
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 229

ISSN No. 0976-5697

A Few Good Pattern to Optimize Compiler
Subhendu Guha Roy
Academic Counselor

SOCIS, IGNOU Siliguri SC:2805
IGNOU,Sevoke Road, Siliguri

Dt.-Darjeeling.WB,India
shubha100@live.in

Abstract: Optimization of code is the term that was applied to a process in which a code is tuned to be better in some respects: either speed,
memory consumption, Input/output (disk read and writes or network reads and writes), etc. In Mathematics, Optimization means a process in
which one finds the values with the best performance. In Computing where programs are very complex, usually optimizing for speed in the
mathematical sense is impossible. Instead the term has come to mean just advancing in the direction of better performance in one or more
respects. This document will focus on optimizing code to run faster. However, as you will see later, doing this may involve having to optimize
the code in a different aspect. Furthermore, often when programmers are trying to optimize one aspect of a program, they are doing so in order to
increase speed.

Keywords: compiler, optimization, reduce and faster code, byte code, high performance, abstract quality.

I. INTRODUCTION

In computing and computer science, an optimizing
compiler[5] is a compiler that tries to minimize or maximize
some attributes of an executable computer program. The
most common requirement is to minimize the time taken to
execute a program; a less common one is to minimize the
amount of memory occupied. The growth of portable
computers has created a market for minimizing the power
consumed by a program. Compiler optimization is generally
implemented using a sequence of optimizing
transformations, algorithms which take a program and
transform it to produce a semantically equivalent output
program that uses fewer resources.

It has been shown that some code optimization problems
are NP-complete, or even undecidable. In practice, factors
such as the programmer's willingness to wait for the
compiler to complete its task place upper limits on the
optimizations that a compiler implementor might provide.
(Optimization is generally a very CPU- and memory-
intensive process)[1]. In the past, computer memory
limitations were also a major factor in limiting which
optimizations could be performed. Because of all these
factors, optimization rarely produces "optimal" output in
any sense, and in fact an "optimization" may impede
performance in some cases; rather, they are heuristic
methods for improving resource usage in typical programs.

So, the mean objective of the performance improving is
to write the code in such a way that memory and speed both
optimize. Several different options exist for measuring
application performance[5]. Homegrown timing functions
inserted into the code are a more effective way to gather
performance data. Other most efficient and accurate ways to
gather timing data is to use a good performance profiler,
which show the time spent in each function of the program
and will also provide an analyses based on this data[1,5].

II. TYPES OF OPTIMIZATIONS

Techniques used in optimization can be broken up
among various scopes which can affect anything from a
single statement to the entire program. Generally speaking,
locally scoped techniques are easier to implement than
global ones but result in smaller gains[4]. Some examples of
scopes include:

a. Peephole optimizations:
Usually performed late in the compilation process after

machine code has been generated. This form of optimization
examines a few adjacent instructions (like "looking through
a peephole" at the code) to see whether they can be replaced
by a single instruction or a shorter sequence of instructions.
For instance, a multiplication of a value by 2 might be more
efficiently executed by left-shifting the value or by adding
the value to itself[1]. (This example is also an instance of
strength reduction.)

b. Local optimizations:
These only consider information local to a basic block.

Since basic blocks have no control flow, these optimizations
need very little analysis (saving time and reducing storage
requirements), but this also means that no information is
preserved across jumps.

c. Global optimizations:
These are also called "intra procedural methods" and act

on whole functions.[2] This gives them more information to
work with but often makes expensive computations
necessary[3]. Worst case assumptions have to be made when
function calls occur or global variables are accessed
(because little information about them is available).

d. Loop optimizations:
These act on the statements which make up a loop, such

as a for loop (e.g., loop-invariant code motion). Loop
optimizations can have a significant impact because many

mailto:shubha100@live.in�
http://en.wikipedia.org/wiki/Computing�
http://en.wikipedia.org/wiki/Computer_science�
http://en.wikipedia.org/wiki/Compiler�
http://en.wikipedia.org/wiki/Executable�
http://en.wikipedia.org/wiki/Computer_program�
http://en.wikipedia.org/wiki/Memory_(computers)�
http://en.wikipedia.org/wiki/Portable_computer�
http://en.wikipedia.org/wiki/Portable_computer�
http://en.wikipedia.org/wiki/Portable_computer�
http://en.wikipedia.org/wiki/Energy_conservation�
http://en.wikipedia.org/wiki/NP-complete�
http://en.wikipedia.org/wiki/Undecidable_problem�
http://en.wikipedia.org/wiki/Programmer�
http://en.wikipedia.org/wiki/CPU�
http://en.wikipedia.org/wiki/Peephole_optimization�
http://en.wikipedia.org/wiki/Machine_code�
http://en.wikipedia.org/wiki/Bit_shift�
http://en.wikipedia.org/wiki/Strength_reduction�
http://en.wikipedia.org/wiki/Basic_block�
http://en.wikipedia.org/wiki/Optimizing_compiler#cite_note-2�
http://en.wikipedia.org/wiki/Loop_optimization�
http://en.wikipedia.org/wiki/Loop-invariant_code_motion�

Subhendu Guha Roy, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013, 229-232

© 2010, IJARCS All Rights Reserved 230

programs spend a large percentage of their time inside
loops[1].

