
Volume 4, No. 6, May 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

REVIEW ARTICAL

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 228 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

Detection Of Duplicate Code
Ms. Kanchan A. Jadhao

B.E. Final Year I.T
J.D.I.E.T. Yavatmal

Jadhav.kanchan196@gmail.com

Mr. Shubhendra R.Puri
B.E. Final Year

J.D.I.E.T. Yavatmal
purishubh@gmail.com

Ms.Nikita S.Varhade

B.E.final Year I.T
J.D.I.E.T.Yavatmal

nikitavarhade11@gmail.com

Prof. Ganesh B.Regulwar
Assistant Professor
J.D.I.E.T. Yavatmal

ganeshregulwar@gmail.com

Abstract: Task of managing duplicated or “cloned” code has occupied the minds of programmers for the past 50 years. During this time, researchers
and practitioners have developed a variety of techniques for removing or avoiding it by employing functions, macros and other programming
abstractions. Functional abstraction was designed into early programming languages, such as Fortran and Lisp. Object-oriented programming,
originating with Simula-67, has provided further mechanisms for parameterized reuse to avoid duplication. Aspect-oriented programming has
allowed cross-cutting duplication to be abstracted. Engineering practices like Refactoring and Extreme Programming have promoted specific
methodologies of abstracting duplicated code. In the last decade, a multitude of tools have been developed (both in research and in industry) that help
programmers semi-automatically find and refactor existing duplication into functions, macros and methods. Given this long-term commitment to
programming abstractions as a solution use “duplicated code” and “cloned code” synonymously to mean two or more multi-line code fragments that
are either identical or similar, particularly in their structure. Duplicated code, it stands to reason that there should be little duplication left in practice.

Keywords: Software maintenance, code duplication detection, code visualization

I. INTRODUCTION

Duplicated code is a phenomenon that occurs frequently
in large systems. The reasons why programmers duplicate
code are manifold and include the following reasons: (a)
Making a copy of a code fragment is simpler and faster than
writing the code from scratch. In addition, the fragment may
already be tested so the introduction of a bug seems less
likely. (b) Evaluating the performance of a programmer by
the amount of code he or she produces gives a natural
incentive for copying code. (c) Efficiency considerations
may make the cost of a procedure call or method invocation
seem too high a price. In industrial software development
contexts, time pressure together with points (a) and (b) lead
to plenty of opportunities for code duplication. Although
code duplication can have its justifications, it is considered
bad practice. Especially during maintenance.

If one repairs a bug in a system with duplicated code, all
possible duplications of that bug must be checked. (b) Code
duplication increases the size of the code, extending compile
time and expanding the size of the executable. (c) Code
duplication often indicates design problems like missing
inheritance or missing procedural abstraction. In turn, such
a lack of abstraction hampers the addition of functionality.
Techniques and tools for detecting duplicated code are thus
a highly desired commodity especially in the software
maintenance community and research has proposed a
number of approaches with promising results. However, the
application of these techniques in an industrial context is

hindered by one major obstacle: the need for parsing. Code
duplication is one of the factors that severely complicates the
maintenance and evolution of large software systems.
Techniques for detecting duplicated code exist but rely mostly
on parsers, technology that has proven to be brittle in the face of
different languages and dialects. In this paper we show that is
possible to circumvent this hindrance by applying a language
independent and visual approach, i.e. a tool that requires no
parsing, yet is able to detect a significant amount of code
duplication. We validate our approach on a number of case
studies, involving four different implementation languages and
ranging from 256 K up to 13Mb of source code size.

II. FUNDAMENTS

This chapter’s goal is to introduce some of the idioms and
principles that guide now a days the object oriented design and
programming.

III. OBJECT-ORIENTED PROGRAMING

Object-oriented methods provide a set of techniques for
analyzing, decomposing, and modularizing software system
architectures. The object-oriented programming is concerned
with implementation issues and is highly dependent on the
object-oriented programming languages.
The main mechanisms provided by the modern object-oriented
programming languages are:

a. abstract data types (classes)
b. encapsulation
c. inheritance

Kanchan A. Jadhao et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,228-233

© 2010, IJARCS All Rights Reserved 229 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

d. polymorphism
Encapsulation is basically described as hiding data.

