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Abstract: A new type of node split rule for decision tree learning is proposed. This new type of node splitting rule is named as Sudarsana Reddy 
Node Split Rule (SRNSR). SRNSR is very easy to compute. It involves only finding the sum of logarithmic values of non-zero class counts of 
values of each attribute. The attribute with the highest logarithmic sum value will be selected as the best node split attribute.  
SRNSR is compared with most important and popular node split attribute rules (measures) and its performance is noticed better than the best 
node split attribute measures. We have proved that decision trees constructed by using SRNSR node split rule are more efficient and robust. 
SRNSR decision trees are balanced, simpler, smaller, stable, and safe and more generalize decision trees. 
We propose a new type of node splitting rule called Sudarsana Reddy Node Split Rule (SRNSR) for decision tree classifier construction. SRNSR 
improves decision tree classifier construction efficiency. Multi-way splits are applied for categorical attributes and binary splits are applied for 
numerical attributes.  
Finding best splitting attribute is an important task in decision tree learning. Also it is well known fact that there is no single splitting attribute 
rule that gives best performance results for all the problem domains. 
                                     
Keywords: Decision trees, split attribute, Sudarsana Reddy Node Split Rule (SRNSR), node split rules, classification, data mining, machine 
learning. 

I. INTRODUCTION 

Data mining is a method of finding new relationships 
among attributes in the large training data sets. Decision 
trees are most important and most popular data classification 
tools in data mining, machine learning and pattern 
recognition applications. In many real world applications 
decision trees are widely used for classification. A critical 
problem in building decision trees is the best attribute 
selection measure problem. We always prefer to produce 
small decision trees with high classification accuracy.  

The present paper proposes an easy and a new type of 
decision tree node splitting rule. This new type of node 
splitting rule is named as Sudarsana Reddy Node Split Rule 
(SRNSR). SRNSR is very easy to compute and it involves 
only simple additions and logarithmic calculations of class 
counts of values of each attribute. 

Decision tree induction is the learning of decision trees 
from class-labeled training tuples [1]. During decision tree 
construction at each internal node, class counts of values of 
each attribute are computed. The attribute with the highest 
sum of logarithmic class counts of values of each attribute is 
selected as best split attribute at the current node.  

In this paper, we study the problem of constructing 
decision tree classifiers using training data sets containing 
categorical (nominal) as well as numerical (continuous) 
attributes. Our goal is to construct an efficient decision tree 
classifier using a new split attribute rule that is very simple 
and easy to understand and implement. Computational cost 
of new split attribute rule is very less. 

 
The main goal of node split rule is to find the attribute 

that “best” divides the training tuples into subsets. The main 
advantage of our new attribute splitting rule, SRNSR, is that 
its calculations require only the distribution of the class 
values for each attribute. The attribute with maximum sum 
of logarithmic values of class counts of values of each 
attribute is selected as the best or optimal split attribute. 

When decision trees are used for classification they are 
called classification trees [2]. Different types of split 
attribute rules are used for decision tree learning. Gain, Gain 
Ratio, Gini Index, Twoing and miss classification are the 
most important split attribute measures. All these measures 
are defined in terms of the reduction of impurity from the 
parent node to the child nodes. The goodness of a split 
attributes increases as the reduction of impurity increases.   

A classification rule will be expressed as a decision tree 
[4]. The term continuous is used in the literature to indicate 
both real and integer valued attributes [5]. Continuous 
valued attributes must be discretized prior to attribute 
selection [5]. Since the split point must occur on a boundary 
we only need to evaluate boundary points between classes 
instead of evaluating possibly all g – 1 candidate split points 
for a given g number of  tuples [5].  

II. RELATED WORKS 

To build a decision tree it is necessary to find best node 
split attribute at each internal node and then split the data 
into subsets. Split attributes evaluation rules are divided into 
three categories [3]. 
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a. Information rules 
b. Distance measures rules and 
c. Dependence measures rules 

There exist many attribute selection rules that do not 
clearly belong to any category in Ben Bassat’s taxonomy 
[3]. No split attribute selection rule is consistently superior 
to the others. 

Classification is an important data mining problem. 
Impurity based split attribute selection methods are widely 
used and very popular. Also studies have shown that this 
class of split attribute selection methods produces decision 
trees with high predictive accuracy. Most previous work in 
the database literature uses impurity based split attribute 
selection methods. Impurity based split attribute selection 
methods calculate the splitting criterion by minimizing the 
concave impurity functions.  

