantage or bias of the Gain rule is that it

tries to select attributes with a large number of distinct
values, this leads to degraded performance of the learned
decision tree classifies.

Our new approach, SRNSR, for selecting the best split
attribute overcomes this problem by separating the training

tuples into large subsets and without any bias towards the
selection of attributes with a large number of distinct values.
Additional advantage of our approach is that the height of
the resultant decision tree is very small because our
approach tries to divide training tuples into larger groups as
much as possible.

B. Gain Ratio:
The main disadvantage of the Gain Ratio is that

sometimes split-info value becomes zero or very small,
which leads to infinite or undefined or very large Gain Ratio
Value.

In our new splitting rule approach, SRNSR, just we are
using small number of additions and logarithmic values of
class counts. There are no multiplications, divisions and
square operations at all. So, our approach overcomes this
problem also. Hence, our approach is far better than Gain
Ratio.

Our new approach, SRNSR, not only overcomes the
disadvantages of Gain, Gain Ratio but also produces smaller
and much faster decision tree classifiers and at the same
time maintains the high classification accuracies.

Our approach is very simple and elegant attribute
splitting rule or measure for selecting the best split attribute
during decision tree learning. Our approach is applied to
training data sets containing categorical attributes. Same
approach can be applied to continuous or numerical
attributes also.

C. Gini Index:
In Gini index operations like multiplications, divisions and
squares are needed. In our new split attribute approach,
SRNSR, only additions and logarithmic operations are
needed.

D. Twoing Rule
In Twoing rule also many multiplications, divisions, and

square operations are needed. Hence, new SRNSR approach
is very efficient than Twoing rule.

We propose a new type of node splitting rule named
Sudarsana Reddy Node Split Rule (SRNSR). It is very
simple and easy to understand, implement and compute. It
involves only simple calculations. It overcomes many of the
problems in the existing attribute splitting rules or measures.

E. Decision Tree construction example using our
new splitting rule, Sudarsana Reddy Node Splitting Rule
(SRNSR):

Table1 Training Data Set for all electronics

C. Sudarsana Reddy et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,75-80

© 2010, IJARCS All Rights Reserved 78

We have already proposed a new type of node splitting
rule called Sudarsana Reddy product rule (SR-product rule)
for decision tree node splitting during the construction of
decision tree learning. But the main disadvantage of SR-
product rule is that the product value becomes very large for
very large training data sets. To overcome this problem in
this paper we propose a new type of node split rule called
SRNSR logarithmic rule.

In this paper we have calculated the results for both the
node split rules - Sudarsana Reddy product rule (SR-product
rule) and Sudarsana Reddy Node Split Rule (SRNSR) or
SR- logarithmic rule for compatibility.

Table2. Age attribute class count values

Age Buys_Computer
Yes No

Youth 2 3
Middle_aged 4 0
Senior 3 2

Age attribute has 3 distinct values – Youth,

Middle_aged, and senior. Non-zero class count values of
age attribute are shown in Table2

Product of non-zero class count values of age attribute =
product(Age) = 2 x 3 x 4 x 3 x 2 = 144.

product(Age) = 144.
Sum of logarithmic values of non-zero class count values

of age attribute = log 2 + log 3 + log 4 + log 3 + log 2
That is,
logsum(Age) = log 2 + log 3 + log 4 + log 3 + log 2
logsum(Age) = 0.301030 + 0.477121 + 0.602060 +
 0.477121 + 0.301030.

logsum(age) = 2.158362
Table 3. Income attribute class count values

Income Buys_Computer
Yes No

Low 3 1
Medium 4 2
High 2 2

Income attribute has 3 distinct values – Low, Medium,

and High. Non-zero class count values of income attribute
are shown in Table3.

Product of non-zero class count values of income
attribute is equal to = product(Income) =3x1x4x 2x 2x2= 96.

product(Income) = 96.
Sum of logarithmic values of non-zero class count values of
income attribute =log 3 + log 1 + log 4 + log 2 + log 2+log 2
That is, logsum(Income)=
 log 3 + log 1 + log 4 + log 2 + log 2 + log 2
logsum(Income) = 0.477121 + 0 + 0.602060 + 0.301030 +
 0.301030 + 0.301030.

logsum(Income) = 1.982271
Table4. Student attribute class count values

Student Buys_Computer
Yes No

Yes 6 1
No 3 4

Student attribute has 2 distinct values – Yes, and No.

Non-zero class count values of student attribute are shown
in Table4.

Product of non-zero class count values of student
attribute is equal to = product(Student) = 6 x 1 x 3 x 4 = 72.

product(Student) = 72.
Sum of logarithmic values of non-zero class count values

of student attribute = log 6 + log1 + log 3 + log 4
That is,
logsum(Student) = log 6 + log1 + log 3 + log 4
logsum(Student) = 0.778151 + 0.477121 + 0 + 0.602060

logsum(Student) = 1.857332
Table5. Credit_Rating class count values

Credit_Rating Buys Computer
Yes No

Fair 6 2
Excellent 3 3

Credit_Rating attribute has 2 distinct values – Fair, and

Excellent. Non-zero class count values of Credit_Rating
attribute are shown in Table5.

Product of non-zero class count values of Credit_Rating
attribute = product(Credit_Rating) = 6 x 2 x 3 x 3 = 108.

product(Credit_Rating) = 108.
Sum of logarithmic values of non-zero class count values

of Credit_Rating attribute = log 6 + log 2 + log 3 + log 3
That is, logsum(Credit_Rating)= log 6 + log 2 + log 3+log 3
logsum(Credit_Rating) = 0.778151 + 0.301030 + 0.477121
 + 0.477121.

logsum(Credit_Rating) = 2.033423
Sudarsana Reddy product rule (SR-product rule)

calculations are-maximum(144, 96, 72, 108) = 144. Note if
any class count is zero then it must be taken as 1; otherwise
the product becomes zero.

Here maximum product(Age) value is 144. Hence, split
attribute is Age.

Sudarsana Reddy Node Split Rule (SRNSR) calculations
are used in finding the largest logarithmic value.
That is,
maximum(2.158362,1.982271,2.857332,2.033423)=2.15836
Here Age has highest logsum value. So split attribute is
Age.

In this paper we consider our new type of node splitting
rule called Sudarsana Reddy Node Splitting Rule (SRNSR)
during decision tree construction and we use only highest
logsum value for finding best split attribute.

Initially the root node contains all the tuples and age is
the best splitting attribute in the root node. These tuples
must be divided into groups based on the distinct values of
the age attribute. Age attribute has three distinct values, so
training data set shown in Table1 is divided into three
partitions which are shown in Table6, Table12 and Table13.

Table6. Tuples corresponding to age = “Youth”

Income Student Credit_Rating Buys_Computer
High No Fair No
High No Excellent No
Medium No Fair No
Low Yes Fair Yes
Medium Yes Excellent Yes

Table7. Income attribute class count values

Income Buys_Computer
Yes No

High 0 2
Medium 1 1
Low 1 0

C. Sudarsana Reddy et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,75-80

© 2010, IJARCS All Rights Reserved 79

In Table6 Income attribute has 3 distinct values–Low,
Medium, and High. Non-zero class count values of income
attribute are shown in Table7.

Product of non-zero class count values of income
attribute is = product(Income) = 2 x 1 x 1 x 1 = 2

product(Income) = 2.
Sum of logarithmic values of non-zero class count values

of income attribute = log 2 + log 1 + log 1 + log 1
That is, logsum(Income) = log 2 + log 1 + log 1 + log 1
 logsum(Income) = 0.301030 + 0 + 0 + 0 = 0.301030

logsum(Income) = 0.301030
Table8. Student attribute class count values

Student Buys_Computer
Yes No

Yes 2 0
No 0 3

Student attribute has 2 distinct values – Yes and No.

Non-zero class count values of income attribute are shown
in Table8

Product of non-zero class count values of student
attribute is = product(Student) = 2 x 3 = 6

product(Student) = 6.
Sum of logarithmic values of non-zero class count values

of income attribute = log 2 + log 3
That is, logsum(Student) = log 2 + log 3
logsum(Student) = 0.301030 + 0.477121 = 0.778151

logsum(Student) = 0.778151
Table9. Credit_Rating attribute class count values

Credit_Rating Buys_Computer
Yes No

Excellent 1 1
Fair 1 2

Credit_Rating attribute has 2 distinct values – Excellent

and Fair. Non-zero class count values of Credit_Rating
attribute are shown in Table 9

Product of non-zero class count values of Credit_Rating
attribute is equal to = product(Credit_Rating)=1x1x1x2 = 2

product(Student) = 2.
Sum of logarithmic values of non-zero class count values

of Credit_Rating attribute = log 2
That is, logsum(Credit_Rating) = log 2
logsum(Credit_Rating) = 0.301030

logsum(Credit_Rating) = 0.301030
Here, maximum product is 6, so best split attribute is

Student according to SRNSR-product rule.
Here, maximum(0.301030, 0.778151, 0.301030) =

0.778151. Hence, best split attribute is Student according to
SRNSR-logarithmic rule. Hence, Table6 is divided into
Table10 and Table11. Now Table10 and Table11 need not
to classify further because all tuples belongs to the same
class. Hence, Table10 and Table11 are leaf nodes.

