
Volume 4, No. 5, May 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 95

An Efficient Bayesian Classifier in SQL with PCA

DS.Bhupal Naik

Member IEEE, Department Of CSE, Vignan University
Vadlamudi,Guntur,A.P-India

.dsb_cse@vignanuniversity.org

S.Deva kumar

 Department Of CSE, Vignan University
Vadlamudi,Guntur,A.P-India

2sdk_cse@vignanuniversity.org

G Sridhar Reddy

Department Of CSE, Vignan University
Vadlamudi,Guntur,A.P-India

sridharreddy_cse@vignanuniversity.org

Abstract— As Bayesian classifier is a fundamental classification technique. We focus on an efficient Bayesian classifier programmed in sql
with PCA. We consider three classifiers: Naive Bayes and a classifier based on class decomposition using K-means clustering and Bayesian
classifier with dimensionality reduction technique PCA. We consider two complementary tasks: model computation and scoring a data set. We
introduce one of the dimensionality reduction techniques, Principal component analysis (PCA) to achieve more accuracy and reduction of
storage space. We study several layouts for tables and several indexing alternatives. We analyse how to transform equations into efficient SQL
queries. We also analyse how to calculate covariance matrix for PCA using SQL. We perform experiments on wbcancer and bscale datasets to
evaluate classification accuracy, query optimization & scalability. Our approach shows improvement in accuracy over the existing approach.
Keywords— Bayesian classification, principal component analysis, covariance matrix, Mean, variance.

I. INTRODUCTION

 CLASSIFICATION is a fundamental problem in
machine learning and statistics. Bayesian classifiers stand
out for their robustness, interpretability, and accuracy. They
are deeply related to maximum likelihood estimation and
discriminant analysis, highlighting their theoretical
importance. In this work, we focus on Bayesian classifiers
considering two variants: Naı¨ve Bayes [2] and a Bayesian
classifier based on class decomposition using clustering [7].

In this work, we integrate Bayesian classification
algorithms into a DBMS. Such integration allows users to
directly analyze data sets inside the DBMS and to exploit its
extensive capabilities (storage management, querying,
concurrency control, fault tolerance, and security). We use
SQL queries as the programming mechanism, since it is the
standard language in a DBMS. More importantly, using
SQL eliminates the need to understand and modify the
internal source, which is a difficult task. Unfortunately,

SQL has two important drawbacks: it has limitations to
manipulate vectors and matrices and has more overhead than
a systems language like C. Keeping those issues in mind; we
study how to evaluate mathematical equations with several
tables’ layouts and optimized SQL queries.

Our contributions are the following: We present two
efficient SQL implementations of Naı¨ve Bayes for numeric
and discrete attributes. We introduce a classification
algorithm that builds one clustering model per class, which
is a generalization of K-means [1], [4]. Our main
contribution is a Bayesian classifier programmed in SQL,
extending Naı¨ve Bayes, which uses K-means to decompose
each class into clusters. We generalize queries for clustering
adding a new problem dimension. That is, our novel queries
combine three dimensions: attribute, cluster, and class
subscripts. We identify euclidean distance as the most time-
consuming computation. Thus, we introduce several
schemes to efficiently compute distance considering
different storage layouts for the data set and classification

model. We also develop query optimizations that may be
applicable to other distance-based algorithms. A horizontal
layout of the cluster centroids table and a denormalized table
for sufficient statistics are essential to accelerate queries.
Past research has shown the main alternatives to integrate
data mining algorithms without modifying DBMS source
code are SQL queries.

The article is organized as follows: Section 2 introduces
definitions. Section 3 introduces two alternative Bayesian
classifiers in SQL: Naive Bayes and a Bayesian classifier
based on K-means. Section 4 presents an experimental
evaluation on accuracy, optimizations, and scalability.
Related work is discussed in Section 5. Section 6 concludes
the paper.

II. DEFINITION

We focus on computing classification models on a data
set X= fx1; . . . ; xng with d attributes X1; . . .;Xd, one
discrete attribute G (class or target), and n records (points).
We assume G has m = 2 values. Data set X represents a d≤ n
matrix, where xi represents a column vector. We study two
complementary models: 1) each class is approximated by a
normal distribution or histogram and 2) fitting a mixture
model with k clusters on each class with K-means. We use
subscripts i; j; h; g as follows: i = 1 . . . n; j= 1 . . . k; h =
1 . . . d; g =1 . . .m. The T superscript indicates matrix
transposition.