Decision trees are valuable tools for description, 
classification and generalization of data [3]. Greedy top-
down construction is the most commonly used method for 
decision tree construction. A decision tree is constructed 
from a training data set consisting of tuples. Each tuple is 
completely described by a set of attributes and a class label. 
The task of constructing a decision tree from the training 
data set is called decision tree induction [2]. Discrimination 
is the process of deriving classification rules from classified 
tuples and classification is the process of applying the rules 
to new tuples of unknown class labels [3].  

Number of tuples that are correctly classified by a 
decision tree classifier is known as its accuracy, whereas the 
number of misclassified tuples is the error. The accuracy of 
a classifier on a given test set is the percentage of test set 
tuples that are correctly classified by the classifier [1]. The 
accuracy of a classifier refers to the ability of a given 
classifier to correctly predict the class label of new or 
previously unseen data [1]. 

Minimum description length (MDL) is also used for 
deciding which attribute splits to prefer over others. 
Information Gain and Gini index are concave [3].  

The total number of misclassified tuples has been 
explored as attribute selection criteria by many authors. Two 
examples under this category are - sum minority and 
inaccuracy [3]. Additional tricks are needed to make this 
measure useful.  

Max minority (Maximum of the number of misclassified 
tuples on two sides of a binary split) and sum of impurities 
(which assigns an integer to each class and measures the 
variance between class numbers in each partition). 

Most of the attribute evaluation measures assume no 
knowledge of the probability of the training data tuples. The 
optimal decision rule at each decision tree node is used. A 
rule that minimizes the overall error probability is 
considered assuming that complete probabilistic information 
about the data is known.  

A hard split divides the data into mutually exclusive 
partitions [3]. A soft split, on the other hand, assigns a 
probability that each tuple belongs to a partition, thus 
allowing tuples to belong to multiple partitions. C4.5 uses a 
simple form of soft splitting [3].  

III. PROBLEM STATEMENT 

There exist many node split rules or measurement 
techniques for selecting the best split attribute during 

decision tree induction. All these rules or measures are 
defined in terms of the reduction of impurity from the parent 
node to the child nodes. Reduction of impurity is the 
difference between impurity of the parent node before split 
and sum of the impurities of its child nodes after split. 

Reduction of impurity = Impurity of parent node before 
split – Sum of impurities of child nodes after split. 

Information Gain (or Gain), Gain Ratio, Gini Index, 
Twoing are the most important and popular rules of node 
splitting attribute rules. Computational complexity of these 
rules is very high because many multiplications, divisions 
and square operations are needed. 

The present study proposes a new node split rule or 
measure called Sudarsana Reddy Node Split Rule (SRNSR) 
for selecting the best split attribute during decision tree 
construction. This new rule or measure is very easy to 
compute and understand. Computational complexity of this 
rule is very less. It overcomes many of the problems of 
existing node split rules or measures for selecting the best 
split attribute during decision tree induction. 

IV. EXISTING NODE SPLIT RULES 

The problem of building a decision tree can be expressed 
recursively. Initially the selected split attribute rule is 
applied to each attribute of the training data set and then best 
split attribute is selected and placed at the root node. Tuples 
at the root node are divided into subsets based on the 
categorical values of the split attribute or if the split attribute 
is numerical then tuples at the root node are divided into two 
subsets based on the best value of best split attribute. Same 
process is repeated for all internal nodes.  

Existing split attribute measures for selecting the best 
split attributes: 

Information Gain (or Gain), Gain Ratio, Gini Index, 
Twoing are the most important rules of node splitting 
attribute rules. Each rule has its own advantages and 
disadvantages. No one rule is best in all cases.  

A. Information Gain (or Gain): 
Gain is predominantly used as a measure for selecting 

the best split attribute. Information gain is the most 
popularly used node split rule or measurement technique for 
selecting the best split attribute. Its main disadvantage is that 
it deviates to select attributes with a large number of distinct 
values. This deviation decreases the performance and 
accuracy of the learned decision tree classifier. 

The attribute with the maximum information gain is 
selected as a split attribute. Information gain is a popular 
way to select best split attribute.  

Gain = Information (Parent) – Sum of information 
details of all children.  