Interprocedural, whole-program or link-time
optimization

These analyze all of a program's source code. The
greater quantity of information extracted means that
optimizations can be more effective compared to when they
only have access to local information (i.e., within a single
function). This kind of optimization can also allow new
techniques to be performed. For instance function inlining,
where a call to a function is replaced by a copy of the
function body[5].

e. Machine code optimization:
These analyze the executable task image of the program

after all of a executable machine code has been linked.
Some of the techniques that can be applied in a more limited
scope, such as macro compression (which saves space by
collapsing common sequences of instructions), are more
effective when the entire executable task image is available
for analysis.

A. Some Experiments And Result Analysis
Here I depicted some code optimization techniques

with implementation of C code. Although I use C
syntax in the examples below, these techniques clearly
apply to other languages just as well[2].

a. An example of elimination common sub
expression:

Statement of expression is
M=A*LOG(Y)+(LOG(Y)**2)
Elimination common sub expression, introducing

an explicit temporary variable t:
t=LOG(Y)
M=A*t+(t**2)
Saves one 'heavy' function call, by an elimination of

the common sub-expression LOG(Y), the
exponentiation now is:

M = (A + t) * t

b. Declare local functions as "static"
Doing so tells the compiler that the function need

not be so general as to service arbitrary general calls
from unrelated modules. If the function is small
enough, it may be inlined without having to maintain
an external copy[3]. If the function's address is never
taken, the compiler can try to simplify and rearrange
usage of it within other functions.

Before:
 void swap(int *a, int *b) {
 int t;
 t = *b;
 *b = *a;
 *a = t;
 }
After:
 static void swap(int *a, int *b) {
 int t;
 t = *b;
 *b = *a;
 *a = t;
 }

c. Remove unnecessary if then Else statement:
Let’s takes two examples to remove unnecessary if-

else statement[4]. It could be simplified to enhance the
code's efficiency and reduce its size.

void main()
{
boolean b;
void boolean()
{
if (b)
{
return true;
}
else
{
return false;
}
}
}

 Should be written as:
Void main()
{
boolean b;
void boolean ()
{
return b;
}
}
With else, smaller code, but slower one
inline int
test(int a)
{
 return a > 0 ? 1 : 0;
}
Without else, large code but faster one,
 inline int
test(int a)
{
 if (a > 0)
 return 1;
 /* implied else */
 return 0;
}
Let’s take another,
The slowest expression, compiling and running
int
max(int a, int b)
{
 if (a > b)
 return a;
 else
 return b;
}
Normal expression with inlining,
inline int
max(int a, int b)
{
 return ((a > b) ? a : b);
}

d. "Else" clause removal
The performance of if-then-else is one taken jump

http://en.wikipedia.org/wiki/Inline_expansion�
http://en.wikipedia.org/wiki/Linker_(computing)�

Subhendu Guha Roy, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013, 229-232

© 2010, IJARCS All Rights Reserved 231

no matter what. However, often the condition has a lop-
sided probability in which case other approaches
should be considered. The elimination of branching is
an important concern with today's deeply pipelined
processor architectures. The reason is that a
"mispredicted" branch often costs many cycles[8].

Before:
 if(Condition) {
 Case M;
 } else {
 Case N;
 }
After:
 Case N;
 if(Condition) {
 Undo Case N;
 Case M;
 }
Clearly this only works if Undo Case N; is

possible. However, if it is, this technique has the
advantage that the jump taken case can be optimized
according to the Condition probability and Undo Case
N; Case M; might be merged together to be more
optimal than executing each separately[7].

Obviously you would swap cases M and N
depending on which way the probability
goes[7,8]. Also since this optimization is dependent on
sacrificing performance of one set of circumstances for
another, you will need to time it to see if it is really
worth it. (On processors such as the ARM or Pentium
II, you can also use conditional mov instructions to
achieve a similar result.)

e. Use finite differences to avoid multiplies:
Before:
 for(k=0;k<10;k++) {
 printf("%d\n",k*10);
 }
After:
for(k=0;k<100;k+=10) {
 printf("%d\n",k);
 }
This one should be fairly obvious, use constant

increments instead of multiplies if this is possible.
(Believe it or not, however, some C compilers are
clever enough to figure this out for you in some simple
cases.)

f. Rearrange an array of structures as several
arrays:

Instead of processing a single array of aggregate
objects[6], process in parallel two or more arrays
having the same length.