Throughout the paper, we will use a small running
example, where d = 4; k = 3 (for K-means) and m = 2
(binary).

III. BAYESIAN CLASSIFIER AND PCA

A. Pre-processing data set

Pre-processing of input data includes, removing noise
and null values. To remove the null values in the dataset we
use binning, null values are removed by placing mean of

DS.Bhupal Naik et al, International Journal of Advanced Research in Computer Science, 4 (5) Special Issue, May, 2013,95-99

© 2010, IJARCS All Rights Reserved 96

each attribute. And we arrange them in proper order to load
the data set into base table.

A data set X ={ x1; . . . ; xn} , g with d attributes
X1; . . .; Xd, one discrete attribute G (class or target), and n
records (points). We assume G has m =2 values. Data set X
represents a d *n matrix, where xi represents a column
vector.

B. Naïve Bayesian Classification

In data mining, we have two types of Data sets. First, it
contains numeric attributes and second, it contains discrete
attributes [3]. In this naïve Bayesian, numeric attributes will
be improved with class decomposition. NB assumes
attributes are independent, and thus, the joint class
conditional probability can be estimated as the product of
probabilities of each attribute. In this naïve Bayesian
classification, it is done based on multivariate Gaussian. NB
has no input parameters. Each class is modeled as a single
normal distribution with mean vector Cg and a diagonal
variance matrix Rg. Scoring assumes a model is available
and there exists a data set with the same attributes in order to
predict class G.

The model is computed in two passes: a first is to get
the mean per class and a second is to compute the variance
per class. The mean per class is given by equation 1.1,
where Yg is subset of X are the records in class g. Equation
1.2 gives a diagonal variance matrix Rg, which is
numerically stable, but requires two passes over the data set.

 … .1.1

 …..1.2

The SQL implementation for numeric NB follows the
mean and variance equations introduced above. We compute
three aggregations grouping by Cg with two queries. The
first query computes the mean Cg of class g with a sum
(Xh)/ count (*) aggregation and class priors πg with a count
() aggregation. The second query computes Rg with sum
(Xh -µh) 2. Here, the joint probability computation is not
done. To classify a record, we need to calculate the
probabilities. For this scoring we use the Gaussian
parameters as input to classify an input point to the most
probable class, with one query in one pass over X. Each
class probability is evaluated as a Gaussian. To avoid
numerical issues when a variance is zero, the probability is
set to 1 and the joint probability is computed with a sum of
probability logarithms instead of a product of probabilities.
A CASE statement pivots probabilities and avoids a max ()
aggregation. A final query determines the predicted class,
being the one with maximum probability, obtained with a
CASE statement.

We now discuss NB for discrete attributes. For
numeric NB, we used Gaussians because they work well for
large data sets and because they are easy to manipulate
mathematically. That is, NB does not assume any specific
probability density function (pdf). Assume X1; . . .;Xd can
be discrete or numeric. If an attribute Xh is discrete
(categorical) NB simply computes its histogram:
probabilities are derived with counts per value divided by
the corresponding number of points in each class. Otherwise,
if the attribute Xh is numeric then binning is required.

Binning requires two passes over the data set, pretty much
like numeric NB. In the first pass, bin boundaries are
determined. On the second pass, one-dimensional frequency
histograms are computed on each attribute.

TABLE 1
BKM TABLES

The implementation in SQL of discrete NB is
straightforward. For discrete attributes, no pre-processing is
required. For numeric attributes, the minimum, maximum,
and mean can be determined in one pass in a single query.
The variance for all numeric attributes is computed on a
second pass to avoid numerical issues. Then, each attribute
is discretized finding the interval for each value. Once we
have a binned version of X, then we compute histograms on
each attribute with SQL aggregations. Probabilities are
obtained dividing by the number of records in each class.
Scoring requires determining the interval for each attribute
value and retrieving its probability. Each class probability is
also computed by adding logarithms. NB has an advantage
over other classifiers: it can handle a data set with mixed
attribute types (i.e., discrete and numerical).