 

B. Gain Ratio: 
The information gain measure is biased toward tests with 

many outcomes [1]. That is, it prefers to select attributes 
having a large number of values [1]. The attribute with the 
maximum gain ratio is selected as the splitting attribute [1]. 

When an attribute have the same value nearly for all 
training instances, the split information of it will be zero or 
very small. Hence, Gain ratio is undefined or very large.  
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C. Gini Index 
The main disadvantage of the Gini index is that it tries to 

put tuples of the majority class into one subset and the 
remaining tuples into the other subset. 

The Gini index is used in CART [1]. The Gini index 
measures the impurity of D, a data partition or set of training 
tuples, as 

 

Where pi is the probability that a tuple in D belongs to 

class Ci and is estimated by . The sum is computed over 
m classes. The Gini index considers a binary split for each 
attribute [1]. When considering a binary split, we compute a 
weighted sum of the impurity of each resulting partition [1]. 
For example, if a binary split on A partitions D into D1 and 
D2, the Gini index of D given that partitioning is 

 

D. Twoing rule: 
An alternative measure of node impurity is the twoing index 

 

where L and R refer to the left and right sides of a given 
split respectively, and p(i|t) is the relative frequency of class 
i at node t. Twoing attempts to segregate data more evenly 
than the Gini rule, separating whole groups of data and 
identifying groups that make up 50 percent of the remaining 
data at each successive node. 

V. PROPOSED NODE SPLIT RULE 

The decision tree classifier is built recursively in a top-
down manner, starting from the root. At each node both 
categorical and numerical attributes are considered. For each 
node, attribute split rule is applied and the sum of 
logarithmic values of class counts of all the values of each 
attribute are computed. The attribute with the highest 
logarithmic sum value is selected as the best split attribute. 
The node is assigned that best split attribute. If the best split 
attribute is categorical then tuples at the current node are 
divided into subsets based on the distinct values of the best 
attribute. If the best attribute is numerical attribute then 
tuples at the current node are divided into two (binary) 
subsets based on the best value of the best split attribute. 
Same process is repeated at each internal node. 

Decision tree is a classification tool. Decision trees are 
constructed based on the node split attribute rules. Split 
attribute rules are used to select best split attribute at each 
internal node of the decision tree. 

A. Information Gain (or Gain): 
The main disadvantage or bias of the Gain rule is that it 

tries to select attributes with a large number of distinct 
values, this leads to degraded performance of the learned 
decision tree classifies.  

Our new approach, SRNSR, for selecting the best split 
attribute overcomes this problem by separating the training 

tuples into large subsets and without any bias towards the 
selection of attributes with a large number of distinct values. 
Additional advantage of our approach is that the height of 
the resultant decision tree is very small because our 
approach tries to divide training tuples into larger groups as 
much as possible.  

B. Gain Ratio: 
The main disadvantage of the Gain Ratio is that 

sometimes split-info value becomes zero or very small, 
which leads to infinite or undefined or very large Gain Ratio 
Value. 

In our new splitting rule approach, SRNSR, just we are 
using small number of additions and logarithmic values of 
class counts. There are no multiplications, divisions and 
square operations at all. So, our approach overcomes this 
problem also. Hence, our approach is far better than Gain 
Ratio. 

Our new approach, SRNSR, not only overcomes the 
disadvantages of Gain, Gain Ratio but also produces smaller 
and much faster decision tree classifiers and at the same 
time maintains the high classification accuracies.  

Our approach is very simple and elegant attribute 
splitting rule or measure for selecting the best split attribute 
during decision tree learning. Our approach is applied to 
training data sets containing categorical attributes. Same 
approach can be applied to continuous or numerical 
attributes also. 

C. Gini Index: 
In Gini index operations like multiplications, divisions and 
squares are needed. In our new split attribute approach, 
SRNSR, only additions and logarithmic operations are 
needed. 

D. Twoing Rule 
In Twoing rule also many multiplications, divisions, and 

square operations are needed. Hence, new SRNSR approach 
is very efficient than Twoing rule. 

We propose a new type of node splitting rule named 
Sudarsana Reddy Node Split Rule (SRNSR). It is very 
simple and easy to understand, implement and compute. It 
involves only simple calculations. It overcomes many of the 
problems in the existing attribute splitting rules or measures.  