Objects generally do not expose their internal data members
to the outside world (that is, their visibility is protected or
private). But encapsulation refers to more than hiding data.
The advantage of using encapsulation is that more we make
our objects responsible for their own behaviors, the less the
controlling programs have to be responsible for.
Encapsulation makes changes to an objects internal behavior
transparent to other objects. Encapsulation helps to prevent
unwanted side effects. With encapsulation the data structure
of a class is hidden behind an interface of operations.

a. Inheritance: is another vital mechanism of object-
oriented programming. Instead of defining every time
new types from scratch, we can use types (classes)
that already exist and specialize them. This is the
support for the is-a relationship: having one class be
a special kind of another class. The base class (called
the super class) can be extended by any number of
new classes and this is how class hierarchies appear.

b. Polymorphism: is the ability of related objects to
implement methods that are specialized to their type.
We are able to refer to different derivations of a class
in the same way, but getting the behavior appropriate
to the derived class being referred to. This way, it
offers basis for flexible architectures and designs.
The high-level logic is defined in terms of abstract
interfaces and relies on the specific implementation
provided by the subclasses. What we apparently refer
are objects with one type of reference that is an
abstract class type. However, what we are actually
referring to are specific instances of classes derived
from their abstract classes. The subclasses can be
added without changing high-level logic. Objects of
the subclasses can be dynamically interchanged
without affecting their clients.

IV. CODE DUPLICATION OVERVIEW

In this section, we will present the overall percentages of
duplication which we extracted from the reports produced
by our tool .We take these numbers to be nothing more than
very general indicators of duplication occurring in a system.
We will not go into a more detailed analysis of the reports,
since our aim in this section is Programmers employ
functions, macros, classes, aspects, templates, and other
programming abstractions to reduce duplication. The
identical sections of the clones become the body of the
abstraction’s definition, and the differences become
parameters. However, abstractions can be costly, and it is
often in a programmer’s best interest to leave code
duplicated instead. Specifically, we have identified the
following general costs of abstraction that lead
programmers to duplicate code (supported by a literature
survey, programmer interviews, and our own analysis).
These costs apply to any abstraction mechanism based on
named, parameterized definitions and uses, regardless
language.

V. AVERAGE PERCENTAGE OF DUPLICATION

The following table presents the average percentage of
duplication per file. We also include the percentage in terms of
entire code (i.e. files including comments) so that readers can
have their own ideas about the relevance of the duplication
detection. The third line shows the number of files that
effectively contain duplicated code under the constraints we
fixed Note that inferior percentages for the entire code is normal
because comments and white space can make up for a lot of
lines. Average percentage of duplication found per file Case gcc
Database Payroll Mess. B. effective LOC 8.7% 36.4% 59.3%
29.4% entire LOC 5.9% 23.3% 25.4% 17.4% # of files 143 464
13 24 with duplication Total # of Files 170 593 13 36 The quite
high average percentage found for the two industrial case
studies (Cobol payroll system and Smalltalk database server) is
not totally surprising considering fact that these were given to
us because it was suspected that they contained These
thresholds come from our experiences with the case studies a lot
of duplication. Nevertheless we were astounded by their overall
duplication ratio. The web message board system shows some
duplication elements that are result from evolutionary clones,
since the system was given to us as a snapshot in the middle of
an extension, thus containing old as well as new code side by
side. The gcc source code has the lowest ratio. This is not
surprising because gcc is known to be software of a good
quality. Now we refine our analysis by looking at the
duplication percentage per file. We present the payroll system
and gcc because they cover the extremes in the range of our
case studies. Note that the tables in Figure 1 display the files
containing the effective duplication.

Table 1.Average percentage of duplication found per file

Case gcc Database payroll Mess.B.

effective LOC 8.7% 36.4% 59.3% 29.4%

entire LOC 5.9% 23.3% 25.4% 17.4%

of files
with
duplication

143 464 13 24

Total # of
Files

170 593 13 36

a. Percentage per File: the Payroll Case: For the payroll

system, the overview immediately identifies three main
groups according to the degree of duplication: (a) few
duplication (around 5% in file F), (2) some duplication
(from 25% to 50% in files A, B, D, E and J) and (3) mostly
duplicated (up to 70% in files C, G, H, I, K, L and M).