C. Bayesian Classifier Based on K-Means

In this module, first we divide the data set into clusters
that means we are making the class decomposition by using
k-means clustering then, we apply Bayesian classification.
BKM is a generalization of NB; where NB has one cluster
per class and the Bayesian classifier has k > 1 clusters per
class. We consider two major tasks for BKM:Model
computation ,Scoring a data set

 The most time-consuming phase is building the model.
Scoring is equivalent to an E step from K-means executed
on each class. We fit a mixture of k clusters to each class
with K-means. The output are priors π (same as NB), mk
weights (W), mk centroids (C), and mk variance matrices
(R). We generalize NB notation with k clusters [4] per class
g with notation g:j, meaning the given vector or matrix
refers to jth cluster from class g. Sums are defined over
vectors (instead of variables).

 Class priors are analogous to NB: We now introduce
sufficient statistics in the generalized notation. Let Xg:j
represent partition j of points in class g (as determined by K-
means). Then, L, the linear sum of points is: Lg:j = ∑ xi€Xg:j xi

and the sum of “squared” points for cluster g: j becomes:
Rg= ∑xi€Xg:j xi xi

T
 Based on L; Q, the Gaussian parameters

per class g are:

Qg:j-

Table Content PK non-Key Columns

XH

CH

XD

XN

NLQ

WCR

Normalized data

Centroids

Distances

Nearest cluster

Suff statistics

Mixture model

i, g,x1,x2,x3,…xd

g, C11,C12,C13,…Cdk

i,g, d1,d2,d3,..dk

i,g, j

g,j Ng,L1,L2,…Ld,Q1,Q2,…Qd

g,j pi,C1,C2,…Cd,R1,R2,..Rd

DS.Bhupal Naik et al, International Journal of Advanced Research in Computer Science, 4 (5) Special Issue, May, 2013,95-99

© 2010, IJARCS All Rights Reserved 97

We generalize K-means to compute m models, fitting a
mixture model to each class. K-means is initialized, and then,
it iterates until it converges on all classes.

The algorithm is as given below [1]:

Initialization:
1. Get global N; L; Q and σ, μ;
2. Get k random points per class to initialize C.
While not all m models converge:
1. E step: get k distances j per g; find nearest cluster j
per g; update N; L; Q per class.
2. M step: update W; C; R from N; L; Q per class;

compute model quality per g; monitor convergence.
 For scoring, in a similar manner to NB, a point is

assigned to the class by choosing highest probability among
all the calculated probabilities. The probabilities are
calculated based on Gaussian parameter equation. The
probability gets multiplied by the class prior by default, but
it can be ignored for imbalanced classification problems. We
now study how to create an efficient implementation of
BKM in SQL.

In the following table 3.1, the tables for NB are
extended with the j subscript and since there is a clustering
algorithm behind, we introduce tables for distance
computation. There is a single set of tables for the classifier.

All m models are updated on the same table scan. This
eliminates the need to create multiple temporary tables. We
introduce a fast distance computation mechanism based on a
flattened version of the Centroids; temporary tables have
fewer rows. We use a CASE statement to get closest cluster
avoiding the use of standard SQL aggregations. A join
between two large tables is avoided. We delete points from
classes whose model has converged. The algorithm works
with smaller tables as models converge.
1. Model Computation

Model computation is sub module in the Bayesian
classification; in this sub module, we will build the model
which results the prior probabilities, mean of each cluster
and variance of each cluster, for this, we need to initialize
the CH table with k random points per class; In this manner,
K-means computes Euclidean distance with all attributes
being on the same relative scale. The normalized data set is
stored in table XH, which also has n rows.

We consider a horizontal scheme to compute distances.
All k distances per class are computed as SELECT terms.
This produces a temporary table with mkn rows. Then, the
temporary table is pivoted and aggregated to produce a table
having mn rows with k columns. Such a layout enables
efficient computation of the nearest cluster in a single table
scan. The SQL code pairs each attribute from X with the
corresponding attribute from the cluster. Computation is
efficient because CH has only m rows and the join computes
a table with n rows (for building the model) or mn rows for
scoring.

The following SQL statement computes k distances for
each point, corresponding to the gth model. This statement is
also used for scoring, and therefore, it is convenient to
include g.

INSERT INTO XD SELECT i,XH.g ,(X1-
C1_X1)**2 + .. +(X4-C1_X4)**2, ..,(X1-C3_X1)**2 + ..
+(X4-C3_X4)**2 FROM XH,CH WHERE XH.g=CH.g;

At this point, we have computed k distances per class
and we need to determine the closest cluster. There are two

basic alternatives: pivoting distances and using SQL
standard aggregations. Using case statements, we determine
the minimum distance. For the first alternative, XD must be
pivoted into a bigger table. Then, the minimum distance is
determined using the min() aggregation. The closest cluster
is the subscript of the minimum distance, which is
determined by joining XH [1].