E. Decision Tree construction example using our 
new splitting rule, Sudarsana Reddy Node Splitting Rule 
(SRNSR): 

Table1 Training Data Set for all electronics 
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We have already proposed a new type of node splitting 
rule called Sudarsana Reddy product rule (SR-product rule) 
for decision tree node splitting during the construction of 
decision tree learning. But the main disadvantage of SR-
product rule is that the product value becomes very large for 
very large training data sets. To overcome this problem in 
this paper we propose a new type of node split rule called 
SRNSR logarithmic rule. 

In this paper we have calculated the results for both the 
node split rules - Sudarsana Reddy product rule (SR-product 
rule) and Sudarsana Reddy Node Split Rule (SRNSR) or 
SR- logarithmic rule for compatibility. 

Table2. Age attribute class count values 

Age  Buys_Computer 
Yes No 

Youth  2 3 
Middle_aged  4 0 
Senior  3 2 

 
Age attribute has 3 distinct values – Youth, 

Middle_aged, and senior. Non-zero class count values of 
age attribute are shown in Table2 

Product of non-zero class count values of age attribute = 
product(Age) = 2 x 3 x 4 x 3 x 2 = 144.  

product(Age) = 144. 
Sum of logarithmic values of non-zero class count values 

of age attribute = log 2 + log 3 + log 4 + log 3 + log 2 
That is, 
logsum(Age) = log 2 + log 3 + log 4 + log 3 + log 2 
logsum(Age) = 0.301030 + 0.477121 + 0.602060 +       
                          0.477121 + 0.301030. 

logsum(age) = 2.158362 
Table 3. Income attribute class count values 

Income  Buys_Computer 
Yes No 

Low  3 1 
Medium  4 2 
High  2 2 

 
Income attribute has 3 distinct values – Low, Medium, 

and High. Non-zero class count values of income attribute 
are shown in Table3. 

Product of non-zero class count values of income 
attribute is equal to = product(Income) =3x1x4x 2x 2x2= 96.  

product(Income) = 96. 
Sum of logarithmic values of non-zero class count values of 
income attribute =log 3 + log 1 + log 4 + log 2 + log 2+log 2 
That is, logsum(Income)= 
                          log 3 + log 1 + log 4 + log 2 + log 2 + log 2 
logsum(Income) =  0.477121 + 0 + 0.602060 + 0.301030 +    
                                0.301030 + 0.301030. 

logsum(Income) = 1.982271 
Table4. Student attribute class count values 

Student   Buys_Computer 
Yes No 

Yes  6 1 
No  3 4 

 
Student attribute has 2 distinct values – Yes, and No. 

Non-zero class count values of student attribute are shown 
in Table4. 

Product of non-zero class count values of student 
attribute is equal to = product(Student) = 6 x 1 x 3 x 4 = 72.  

product(Student) = 72. 
Sum of logarithmic values of non-zero class count values 

of student attribute = log 6 + log1 + log 3 + log 4  
That is, 
logsum(Student) =  log 6 + log1 + log 3 + log 4 
logsum(Student) = 0.778151 + 0.477121 + 0 + 0.602060  

logsum(Student) = 1.857332 
Table5. Credit_Rating class count values 

Credit_Rating   Buys Computer 
Yes No 

Fair  6 2 
Excellent  3 3 

 
Credit_Rating attribute has 2 distinct values – Fair, and 

Excellent. Non-zero class count values of Credit_Rating 
attribute are shown in Table5. 

Product of non-zero class count values of Credit_Rating 
attribute = product(Credit_Rating) = 6 x 2 x 3 x 3 = 108.  

product(Credit_Rating) = 108. 
Sum of logarithmic values of non-zero class count values 

of Credit_Rating attribute = log 6 + log 2 + log 3 + log 3 
That is, logsum(Credit_Rating)= log 6 + log 2 + log 3+log 3  
logsum(Credit_Rating) = 0.778151 + 0.301030 + 0.477121  
                                          + 0.477121. 

logsum(Credit_Rating) = 2.033423 
Sudarsana Reddy product rule (SR-product rule) 

calculations are-maximum(144, 96, 72, 108) = 144. Note if 
any class count is zero then it must be taken as 1; otherwise 
the product becomes zero.  

Here maximum product(Age) value is 144. Hence, split 
attribute is Age. 