Table10. Tuples corresponding to student = “No”
Income Credit_Rating Buys_Computer
High Fair No
High Excellent No
Medium Fair No

Table11. Tuples corresponding to student = “Yes”

Income Credit_Rating Buys_Computer
Low Fair Yes
Medium Excellent Yes

Table12. Tuples corresponding to age = “Middle_aged”

Income Student Credit_Rating Buys_Computer
High No Fair Yes
Low Yes Excellent Yes
Medium No Excellent Yes
High Yes Fair Yes

All the tuples in Table12 have the same class label, so no

need to further classify and hence it becomes a leaf node.
Table13. Tuples corresponding to age = “Senior”

Income Student Credit_Rating Buys_Computer
Medium No Fair Yes
Low Yes Fair Yes
Medium Yes Fair Yes
Medium No Excellent No

Table14. Income attribute class count values

Income Buys_Computer
Yes No

Medium 2 1
Low 1 2

In the Table13 Income attribute has 2 distinct values -

Low and Medium. Non-zero class count values of Income
attribute are shown in Table14

Product of non-zero class count values of income
attribute is = product(Income) = 2 x 1 x 1 x 2 = 4

product(Income) = 4.
Sum of logarithmic values of non-zero class count values

of income attribute = log 2 + log 1 + log 1 + log 2
That is, logsum(Income) = log 2 + log 1 + log 1 + log 2
logsum(Income) = 0.301030 + 0 + 0 + 0.301030 = 0.602060

logsum(Income) = 0.602060
Table15. Student attribute class count values

Student Buys_Computer
Yes No

No 1 1
Yes 2 1

Student attribute has 2 distinct values: No and Yes. Non-

zero class count values of Student attribute are shown in
Table15

Product of non-zero class count values of Student
attribute is = product(Student) = 1 x 1 x 2 x 1 = 2

product(Student) = 2.
Sum of logarithmic values of non-zero class count values

of Student attribute = log 1 + log 1 + log 2 + log 1
That is,
logsum(Student) = log 1 + log 1 + log 2 + log 1
logsum(Student) = 0 + 0 + 0.301030 + 0 = 0.301030

logsum(Student) = 0.301030
Table16. Product 3x2 = 6

Credit_Rating Buys_Computer

Yes No
Fair 3 0

Excellent 0 2

In the Table13 Credit_Rating attribute has 2 distinct

values: Fair and Excellent. Non-zero class count values of
Credit_Rating attribute are shown in Table16

Product of non-zero class count values of Credit_Rating
attribute = product(Income) = 3 x 2 = 6

C. Sudarsana Reddy et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,75-80

© 2010, IJARCS All Rights Reserved 80

product(Income) = 6.
Sum of logarithmic values of non-zero class count values

of income attribute = log 3 + log 2
That is,
logsum(Income) = log 3 + log 2
logsum(Income) = 0.477121 + 0.301030 = 0.778151

logsum(Income) = 0.778151
Here, Credit_Rating attribute has the highest

logarithmic value. So, best split attribute for the training
data tuples in the Table13 is Credit_Rating. Hence, Tuples
in Table13 are partitioned into Table17 and Table18. Both
Table17 and Table18 are leaf nodes. So, no need to further
partition them.

Table 17. Tuples corresponding to Credit_Rating = “Fair”
Income Student Buys_Computer

Medium No Yes

Low Yes Yes

Medium Yes Yes

Table18. Tuples corresponding to Credit_Rating = “Excellent”
Income Student Buys_Computer

Low Yes No

Medium No No

VI. EXPERIMENTAL RESULTS

We have experimentally verified that our new rule called
Sudarsana Reddy Node Split Rule (SRNSR) works well and
it is the most efficient method for dividing the tuples at the
current node into subsets. SRNSR tries to divide set of
tuples in the internal node into balanced subsets of tuples.
Experimentally we have compared decision trees
constructed using already available rules and decision trees
constructed using our new rule SRNSR.

VII. CONCLUSIONS

A. Contributions:
A new type of node split rule called Sudarsana Reddy

Node Split Rule (SRNSR) or SR-logarithmic rule for
decision tree induction is proposed and verified
experimentally by constructing a decision tree classifier
using already existing node split rules and our new split
attribute rule, SRNSR (SR-logarithmic rule). Experiments
have shown that SRNSR is computationally most efficient
and very easy to implement. SRNSR is very simple, easy to
compute and involves only simple additions and logarithmic
calculations.

B. Limitations:
Ours SRNSR is efficient for categorical attributes and

the efficiency of our new split attribute rule must be
improved for numerical split attributes.

C. Suggestions for feature work:
Special techniques are needed to increase the scalability

of decision tree learning using our new split attribute rule,
SRNSR.

VIII. REFERENCES

[1]. Jiawei Han, Micheline Kamber, Data Mining: Concepts
and Techniques, Morgan Kaufmann, second edition, 2006.
pp. 285–292

[2]. Introduction to Machine Learning Ethem Alpaydin PHI
MIT Press, second edition. pp. 185–188

[3]. Automatic Construction of decision Trees from data,
SREERAMA K. MURTHY: A Multi-Disciplinary Survey

[4]. J.R. Quinlan, “Induction of Decision Trees,” Machine
Learning, vol. 1, no. 1, pp. 81-106, 1986.

[5]. U.M. Fayyad and K.B. Irani, “On the Handling of
Continuous –Valued Attributes in Decision tree Generation”,
Machine Learning, vol. 8, pp. 87-102, 1996.

[6] C. Sudarsana Reddy, Dr. V. VASU, B. Kumara Swamy

 Achari, “Decision Trees For Training Data Sets Containing

 Numerical Attributes with Measurement Errors”,

 International Journal of Advanced Research in Computer

 Science, Volume 4, No. 4, March-April 2013