 In the second alternative, we just need to compare
every distance against the rest using a CASE statement.
Since the second alternative does not use joins and is based
on a single table scan, it is much faster than using a pivoted
version of XD. The SQL to determine closest cluster per
class is given as an example below. This statement can also
be used for scoring.

INSERT INTO XN SELECT i,g,CASE WHEN
d1<=d2 AND d1<=d3 THEN 1 d2<=d3 THEN 2 ELSE 3
END AS j FROM XD;

 Once we have determined the closest cluster for
each point on each class, we need to update sufficient
statistics, which are just sums. This computation requires
joining XH and XN and partitioning points by class and
cluster number. Since table NLQ is denormalized, the join
computation is demanding for joining two tables with rows.
For BKM, it is unlikely that, variance can have numerical
issues. But, it is feasible. In such a case, sufficient statistics
are substituted by a two-pass computation like NB.

INSERT INTO NLQ SELECT XH.g,j,sum(1.0) as
Ng /*N*/
,sum(X1) , .. ,sum(X4) /* L */
Sum(X!**2) , .. ,sum(X4**2) /* Q*/

FROM XH,XN WHERE XH.i=XN.i GROUP BY XH.g,j;

 We now discuss the M step to update W; C; R.
Computing WCR from NLQ is straightforward since both
tables have the same structure and they are small. There is a
Cartesian product between NLQ and the model quality table
[1]. The latter table has only one row. Finally, to speed up
computations, we delete points from XH for classes whose
model has converged: a reduction in Distance
Computation size is propagated to the nearest cluster along
with sufficient statistics queries.

 INSERT INTO WCR SELECT
NLQ.g,NLQ.j ,Ng/MODEL.n /* pi */
,L1/Ng, ..,L4/Ng /* C */
,Q1/Ng-(L1/Ng)**2,..,Q4/Ng-(L4/Ng)**2 /*R */
 FROM NLQ,MODEL WHERE NLQ.g=MODEL.g;

2 Scoring

Scoring is sub module in the Bayesian classification; in
this submodule we will make the classification. In this
module, we consider two alternatives: based on probability
(default) or distance. Scoring is similar to the E step. But,
there are differences. First, the new data set must be
normalized with the original variance used to build the
model. Such variance should be similar to the variance of
the new data set. Second, we need to compute mk
probabilities (distances) instead of only k distances because
we are trying to find the most probable (closest) cluster
among all. Thus, the join condition between XH and CH
gets eliminated. Third, once we have mk probabilities
(distances), we need to pick the maximum (minimum) one

DS.Bhupal Naik et al, International Journal of Advanced Research in Computer Science, 4 (5) Special Issue, May, 2013,95-99

© 2010, IJARCS All Rights Reserved 98

and then the point is assigned to the corresponding cluster
[1]. To have a more elegant implementation, we predict the
class in two stages.

First, we determine the most probable cluster per class,
and then, compare the probabilities of such clusters. Column
XH.g is not used for scoring purposes, but it is used to
measure accuracy, when known.

D. Principal component analysis (PCA)

 In this module, PCA is mainly used to reduce the
dimensionality of the data set by performing a covariance
analysis between factors. PCA allows us to compute a linear
transformation that maps data from a high dimensional
space to a lower dimensional space. Suppose that, the data to
be reduced consist of tuples or data vectors described by n
attributes or dimensions [7].

In this PCA, we are using the following table to store
the values and these tables will behave as a input for the
next tables and from these we are computing the covariance
matrix. To find the covariance matrix we use the Sql queries.

TABLE 2
PCA TABLES

The first table is the base table to our application, In
that we have sample data in the form of attribute. It should
be in the numeric form. To calculate the linear some of each
attribute of the dataset we will the following query. We are
computing each attribute sum by using sum ().the result is
storing in the NL table for future purpose [1].

INSERT INTO NL SELECT XH.g,j,sum(1.0) as
Ng,sum(X1) , .. , sum(X4), WHERE XH GROUP BY g;

After finding linear sum of each attribute, we have to
calculate the mean of each attribute .It is very easy process.
It can be calculated in single step. We have linear sum (Ld)
and Table number of record (Ng) in each attribute in NL
Table, by using the following query, we will insert mean of
each attribute into Mean table

INSERT INTO MEAN SELECT
NL.g,Ng ,L1/Ng, ..,L4/Ng , FROM NL ;

Once we have mean of each attribute, we need to
subtract each vale from mean, to do that process, we use
MEAN table and base table (XH), from these two tables we
calculate the difference of mean and each value and we
insert those values into AFD table by using single query.

