International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at <u>www.ijarcs.info</u>

Modular Arithmetic Inverse of a Rectangular Matrix

V. Umakanta Sastry* Department of Computer Science and Engineering SreeNidhi Institute of Science and Technology Hyderabad – 501 301, Andhra Pradesh, India vuksastry@rediffmail.com D. S. R. Murthy Department of Information Technology SreeNidhi Institute of Science and Technology Hyderabad – 501 301, Andhra Pradesh, India dsrmurthy@sreenidhi.edu.in

Abstract: In this paper, we have devoted our attention to the study of the modular arithmetic inverse of a rectangular matrix. Here, we have shown that (AB) mod N = I, where A is of size m x n and B is of size n x m in which m < n. We have also established that the modular arithmetic inverse of a rectangular matrix does not exist, when m > n.

Keywords: Rectangular matrix, Arithmetic inverse, Modular arithmetic inverse, Block cipher, Square matrix.

I. INTRODUCTION

The study of the arithmetic inverse of a rectangular matrix attracted the attention of several researchers [1 - 3] in view of its wide variety of applications in networks, regression analysis and least square curve fitting. The modular arithmetic inverse of a square matrix was introduced by Hill [4], and it was made use of in developing a block cipher in cryptography. In a recent paper, Sastry and Janaki [5] have developed a systematic procedure for obtaining the modular arithmetic inverse of a square matrix and they have employed it in the development of block ciphers in various ways [6 - 7].

In the present paper, our objective is to develop the modular arithmetic inverse of a rectangular matrix. Here, we have shown that the arithmetic inverse of a rectangular matrix of size m x n exists only when m < n. This implies that the modular arithmetic inverse of a rectangular matrix also exists only when m < n.

In what follows, we present the plan of this paper. In section 2, we have presented a method for obtaining the modular arithmetic inverse of a rectangular matrix of size m x n, when m < n. In this, we have illustrated the procedure by giving several examples. Then we have shown that the modular arithmetic inverse of a rectangular matrix does not exist, when m > n. Finally, section 3 is devoted to conclusions.

II. MODULAR ARITHMETIC INVERSE OF A RECTANGULAR MATRIX

Let A be an m x n matrix and B be an n x m matrix, where m < n. Let us assume that all the elements of A and B are positive integers, which are less than an integer N, and B is the modular arithmetic inverse of A. Then we can write an equation of the form

 $(A B) \mod N = I,$

where I is an Identity matrix of size m.

On multiplying on both the sides of (2.1) by A^{T} , where T denotes the transpose of the matrix, we get

 $(Q B) \mod N = A^T$

in which $Q = A^T A$ is a square matrix of order n.

We now obtain the arithmetic inverse of Q by using Gaussian reduction method [8]. Then we find the modular arithmetic inverse of Q.

Thus we have Q^{-1} governed by the relation	
$(Q^{-1} Q) \mod N = (Q Q^{-1}) \mod N = I.$	(2.3)
From (2.2) and (2.3) , we have	
$\mathbf{B} = (\mathbf{Q}^{-1} \mathbf{A}^{\mathrm{T}}) \mod \mathbf{N}.$	(2.4)
T 1 0 11 1 100 1 1	

. .

In what follows, we present different rectangular matrices, denoted as A, and their corresponding modular arithmetic inverses, denoted as B, for various values of N, say N = 2, 128, and 256.

For N	N = 2,	we	have
-------	--------	----	------

−1

For N = 2, we have

A =	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 0	1 1 0	1 0 1	$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$,	B =	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	1 0 1 0 0	1 1 0 1 1
For N									
							93	9	93]
	5	99	19	12	11]		111	113	116
A =	21	13	16	121	$\begin{bmatrix} 11\\57\\22 \end{bmatrix}$,	B =	102	67	55 .
	51	32	55	73	22		93	2	61
	-				-		31	13	102]
For N	= 256	5. we l	have						
	,						[49	0	191]
	85	32	156	129	31 80 131		216	151	87
A =	199	233	221	19	80,	B =	184	121	251 .
	22	77	99	167	131		179	63	243
					-		119	187	242 J

Some more examples related to the rectangular matrix and its modular arithmetic inverse, for various values of N, are presented in Appendix. In all the aforementioned examples, we have m < n.