Kanchan A. Jadhao et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,228-233

© 2010, IJARCS All Rights Reserved 230 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

Figure1.Duplication Percentage per Files in the payroll case study.

b. Percentage per File: the gcc Case: Even if the
average percentage showed that gcc has the lowest
percentage of duplication, looking at the percentage per file
gives another view. We see that two files have more than
60% of duplication, that 6 files have more than 50% of
duplication and that a number of files have more than 20%
of duplication. The data from the reports that the analysis of
this section was made with also serves the software
maintainer in the process of eliminating duplication. What
we want to do in the next section is to look at line-based
comparison data from the angle of its representation in
scatter-plots.

Figure2.Percentage per File: the gcc Case.

VI. ALGORITHM’S PRINCIPLES

The approach chosen for this tool is an enhanced scatter-plot
approach. scatter-plot approach is not new to software research
and it is based mainly on:
a. bringing the code to a brute state (non-indented, comments

off)
b. building a matrix that will store the results of matching

between the lines of code
c. populating it, by marking every match
d. presenting it to the specialist, for further visual studying

The enhancement we propose is to try to unite copied
sequence of code that are close enough to each other and
merging them into a cluster of code duplication. The tool will
report a list of clusters (chains). When introducing code clones,
programmers often change white spacing (blanks, tabs,
newlines) and comments, which will disable recognition based
purely on strings. In order to combat this problem, the presented
tool transforms the code lines by “cleaning” the code. Clone
detection is a process in which the input is a list of source files
(or method bodies) and the output is a list of duplication chains.
The entire process of our string comparison clone detecting
technique consists of the following steps.

A. Code cleaning:

After reading the source code lines, the first thing to do is
bringing the code to a raw state, in order to avoid situations
where identical lines which are differently indented or having
comments added are not reported as duplicates.
a. striping the comments (optionally, only Java and C,C++)
b. removing any whitespaces (including nice indentation)
c. removing noise (specified in a file)

Lines of code containing only a keyword (else) or some
other syntactic element (an open or a closed brace), which can
be considered as less relevant to the duplication issue.

B. Building the matrix:

The lines of code the cleaning this phase (further referred to
as relevant lines) will be stored in the exact order they were
read: all the relevant lines of the first file, followed by the ones
of the second file, and so on. The next step consists of building
a two-dimensional matrix NxN, where N is the total number of
relevant lines in the system. An element of the matrix
Element[i,j] will store the result of matching the relevant lines i
and j.This way, every line will be compared with every other
line in the system (exhaustive approach). Only the hits of the
matching will be marked in the matrix.

Kanchan A. Jadhao et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,228-233

© 2010, IJARCS All Rights Reserved 231 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

Figure 3.Four steps for Building the matrix.

VII. USER STUDY

We conducted a user study to compare the use of Code
link with programming abstractions. Our hypotheses were
that programmers would be able to link clones with Code
link in much less time than it would take to abstract the
clones, and that Code link would provide programmers with
comparable benefits after linking the code. We paid 13
students from U.C. Berkeley to participate in the study.
Subjects had a diverse range of programming skill, ranging
from graduate students in Computer Science to introductory-
level undergraduates. Subjects performed their
programming tasks in the Scheme programming language
since functional abstractions in Scheme are expressively
powerful and well-understood by students at Berkeley, thus
mitigating biases from language-specific abstraction costs.
We expect the results to transfer to functions, macros and
methods in other languages as well. We used a within-
subjects experimental design. With both functional
abstraction and Code link, subjects were asked to perform a
set of programming tasks:
a. To abstract or link two short pieces of cloned code.
b. To perform a modification task requiring new code to

be added to both clones or instances
c. To perform a modification task requiring new

differences between each clone or instance.
We believe these programming tasks the tradeoffs in

editing duplicated/abstracted code. Although both sets of
programming tasks followed the general sequence given
above, the specific tasks and code were very different for
each technique to eliminate learning effects. The pairing
between techniques and task-sets and the ordering of
techniques used were fully counterbalanced to eliminate

ordering, learning and task biases. Before performing each set
of programming tasks, subjects completed a short (5-10 minute)
tutorial to teach them about the technique (functional
abstraction or code link, depending on the condition) and what
was expected of them on the tasks. The tutorial walked them
through the three types of programming tasks, with very simple
code and modifications. Subjects filled out a questionnaire after
each experimental task-set to assess the particular technique
paired with that task-set. The entire study lasted between 30 and
90 minutes. The programming tasks were recorded with a
screen-capture program, and audio was captured and merged
into the video to facilitate data analysis. Subjects did not test
their code; they were rather instructed to stop when they thought
their code would work.