INSERT INTO AFD SELECT X1-M1,X2-M2,..,
FROM XH,MEAN WHERE XH.G=MEAN.G;

From above SQL query we find difference of mean
and each value in base table. Next step is, we need to
calculate the covariance matrix [7], by using the following
query we insert in to COVARIANCE Table.

INSERT INTO COVARIANCE SELECT
SUM(X1*X1)/NG,SUM(X1*X2),……….
SUM(X1*XD …SUM (XD*X1),
SUM(XD*X2) ,………….. SUM(XD*XD) FROM
PCAAFM;

Now, we get covariance matrix, from the covariance
matrix, we have to calculate Eigen values and Eigen vectors
to calculate principal components. In Sql, it is very difficult
process. We studied different methods like QR, LU
decomposition iteration methods. To optimize that process,
we select direct method, i.e. eig () in mat lab. From eig () we
can calculate eigen values and eigen vectors easily.

IV EXPERIMENTAL EVALUATION

We analyze three major aspects: 1) classification
accuracy, 2) query optimization, and 3) time complexity and
speed. We compare the accuracy of NB, BKM, and decision
trees (DTs).

A. Setup
We used the Teradata DBMS running on a server with

a 3.2 GHz CPU, 2 GB of RAM, and a 750 GB disk.
Parameters were set as follows: We set _ ¼ 0:001 for K-
means.

The number of clusters per class was k ¼ 4 (setting
experimentally justified). All query optimizations were
turned on by default (they do not affect model accuracy).
Experiments with DTs were performed using a data mining
tool.

We used real data sets to test classification accuracy
(from the UCI repository) and synthetic data sets to analyze
speed (varying d; n). Real data sets include pima (d ¼ 6; n ¼
768), spam (d ¼ 7; n ¼ 4;601), bscale (d ¼ 4; n ¼ 625), and
wbcancer (d ¼ 7; n ¼ 569). Categorical attributes (_3 values)
were transformed into binary attributes.

B. Model Accuracy
We used the system with a configuration 3.2 GHz CPU,

1 GB of RAM, and a 120 GB disk. We worked on an oracle
Express edition 10g database. We used real data sets to test
classification accuracy (from the UCI repository) and
synthetic data sets to analyze speed (varying d; n). Real data
sets include bscale (n=4, d=625), and wbcancer (d=7;
n=569). Categorical attributes (>=3 values) were
transformed into binary attributes.

TABLE 3

ACCURACY BY VARYING K (NUMBER OF CLUSTERS) IN BKM.

We have concentrated mainly on accuracy; we
measure the accuracy of predictions when using Bayesian
classification models. For each run, the data set was
partitioned into a training set and a test set. The training set
was used to compute the model, whereas the test set was
used to independently measure accuracy. The training set
size was 80 percent and the test set was 20 percent.

 The number of clusters (k) is the most important
parameter to tune BKM accuracy. The Table 5.1 shows
accuracy behaviour as k increases. As size of k increases, it

Table Content PK non-Key Columns

XH

NL

MEAN

AFD

COVAR

Normalized data

Centroids

Distances

Nearest cluster

Covariancematrix

i, g,x1,x2,x3,…xd

g, L1,L2,L3….Ld

i,g, M1,M2,M3,….Md

i,g, X!,X2,X3,…..Xd

g X!,X2,X3,…..Xd

Data set k=2 K=3 k=4 k=6 k=8 k=16

Bscale 55% 57% 59% 56% 60% 68%

wbcancer 93% 94% 92% 93% 93% 89%

DS.Bhupal Naik et al, International Journal of Advanced Research in Computer Science, 4 (5) Special Issue, May, 2013,95-99

© 2010, IJARCS All Rights Reserved 99

produces more complex models. Intuitively, a higher k
should achieve higher accuracy because each class can be
better approximated with localized clusters.

Fig 1: comparing accuracy of BKM after PCA, before PCA by varying k

On the other hand, a higher k than necessary can lead
to empty clusters. As can be seen, a lower k produces better
models for spam and wbcancer, whereas a higher k produces
higher accuracy for bscale. Therefore, there is no ideal
setting for k, but, in general, k <=20 produce good results.
Based on these results, we set k=3 by default since it
provides reasonable accuracy for all data sets.