Now let us examine the case when m > n. Let A be a matrix of size m x n, and D be a matrix of size n x m, where m > n. Let D be the arithmetic inverse of A. Then we have

(1)

where I is a unit matrix of size m.

For simplicity, let us take an example, where

$$A = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{bmatrix}$$
(2)

 $= \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_3 \end{bmatrix}$ (3)

Here, m = 3, and n = 2.

A D = I.

(2.1)

(2.2)

From (1) - (3), we get a system of equations given by

$a_1 x_1 + a_2 y_1 = 1$	(4)
$a_1 x_2 + a_2 y_2 = 0$	(5)
$a_1 x_3 + a_2 y_3 = 0$	(6)
$b_1 x_1 + b_2 y_1 = 0$	(7)
$b_1 x_2 + b_2 y_2 = 1$	(8)
$b_1 x_3 + b_2 y_3 = 0$	(9)
$c_1 x_1 + c_2 y_1 = 0$	(10)
$c_1 x_2 + c_2 y_2 = 0$	(11)
$c_1 x_3 + c_2 y_3 = 1$	(12)

Here, x_1 , y_1 , x_2 , y_2 , and x_3 , y_3 are known to us. Now, we are to obtain the unknowns a_1 and a_2 from (4) – (6), b_1 and b_2 from (7) - (9), and c_1 and c_2 from (10) - (12).

Considering (5) and (6), and assuming that there is a nontrivial solution for a_1 and a_2 , we get

	(13)
Similarly, from (7) and (9), we get	
1 2 5 2 1 - 7	(14)
and from (10) and (11) , we have	

(15) $x_1 y_2 - x_2 y_1 = 0.$ Thus, from (15), we can have

$$\begin{array}{l} x_2 \quad y_2 \\ \dots \\ z_n = \dots \\ z_n = \lambda, \end{array} \tag{16}$$

 \mathbf{X}_1 **y**₁

where λ is a constant. From (5) and (16), we get

 $a_1 x_1 + a_2 y_1 = 0.$

(17)On comparing, (5) and (17), we clearly see that they are inconsistent. Similarly, we can establish that, the second set (7) - (9), and the third set (10) - (12) are also inconsistent and hence, no solution can be obtained for (4) - (12). Thus, when A is given, D (the arithmetic inverse of A) cannot be determined, whenever m > n. As a consequence of this, the modular arithmetic inverse of A, say B, does not exist, in the case of a rectangular matrix, when m > n.

It is interesting to note that, the modular arithmetic inverse of a rectangular matrix can be determined, only when m < n.

III. CONCLUSIONS

In this paper, we have developed a procedure for obtaining the modular arithmetic inverse of a rectangular matrix. Here, we have shown that

 $(AB) \mod N = I$ (3.1)where A is of size m x n and B is of size n x m, in which m < mn. In this case we have presented a number of examples. Further, we have established that the modular arithmetic inverse of a rectangular matrix does not exist, when m > n. Though we have illustrated the nonexistence of the modular arithmetic inverse of a rectangular matrix in a very simple case (m = 3, n = 2), this analysis can be generalised to any values of m and n, where m > n.

Here, it is interesting to note that the modular arithmetic inverse of a rectangular matrix is expected to find a vide variety of applications in the areas of cryptography.