A. Evaluation metrics:

We recorded two dependent variables: the time it took
subjects to link or functionally abstract the code (Step 1 in each
set of programming tasks), and the ratings they gave each
technique on the post-task questionnaires. Abstraction/ link time
was measured from the subject’s first key press after reading the
task instructions to the last key press before flipping to the next
task’s instructions. On the post-programming questionnaires,
subjects rated each technique along the following five metrics:
maintainability, understandability, changeability, editing speed,
and editing effort; reported on a 7-point semantic differential
scale. Each question asked subjects how the technique they used
(functional abstraction or Codelink) helped or hindered them on
the programming tasks, as compared to editing the duplicated
code directly. Finally, the experimenter asked subjects the
following question verbally: “If you had the Code link tool in
your editor programming environment, and the other
programmers on your programming project had it too, how
likely is it that you would use it in your own programming
work?” The responses were classified into three groups:
probably or definitely wouldn’t use Code link, not sure, and
probably or definitely would use Code link. Because this
question was only incorporated into the study after the first
three subjects had been run, we only received 10 responses
instead of 13.

VIII. EVALUATION OF THE TOOL

The graphical user interface offers a simple, yet powerful
access to the duplication chains detecting engine. The all-in-
one-window integrated workspace is composed of:

a. control panel
b. parameters panel
c. results panel (a list of found chains)
d. visualization panel, for visual analysis of the

duplicated code involved in a chain
e. • status bar

In order to analyze a project, first you have to set the starting
path (current directory) where the source files of the project are
located. Then, you can modify the searching parameters and hit
the Search button. The status bar contains a progress bar, visible
only during a search process. After the searching is over, if any
duplication chains were found, they will be shown in a list of
chains which can be sorted by any of: entity’s name, index to

Kanchan A. Jadhao et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,228-233

© 2010, IJARCS All Rights Reserved 232 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

the first or the last line of code in the chain, length, type etc.
If you would like to save the results for subsequent analysis,
you can ask to generate a report (the Save Results button),
which stores the list of results in a specified file, with
respect to the current sorting of the list. I order to validate
the duplication chains or to examine the results in a visual
manner, a mouse click on any of the items in the results list
will display the contents of the 2 files involved in that
duplication in the Duplicate Viewer panel, with the
replicated code highlighted in yellow.

IX. BENEFITS OF THE APPROACH

As stated in the Introduction, the major benefits of a
slicing-based approach to clone detection are the ability to
non-contiguous, reordered, and intertwined clones, and the
likelihood that the clones that are found are good candidates
for extraction. These benefits, discussed in more detail
below, arise mainly because slicing is based on the PDG,
which provides an abstraction that ignores arbitrary
sequencing choices made by the programmer, and instead
captures the important dependences among program
components. In contrast, most previous approaches to clone
detection used the program text, its control- graph, or its
abstract-syntax tree, all of which are more closely tied to the
(sometimes irrelevant) lexical structure. Finding non-
contiguous, reordered, and intertwined clones: One example
of non-contiguous clones indented by our tool was given in
Figure 4. By running a preliminary implementation of the
proposed tool on some real pro-grams, we have observed
that non-contiguous clones that are good candidates for
extraction (like the ones in Figure 1) occur frequently (see
Section 3 for further discussion). Therefore, the fact that our
approach can send such clones is a significant advantage
over most previous approaches to clone detection. Non-
contiguous clones are a kind of near duplication. from the
Unix utility sort is given in Figure 4. In this example, one
clone is indicated by \++" signs while the other clone is
indicated by \xx"signs. The clones take a character pointer
(a/b) and advance the pointer past all blank characters, also
setting a temporary variable (tmpa/tmpb) to point to therst
non-blank character. The external component of each clone
is an if predicate that uses the temporary. The predicates
were the starting points of the slices used to and the two
clones the second one {the second-to-last line of code in the
figure { occurs 43 lines further down in the code).
++ tmpa = UCHAR(*a),
xx tmpb = UCHAR(*b);
++ while (blanks[tmpa])
++ tmpa = UCHAR(*++a);
xx while (blanks[tmpb])
xx tmpb = UCHAR(*++b);
++ if (tmpa == '-') {
tmpa = UCHAR(*++a);
...
}
xx else if (tmpb == '-') {
if (...UCHAR(*++b)...)