In the following Table5.2, we compare the accuracy of
the three models, including the overall accuracy as well as a
breakdown per class. Accuracy per predicted class is
important to understand issues with imbalanced classes and
detecting subsets of highly similar points.

TABLE 4
ACCURACY BY VARYING K VALUE FOR NB, BKM, AND BKM

AFTER PCA.

In practice, one class is generally more important than
the other one (asymmetric), depending on whether the
classification task is to minimize false positives or false
negatives. This is a summary of findings. First of all,
considering global accuracy, and next by considering
individual class.

Fig 2: comparing accuracy of NB, BKM.

We applied PCA for wbcancer data set and removed
six attributes (6, 13, 14, 15, 19, 23, and 21) because these

are showing poor Eigen values and after removing these
attributes from data set we again applied the BKM and
compute the results.

V. CONCLUSIONS
We presented three Bayesian classifiers programmed

in SQL: the Naive Bayes classifier (with discrete and
numeric versions), a generalization of Naive Bayes (BKM),
based on decomposing classes with K-means clustering and
BKM with dimensionality reduction technique PCA. And
we studied two complementary aspects: increasing accuracy
and generating efficient SQL code. We presented one
dimensionality reduction technique Principal component
analysis (PCA) to produce more accurate results in
classification. The nearest cluster per class, required by K-
means, is efficiently determined avoiding joins and
aggregations. Experiments with real data sets are performed
and compared the results of NB, BKM, PCA, BKM after
PCA, and BKM before PCA. The numeric and discrete
versions of NB had similar accuracy. BKM was more
accurate than NB in global accuracy. However, BKM was
more accurate when computing a breakdown of accuracy per
class. It was observed that, when the number of clusters
formed is less, it produced a better result. After applying
PCA on the dataset, as a result it reduced the number of
attributes in the dataset and given better result in terms of
accuracy.

NB and BKM exhibited linear scalability in data set
size and dimensionality. There is much scope for future
work. We can derive incremental versions or sample-based
methods to accelerate the Bayesian classifier. We are
interested in combining one more dimensionality reduction
technique factor analysis with Bayesian classifiers in SQL.

VI. REFERENCES
[1] Carlos Ordonez and Sasi K. Pitchaimalai,” Bayesian

Classifiers Programmed in SQL,”Proc. IEEE Transactions
On Knowledge And Data Engineering,VOL. 22, NO. 1,
January 2010.

[2] P. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering
Algorithms toLarge Databases,” Proc. ACM Knowledge
Discovery and Data Mining (KDD)Conf., pp. 9-15, 1998.

 [3] B.L. Milenova and M.M. Campos, “O-Cluster: Scalable
Clustering of Large High Dimensional Data Sets,” Proc.
IEEE Int’l Conf. Data Mining (ICDM), pp. 290-297, 2002.

[4] Tapas Kanungo, Senior Member, IEEE, David M. Mount,
Member, IEEE, Nathan S. Netanyahu, Member, IEEE,
Christine D. Piatko, Ruth Silverman, and Angela Y. Wu,
Senior Member, IEEE, “An Efficient k-Means Clustering
Algorithm: Analysis and Implementation ,” IEEE Trans.
Knowledge and Data Eng., vol. 18, no. 2, pp. 188-201, Feb.
2006.

[5] R. Vilalta and I. Rish, “A Decomposition of Classes via
Clustering to Explain and Improve Naive Bayes,” Proc.
European Conf. Machine Learning (ECML), pp. 444-455,
2003.

[6] Thair Nu Phyu, “Survey of Classification Techniques in Data
Mining”,International MultiConference of Engineers and
Computer Scientists 2009, Vol I IMECS 2009, March 18 - 20,
2009,

[7] D.Napoleon S.Pavalakodi, “A New Method for
Dimensionality Reduction Using K-Means Clustering
Algorithm for High Dimensional Data Set “.International
Journal of Computer Applications (0975 – 8887) Volume
13– No.7, January

 Method Global Class=0 Class=1

Bscale
NB 50% 51% 30%

BKM 59% 59% 60%
BKM After PCA 60% 61% 58%

wbcancer
NB 93% 91% 95%

BKM 93% 84% 97%
BKM After PCA 94% 86% 98%