Sudarsana Reddy Node Split Rule (SRNSR) calculations 
are used in finding the largest logarithmic value.  
That is, 
maximum(2.158362,1.982271,2.857332,2.033423)=2.15836 
Here Age has highest logsum value. So split attribute is 
Age. 

In this paper we consider our new type of node splitting 
rule called Sudarsana Reddy Node Splitting Rule (SRNSR) 
during decision tree construction and we use only highest 
logsum value for finding best split attribute. 

Initially the root node contains all the tuples and age is 
the best splitting attribute in the root node. These tuples 
must be divided into groups based on the distinct values of 
the age attribute. Age attribute has three distinct values, so 
training data set shown in Table1 is divided into three 
partitions which are shown in Table6, Table12 and Table13. 

Table6. Tuples corresponding to age = “Youth” 

Income Student Credit_Rating Buys_Computer 
High  No  Fair  No  
High  No  Excellent  No  
Medium  No  Fair  No  
Low  Yes  Fair  Yes  
Medium  Yes  Excellent  Yes  

 

Table7. Income attribute class count values 

Income  Buys_Computer 
Yes No 

High  0 2 
Medium  1 1 
Low  1 0 
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In Table6 Income attribute has 3 distinct values–Low, 
Medium, and High. Non-zero class count values of income 
attribute are shown in Table7. 

Product of non-zero class count values of income 
attribute is = product(Income) = 2 x 1 x 1 x 1 = 2  

product(Income) = 2. 
Sum of logarithmic values of non-zero class count values 

of income attribute = log 2 + log 1 + log 1 + log 1 
That is,  logsum(Income) = log 2 + log 1 + log 1 + log 1 
             logsum(Income) = 0.301030 + 0 + 0 + 0 = 0.301030 

logsum(Income) = 0.301030 
Table8. Student attribute class count values 

Student  Buys_Computer 
Yes No 

Yes   2 0 
No  0 3 

 
Student attribute has 2 distinct values – Yes and No. 

Non-zero class count values of income attribute are shown 
in Table8 

Product of non-zero class count values of student 
attribute is = product(Student) = 2 x 3 = 6  

product(Student) = 6. 
Sum of logarithmic values of non-zero class count values 

of income attribute = log 2 + log 3  
That is, logsum(Student) = log 2 + log 3  
logsum(Student) = 0.301030 + 0.477121 = 0.778151 

logsum(Student) = 0.778151 
Table9. Credit_Rating attribute class count values 

Credit_Rating  Buys_Computer 
Yes No 

Excellent  1 1 
Fair  1 2 

 
Credit_Rating attribute has 2 distinct values – Excellent 

and Fair. Non-zero class count values of Credit_Rating 
attribute are shown in Table 9 

Product of non-zero class count values of Credit_Rating 
attribute is equal to = product(Credit_Rating)=1x1x1x2 =  2  

product(Student) = 2. 
Sum of logarithmic values of non-zero class count values 

of Credit_Rating attribute = log 2   
That is, logsum(Credit_Rating) = log 2  
logsum(Credit_Rating) = 0.301030  

logsum(Credit_Rating) = 0.301030 
Here, maximum product is 6, so best split attribute is 

Student according to SRNSR-product rule. 
Here, maximum(0.301030, 0.778151, 0.301030) = 

0.778151. Hence, best split attribute is Student according to 
SRNSR-logarithmic rule. Hence, Table6 is divided into 
Table10 and Table11. Now Table10 and Table11 need not 
to classify further because all tuples belongs to the same 
class. Hence, Table10 and Table11 are leaf nodes. 

Table10. Tuples corresponding to student = “No” 
Income  Credit_Rating  Buys_Computer  
High  Fair  No  
High  Excellent  No  
Medium  Fair  No  

Table11. Tuples corresponding to student = “Yes” 

Income  Credit_Rating  Buys_Computer  
Low  Fair  Yes  
Medium  Excellent  Yes  

Table12. Tuples corresponding to age = “Middle_aged” 

Income Student Credit_Rating Buys_Computer 
High  No  Fair  Yes  
Low  Yes  Excellent  Yes  
Medium  No  Excellent  Yes  
High  Yes  Fair  Yes  

 
All the tuples in Table12 have the same class label, so no 

need to further classify and hence it becomes a leaf node.  
Table13. Tuples corresponding to age = “Senior” 