IV. APPENDIX

When N = 2, we have

A =	$ \left(\begin{matrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{matrix} \right) $	$\begin{array}{ccccc} 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccc} 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0	0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{ccccc} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{array}$	0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1
	в =	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	$\begin{smallmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 \\ 0 & 0 \\ 1 \\ 0 & 0 \\ 1 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{smallmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\$	$\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{smallmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 \\ 0 & 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$	$1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	$\begin{smallmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 $	$1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ $	$\begin{smallmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 $	0 1
W	hen l														
A =	82 8 32 8 78 7 73 8 75 4 78 8 74 3 123 7	2 7 3 8 1 8 2 3 6 3 9 3 3 2 7 7	79 8 84 8 80 7 82 7 83 7 84 8 85 8 86 7 86 7 87 7 82 7 83 7 84 8 85 8 86 7 87 7 87 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 <td>32 79 77 77 58 77 79 71</td> <td>73 79 73 59 79 79 37 33</td> <td>65 83 75 83 65 32 81 65 67 32</td> <td>76 84 69 79 76 78 69 67 47 84</td> <td>76 83 31 78 65 79 46 71 97 69</td> <td>32 32 66 32 78 84 32 32 83 75</td> <td>84 65 89 73 68 87 85 88 88 88 73</td> <td>72 84 80 78 32 65 82 77 17 76</td> <td>69 32 85 32 68 73 71 91 69 76</td> <td>32 79 81 84 82 84 69 93 93 32</td> <td>84 78 84 72 73 32 78 28 38 65</td> <td>69 69 73 69 78 65 84 57 19 76</td>	32 79 77 77 58 77 79 71	73 79 73 59 79 79 37 33	65 83 75 83 65 32 81 65 67 32	76 84 69 79 76 78 69 67 47 84	76 83 31 78 65 79 46 71 97 69	32 32 66 32 78 84 32 32 83 75	84 65 89 73 68 87 85 88 88 88 73	72 84 80 78 32 65 82 77 17 76	69 32 85 32 68 73 71 91 69 76	32 79 81 84 82 84 69 93 93 32	84 78 84 72 73 32 78 28 38 65	69 69 73 69 78 65 84 57 19 76
	111 4 112 5	5 4 0 3	6 1 9 8	18 35	114 14	6 46 111 98	74 80 127 81	14 8 47 38	84 70 67 65	37 97 35 74					

	1/5	13	/0	/0	32	05	/0	/0	32	84	12	69	32	84	69
	82	82	79	82	73	83	84	83	32	65	84	32	79	78	69
	32	83	84	82	79	75	69	31	66	89	80	85	81	84	73
	78	71	80	79	73	83	79	78	32	73	78	32	84	72	69
	73	82	32	77	69	65	76	65	78	68	32	68	82	73	78
A =	75	46	32	68	79	32	78	79	84	87	65	73	84	32	65
	78	89	32	77	79	81	69	46	32	85	82	71	69	78	84
	74	33	26	79	37	65	67	71	32	88	77	91	93	28	57
	123	77	70	71	33	67	47	97	83	88	17	69	93	38	19
	76	32	84	72	69	32	84	69	75	73	76	76	32	65	76
	(27	18	96	8	67	6	74	14	84	37)					
	111	45	46	18	114	46	80	8	70	97					
	112	50	39	85	14	111	127	47	67	35					
	21	78	122	9	59	98	81	38	65	74					
	73	19	111	121	68	101	115	116	72	88					
	40	65	13	39	80	70	94	52	34	40					
	51	85	87	20	65	37	25	126	85	43					
B =	22	11	39	21	93	108	14	93	75	73					
	3	36	64	62	39	20	94	3	117	55					
	107	1	37	30	64	98	53	51	50	57					
	68	41	52	85	45	18	62	88	91	31					
	72	11	31	71	85	42	20	103	44	13					
	127	82	73	92	105	88	39	68	28	4					
	13	37	49	118	78	53	28	75	108	38					
	5	105	54	80	16	36	72	35	112	ر27					
x	Thon	NI.	- 25	6	o h	01/0									

When N = 256, we have

	175	123	236	176	32	165	76	17	32	84	72	69	32	185	169
	182	132	23	149	74	123	3	55	93	113	235	89	103	100	9
	87	32	23	184	197	179	251	160	3	69	89	185	53	181	87
	67	31	61	171	187	93	21	45	179	118	132	87	175	133	184
A =	72	69	73	227	132	170	109	165	108	173	121	178	111	125	87
	102	209	168	235	173	78	150	243	232	68	79	135	178	93	43
	87	165	173	225	232	165	157	139	232	177	95	181	29	36	37
	225	181	171	69	138	189	47	133	225	70	137	165	75	171	219
	151	77	91	93	28	50	123	57	77	121	133	207	247	60	97
	184	88	17	169	93	38	19	76	32	85	72	69	32	84	69 J

	c									
	202	57	108	237	254	207	137	7	51	204
	251	207	142	176	146	71	9	129	2	207
	39	169	218	37	187	228	226	144	121	121
	41	104	255	40	0	46	8	185	11	80
	70	83	16	78	23	243	161	122	91	150
	175	115	152	103 1	24	96	156	214	220	115
	209	107	206	45	43	202	90	54	255	133
B =	21	51	253	89	243	185	67	0	48	242
	67	201	66	121	124	94	33	112	193	177
	157	37	27	57	10	177	131	55	28	73
	105	43	119	80	245	83	2	222	41	69
	237	82	17	76	123	194	225	37	90	31
	212	80	66	85	109	115	223	88	231	190
	66	230	79	150	198	249	147	178	137	114
	251	6	117	219	116	58	115	103	150	29