Figure 4.An intertwined clone pair from sort.

Although the study results are promising, there are anumber
of obstacles to be overcome before Codelink is aviable option in
real-world projects. The LCS algorithm used in the prototype,
although adequate for the user study, has two shortcomings: it
takes O(nk) time (for k clones of size n), and does not always
report the most intuitive set ofdifferences between any two code
fragments. (Some of the issues are described by Heckel [22]).
We are developing better differencing algorithm that uses
interactive syntactic information (provided by the Harmon is
framework) to derive differences that more closely correspond
to the way humans view duplicated code, with a much faster
running time. We are also revising the incremental re-
differencing algorithm, and developing a mechanism to allow
users to give feedback and fine-tune the types of differences
reported by the algorithm. Apart from differencing, we can also
experiment with when to invoke differencing engine and link
the clones. While the current implementation requires the user
to select all clones and click “Link Selections,” even this step
could be performed automatically, either as a result of the user
copying and pasting code or via the output of a third-party
clone-finding tool, such as the ones mentioned in Section 1.

If programmers are able to link many clones simultaneously
across the breadth of a project, an “overview” window or pane
that visualizes all linked clones as the programmer edits one of
them would be necessary. We would also like to make our link
meta-data resilient to file modifications made by third-party
tools. Lastly, we notice that there are often higher-level patterns
to clones (like consistent variable renaming) for which Linked
Editing may be able to infer and provide automated editing
support. We are working on many of these issues and plan to
release a more robust version of Code link to the public as an
open-source software project in the future. This will allow us to
get real-world usage data to verify that Linked Editing can scale
to real programs, and that programmers would use it in their real
work. Finally, we are working to extend the general technique
of Linked Editing to support documents in non programming
domains, such as spreadsheets, web sites, form letters, graphic
charts, and music scores. Although these documents frequently
contain duplicated content, their authoring environments
provide impoverished or nonexistent abstraction facilities, and
are frequently used by non-programmers. We feel that Linked
Editing could provide a substantial benefit to these domains.

X. CONCLUSION

We described Linked Editing, a technique that augments a
text editor to provide programmers with a lightweight
mechanism to read, write, and edit patterns of duplicated code
in an abstract way. We implemented a prototype of Linked
Editing named Code link, and compared it to functional
abstraction in a user study. The study found that Linked Editing
can provide the same benefits as functional abstractions with
drastically less work. Most subjects said they would use a tool
like Code link in their real-life work. These results indicate that
Linked Editing would be likely to be used in practice by
developers, and would be powerful enough to alleviate the
issues of duplicated code in many situations. Software
developers continuously deal with reading, writing, and
maintaining programs that are infused with duplicated code

Kanchan A. Jadhao et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,228-233

© 2010, IJARCS All Rights Reserved 233 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

because functions, macros and other programming
abstractions don’t adequately support their needs. An
improvement to this situation would greatly benefit the state
of software development at large.

XI. REFERENCES

[1]. Brenda S. Baker. A Program for Identifying Duplicated
Code.

[2]. J. H. Johnson. Substring Matching for Clone Detection and
Change Tracking.

[3]. K. Kontogiannis. Evaluation on the Detection of
Programming Patterns Using Software Metrics.

[4]. J. H. Johnson. Substring Matching for Clone Detection and
Change Tracking.

[5]. B. S. Baker. On finding duplication and near-duplication in
large software systems.

[6]. S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.

[7]. J. H. Johnson. Substring matching for clone detection and
change tracking.

[8]. J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics.

[9]. Marcelo Sant Anna, Lorraine Bier. Clone Detection Using
Abstract Syntax Trees.

[10]. Jean Mayrand, Claude Leblanc, and Ettore M. Merlo.
Automatic detection of function clones in a software system
using metrics