Income Student Credit_Rating Buys_Computer 
Medium  No  Fair  Yes  
Low  Yes  Fair  Yes  
Medium  Yes  Fair  Yes  
Medium  No  Excellent  No  

Table14. Income attribute class count values 

Income  Buys_Computer 
Yes No 

Medium  2 1 
Low  1 2 

 
In the Table13 Income attribute has 2 distinct values - 

Low and Medium. Non-zero class count values of Income 
attribute are shown in Table14 

Product of non-zero class count values of income 
attribute is = product(Income) = 2 x 1 x 1 x 2 = 4  

product(Income) = 4. 
Sum of logarithmic values of non-zero class count values 

of income attribute = log 2 + log 1 + log 1 + log 2 
That is,  logsum(Income) = log 2 + log 1 + log 1 + log 2 
logsum(Income) = 0.301030 + 0 + 0 + 0.301030 = 0.602060 

logsum(Income) = 0.602060 
Table15. Student attribute class count values 

Student   Buys_Computer 
Yes No 

No  1 1 
Yes 2 1 

 
Student attribute has 2 distinct values: No and Yes. Non-

zero class count values of Student attribute are shown in 
Table15 

Product of non-zero class count values of Student 
attribute is = product(Student) = 1 x 1 x 2 x 1 = 2 

product(Student) = 2. 
Sum of logarithmic values of non-zero class count values 

of Student attribute = log 1 + log 1 + log 2 + log 1 
That is, 
logsum(Student) = log 1 + log 1 + log 2 + log 1 
logsum(Student) = 0 + 0 + 0.301030 + 0 = 0.301030 

logsum(Student) = 0.301030 
Table16.  Product 3x2 = 6 

Credit_Rating   Buys_Computer 

Yes No 
Fair  3 0 

Excellent  0 2 

 
In the Table13 Credit_Rating attribute has 2 distinct 

values: Fair and Excellent. Non-zero class count values of 
Credit_Rating attribute are shown in Table16 

Product of non-zero class count values of Credit_Rating  
attribute = product(Income) = 3 x 2 = 6  
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product(Income) = 6. 
Sum of logarithmic values of non-zero class count values 

of income attribute = log 3 + log 2 
That is, 
logsum(Income) = log 3 + log 2 
logsum(Income) = 0.477121 + 0.301030 = 0.778151 

logsum(Income) = 0.778151 
Here, Credit_Rating attribute has the highest 

logarithmic value. So, best split attribute for the training 
data tuples in the Table13 is Credit_Rating. Hence, Tuples 
in Table13 are partitioned into Table17 and Table18. Both 
Table17 and Table18 are leaf nodes. So, no need to further 
partition them.  

Table 17. Tuples corresponding to Credit_Rating = “Fair”   
Income  Student  Buys_Computer  

Medium  No  Yes  

Low  Yes  Yes  

Medium  Yes  Yes  

Table18. Tuples corresponding to Credit_Rating = “Excellent” 
Income  Student  Buys_Computer  

Low  Yes  No  

Medium  No  No 

 

 

VI. EXPERIMENTAL RESULTS 

We have experimentally verified that our new rule called 
Sudarsana Reddy Node Split Rule (SRNSR) works well and 
it is the most efficient method for dividing the tuples at the 
current node into subsets. SRNSR tries to divide set of 
tuples in the internal node into balanced subsets of tuples. 
Experimentally we have compared decision trees 
constructed using already available rules and decision trees 
constructed using our new rule SRNSR. 

VII. CONCLUSIONS 

A. Contributions: 
A new type of node split rule called Sudarsana Reddy 

Node Split Rule (SRNSR) or SR-logarithmic rule for 
decision tree induction is proposed and verified 
experimentally by constructing a decision tree classifier 
using already existing node split rules and our new split 
attribute rule, SRNSR (SR-logarithmic rule). Experiments 
have shown that SRNSR is computationally most efficient 
and very easy to implement. SRNSR is very simple, easy to 
compute and involves only simple additions and logarithmic 
calculations. 

B. Limitations: 
Ours SRNSR is efficient for categorical attributes and 

the efficiency of our new split attribute rule must be 
improved for numerical split attributes. 

C. Suggestions for feature work: 
Special techniques are needed to increase the scalability 

of decision tree learning using our new split attribute rule, 
SRNSR. 
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