REFERENCES

[1] E. V. Krishna Murthy, S. K. Sen, *Computer Based Numerical Algorithms*, East West Press, 1976.

Authors:

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of Computer Science and Engineering (CSE), Director (SCSI), Dean (R & D), SreeNidhi Institute of Science and Technology (SNIST), Hyderabad, India. He was Formerly Professor in IIT, Kharagpur,

India and worked in IIT, Kharagpur during 1963 – 1998. He guided 12 PhDs, and published more than 40 research papers in various international journals. He is a Member, Editorial Board and Reviewer of International Journal of Computational Intelligence and Information Security (IJCIIS), Senior Member of International Association of Computer Science and Information Technology (IACSIT) and Reviewer of International Journal of Computer and Network Security (IJCNS). His research interests are Network Security & Cryptography, Image Processing, Data Mining and Genetic

Algorithms and published research papers in International Journal of Computer and Network Security (IJCNS), International Journal of Computer Theory and Engineering (IJCTE) and International Journal of Computational Intelligence and Information Security (IJCIIS).

- [2] Rao C. R., Mitra S. K., *Generalised Inverse of Matrices and its Applications*, Wiley, New York, 1979.
- [3] Penrose R, A Generalized Inverse for matrices, Proceedings of Cambridge Philosophical Society, 51, 406-13, 1955.
- [4] William Stallings, Cryptography and Network Security, Principles and Practice, Third Edition, Pearson, 2003.
- [5] U. K. Sastry, V. Janaki, On the Modular Arithmetic Inverse in the Cryptology of Hill Cipher, Proceedings of North American Technology and Business Conference, Sep. 2005, Canada.
- [6] V. U. K. Sastry, V. Janaki, A Modified Hill Cipher with Multiple Keys, International Journal of Computational Science, Vol. 2, No. 6, 815 – 826, Dec. 2008.
- [7] Janaki, A Study of Some Problems in the Security of Files and Images, PhD Thesis, JNTU, Hyderabad, July 2007.
- [8] Kreyszig, E., Advanced Engineering Mathematics, Sixth Edition, Wiley, 1988.

Prof. D. S. R. Murthy obtained B. E. (Electronics) from Bangalore University in 1982, M. Tech. (CSE) from Osmania University in 1985 and presently pursuing Ph.D. from JNTUH, Hyderabad since 2007. He is presently working as Professor in the

Dept. of Information Technology (IT), SNIST since Oct. 2004. He earlier worked as Lecturer in CSE, NIT (formerly REC), Warangal, India during Sep. 1985 - Feb. 1993, as Assistant Professor in CSE, JNTUCE, Anantapur, India during Feb. 1993 - May 1998, as Academic Coordinator, ISM, Icfaian Foundation, Hyderabad, India during May 1998 - May 2001 and as Associate Professor in CSE, SNIST during May 2001 -Sept. 2004. He worked as Head of the Dept. of CSE, JNTUCE, Anantapur during Jan. 1996 - Jan 1998, Dept. of IT, SNIST during Apr. 2005 - May 2006, and Oct. 2007 - Feb. 2009. He is a Fellow of IE(I), Fellow of IETE, Senior Life Member of CSI, Life Member of ISTE, Life Member of SSI, DOEACC Expert member, and Chartered Engineer (IE(I) & IETE). He is a Reviewer of International Journal of Computational Intelligence and Information Security (IJCIIS) and member of International Association of Computer Science and Information Technology (IACSIT). He published a text book on C Programming & Data Structures. His research interests are Image Processing and Image Cryptography and published research papers in International Journal of Computer and Network Security (IJCNS), International Journal of Computer Theory and Engineering (IJCTE) and International Journal of Computational Intelligence and Information Security (IJCIIS).