For example, instead of the following code:
const int n = 10000;
struct { double a, b, c; } s[n];
for (int i = 0; i < n; ++i) {
 s[i].a = s[i].b + s[i].c;
}
the following code may be faster:
const int n = 10000;
double a[n], b[n], c[n];
for (int i = 0; i < n; ++i) {
 a[i] = b[i] + c[i];

}
Using this rearrangement, "a", "b", and "c" may be

processed by array processing instructions that are
significantly faster than scalar instructions. This
optimization may have null or adverse results on some
(simpler) architectures.

g. Data type considerations:
Often to conserve on space you will be tempted to

mix integer data types; chars for small counters, shorts
for slightly larger counters and only use longs or ints
when you really have to[4]. While this may seem to
make sense from a space utilization point of view, most
CPUs have to end up wasting precious cycles to
convert from one data type to another, especially when
preserving sign[3].

Before:
 char a;
 int b;
 b = a;
After:
 int a, b;
 b = a;

B. A case of Copy Propagation:
This optimization is similar to constant propagation, but

generalized to non-constant values. If we have an
assignment m = n in our instruction stream, we can replace
later occurrences of m with n (assuming there are no
changes to either variable in-between)[2,3]. Given the way
we generate TAC code, this is a particularly valuable
optimization since it is able to eliminate a large number of
instructions that only serve to copy values from one variable
to another. The code on the left makes a copy of a in b and a
copy of c in d. In the optimized version on the right, we
eliminated those unnecessary copies and propagated the
original variable into the later uses:

before: After Copy Propagation:
b=a; c=a*a;
c=b*a; e=c*a;
d=c; x=e +c;
e=c*b;
x=e + d;

III. CONCLUSION

Recent research in code optimization has led to the
development of unified optimizing transformations like the
generalized code movement transformation of Dhamdhere-
Isaac [6] and Morel-Renvoise[9], and the composite
hoisting-and-strength reduction transformation of
Dhamdhere-Isaac[8] and Joshi-Dhamdhere [9]. Using a
good compiler and some knowledge about optimization
techniques, developers can much more easily create high
performance applications. This alternate recompilation does
not affect the correctness of the application because all
compilers should be generating correct bytecodes, which
means that such a situation allows the application to pass all
regression test suites. But you can end up with the
production application not running as fast as you expect for
reasons that are difficult to track down. Speed and
optimizing other resources are one important factor in the

http://www.shlomifish.org/philosophy/computers/high-quality-software/�
http://www.shlomifish.org/philosophy/computers/high-quality-software/�

Subhendu Guha Roy, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013, 229-232

© 2010, IJARCS All Rights Reserved 232

general, abstract quality of programs[4]. If your program is
slow, it is likely going to make your users frustrated and
unhappy, which will be a failure in your mission as a
software developer. So it is important that your program is
fast enough, if not very much so[9].

IV. REFERENCES

[1]. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers, Principles, Techniques and Tools. Addison-
Wesley, 1988.

[2]. F.E. Allen. Interprocedural data flow analysis. Proceedings
of IFIP Congress 1974, pp.398–402. North Holland, 1974.

[3]. John P. Banning. An efficient way to find the side effects
of procedure calls and the aliases of variables. Conference
Record of the Sixth Annual ACM Symposium on
Principles of Programming Languages, pp. 29–41, January
1979.

[4]. S. Muchnick, Advanced Compiler Design and
Implementation. San Francisco, CA: Morgan Kaufmann,
1997.

[5]. Optimizing compiler - Wikipedia, the free
encyclopedia.mht and Programming Optimization
Techniques, examples and discussion.mht.

[6]. CS143 Handout 20, Summer 2008 August 04, 2008, Code
Optimization, Handout written by Maggie Johnson.

[7]. Agarwal, R. Metamorphic, authenticated models for neural
networks. Journal of Cooperative, Trainable Methodologies
656 (Feb. 1997), 71-88.

[8]. http://www.azillionmonkeys.com/qed/ optimize.html.

[9]. Iverson, K., Kobayashi, L., and Gupta, a. NOSLE:
Synthesis of public-private key pairs. In Proceedings of
PODS (Jan. 2001).

 Author: Subhendu Guha Roy, M.Sc,MCA, have approx. 5
years and above of teaching and counseling experiences in
various colleges along with IGNOU,Siliguri Study
Centre(2805). He is holding membership of IASTED, IACSIT,
IAENG, etc and published some my paper in national and
international journal and conferences.

ijcseditor@enggjourn

http://www.azillionmonkeys.com/qed/%20optimize.html�

