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Abstract: ACGR A that is focused on data path computations for a particular application domain is a balancing act akin to designing an ASIC 
and a FPGA simultaneously. Narrowing the application domain significantly makes the design of the CGRA very much like that of a 
programmable ASIC. Widening the application domain requires a more flexible data path that requires more configurable over head and has less 
overall efficiency compared to an FPGA. Are configurable architecture issued with compressed context architecture in ALU arrays. There by 
reducing power in cache (context memory). Architecture presented is replaceable to all processors including DSP processors and power can be 
reduced.  
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I. INTRODUCTION 

An application specific architecture solution is too rigid, 
and a general purpose processor solution is too inefficient. 
Neither general purpose processors nor application specific 
architectures are capable of satisfying the power and 
flexibility requirements of future mobile devices. Instead, 
we want to make the machine fit the algorithm, as opposed 
to making the algorithm fit the machine. This is the area of 
reconfigurable computing systems. 

This paper proposes a scheme of dynamic context 
Management aiming to minimize the reconfiguration 
overhead by reusing and switching contexts [2]. The 
technique permits background loading of configuration data 
without interrupting the regular execution. It prevents 
read/write operation for redundant part of context words 
dynamically and overlaps computation with reconfiguration. 
And stored configurations can be switched dramatically 
reducing reconfiguration overhead if the next configuration 
is present in one of the alternate contexts. In this paper, we 
address the power reduction issues in CGRA and provide a 
framework to achieve this[4],[5]. A new design flow and a 
new configuration cache structure are presented to reduce 
power consumption in configuration cache.  

The power saving is achieved by dynamic context 
compression in the configuration cache—only required bits 
of the context words are set to enable and the redundant bits 
are set to disable. Therefore, the new design flow for CGRA 
has been proposed to generate architecture specifications 
that are required for supporting dynamically compressible 
context architecture without performance degradation. The 
validation of the proposed approaches is demonstrated 
through the use of real application benchmarks and gate 
level simulations[2]. The proposed CGRA architecture has 
shown to reduce power consumption by up to 39.72% in 
configuration cache compared to conventional context 
architecture with negligible area overhead of only 2.16%. 

II. FINE GRAIN VS. COARSE GRAIN 

Reconfigurable processors have been widely associated 
with Field Programmable Gate Array (FPGA)-based system 

designs[1]. An FPGA consists of a matrix of programmable 
logic cells with a grid of interconnecting lines running 
between them. In addition, there are I/O pins on the 
perimeter that provide an interface between the FPGA, the 
interconnecting lines and the chip's external pins. However, 
FPGAs tend to be somewhat fine-grained in order to 
achieve a high degree of flexibility. This flexibility has its 
place for situations where the computational requirements 
are either not known in advance or vary considerably 
among the needed applications. However, in many cases 
this extreme level of flexibility is unnecessary and would 
result in significant overheads of area, delay and power 
consumption. 

Contrasted with FPGAs, the data-path width of coarse 
grained reconfigurable architectures is more than one bit. 
Over the last 15 years, many projects have investigated and 
successfully built systems where the reconfiguration is 
coarse-grained and is performed within a processor or 
amongst processors. In such systems the reconfigurable unit 
is a Specialized hardware architecture that supports logic 
reconfiguration. The reconfiguration procedure is much 
faster than that found in FPGAs[8]. Because the application 
domain is known, full custom data paths could be designed, 
which are drastically more area-efficient. Typically, a 
CGRA consists of a main processor, reconfigurable array 
architecture (RAA)[4][5], and their interface, as shown in 
Fig. 1.1. The RAA has identical PEs containing functional 
units and a few storage units such as ALU, multiplier, 
shifter, and register file. The data buffer provides operand 
data to PE array through a high-bandwidth data bus. The 
configuration cache (or context memory) stores the context 
words used for configuring the PE array elements. The 
context register between a PE and a cache element (CE) in 
configuration cache is used to keep the cache access path 
from being the critical path of the CGRA[7]. 
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Figure 2.1 General block diagram of CGRA 

A. Power Advantages In CGRA: 

Studies of the power consumption within an FPGA, as 
shown by Poor identify that 50% to 60% of the energy of an 
FPGA is dissipated in the routing fabric, 20% to 40% in the 
logic blocks and 5% to 40% in the clock network. Using 
these number as a guideline, we see that the interconnect 
offers the greatest chance for energy optimization, followed 
by the logic blocks. One key aspect in the transition from 
fine-grained to coarse-grained configurable architectures is 
the overhead associated with configuration control logic. 

Therefore, improvements in the CGRA will be measured 
indirectly at the system level. By abstracting the effects of a 
given silicon manufacturing technology, custom layout, or 
even the specifics of implementing a power efficient 
arithmetic unit we can focus on architectural features that 
provide a significant power advantage. The primary source 
of architectural power efficiency is the transition from a 
bitwise to word-wide datapath, which can be further refined 
into categories for interconnect, arithmetic and logic, and 
configuration overhead. 

Some options for improving the efficiency of the 
interconnect within the data plane are: 
a) Reducing the number of pair-wise routing options, i.e. 

connectivity. 
b) Reducing interconnect switching complexity by 

bundling wires into buses. 
c) Reducing the average interconnect length by inserting 

pipelining registers. 
d) Using a more power efficient numerical 

representation, such as signed magnitude or Gray 
code. 

Some options for improving the efficiency of the 
arithmetic and logic resources  within  the data plane are: 
a) Using dedicated, atomic, resources for computation. 
b) Pipelining arithmetic units. 
c) Reduced resources for intra-word communication in 

arithmetic units, e.g. carry-chains or conditional flags.   
Reduction in the overhead of the configuration  logic for 

the data plane can be achieved by: 
a) Configuring buses rather than individual wires. 
b) Sharing configuration bits across larger compute 

elements. 
c) An overall reduction in total number of possible 

configurations and thus a reduction in the configuration 
state size. 

Making an architecture more coarse-grained means that 
computation is done via dedicated adders, multipliers, etc. 
rather than constructing such units from more primitive 
functional units such as a 4-LUT. While a dedicated 
arithmetic unit is guaranteed to be more efficient than one 
composed of 4-LUTs, finding a balance of dedicated 
resources that match the flexibility of the 4-LUTs is 
difficult, and the overhead of multiple dedicated resources 
could easily outweigh the individual advantages of each 
resource. One common use for CGRAs is to accelerate the 
computationally intensive kernel(s) of a larger application. 

These kernels are typically inner loops of algorithms or a 
set of nested loops. Frequently, it is possible to pipeline 
these kernels, thus exploiting the application’s existing 
parallelism and increasing its performance. If the application 
domain of a CGRA is rich with pipelinable kernels then it is 
advantageous to have a general bias towards a specific flow 
of computation and data in the datapath and to include 
dedicated resources for pipelining in the interconnect. The 
control plane of a CGRA plays a similar role  to the general 
purpose spatial computing fabric of an  FPGA. It is 
composed of bitwise logic and communication resources, is 
flexible and highly connected. Given these requirements, it 
is likely that the control plane’s architecture will be similar 
to a standard FPGA’s architecture. From a power efficiency 
standpoint, the control plane will perform similarly, and thus 
provide no advantage over a standard FPGA. However, the 
control plane will be only one portion of a CGRA making its 
contribution to the energy overhead smaller 

III. CONTEXT ARCHITECTURE 

The configuration cache provides context words to the 
context register of each PE on a cycle-by-cycle basis. From 
the context register, these context words configure the PEs. 
Fig. 2 shows an example of PE structure and context 
architecture for MorphoSys [2]. Thirty-two bit context word 
specifies the function for the ALU-multiplier, the inputs to 
be selected from MUX_A and MUX_B, the amount and 
direction of shift of the ALU output, and the register for 
storing the result as Fig. 2(a). Context architecture means 
organization of context word with several fields to control 
resources in a PE, as shown in Fig. 2(b). The context 
architectures of other CGRAs such as are similar to the case 
of MorphoSys although there is a wide variance in context 
width and kind of fields used by different functionality. For 
particular coarse-grained reconfigurable array, the 
performance improvement depends on the inherent 
parallelism of target applications. In many cases, the 
parallelism of an application is smaller than the number of 
processing element (PE) arrays. Accordingly, PE array 
shows lots of redundant PEs not used at runtime. 

If the configuration cache can provide only required bits 
(valid bits) of the context words to PE array at runtime, it is 
possible to reduce power consumption in configuration 
cache. The redundant bits of the context words can be set to 
disable and make these invalid at runtime. That way, one 
can achieve low-power implementation of CGRA without 
performance degradation while context architecture 
dynamically supports both the cases at runtime: one case is 
uncompressed context word with full bit width and another 
case is compressed context word with setting unused part of 
configuration cache disabled. In order to support such a 
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dynamic context compression, we propose a new context 
architecture and configuration cache structure in this paper. 

 
Figure. 3.1. PE structure and context architecture of MorphoSys. (a) PE 

structure. (b) Context architecture. 

IV. PROPOSED SYSTEM 

A. Compressed ALU Architecture: 

In order to design and evaluate compressible context  
architecture, we propose a new context architecture design 
flow. This design starts from context architecture 
initialization, which is similar to the architecture 
specification stage of general CGRA  design flow. 

 
Figure 4.1. Compressed ALU Architecture 

If the configuration cache can provide only required bits 
(valid bits) of the context words to PE array at runtime, it is 
possible to reduce power consumption in configuration 
cache [3]. The redundant bits of the context words can be 
set to disable and make these invalid at runtime. That way, 
one can achieve low-power implementation of CGRA 
without performance degradation. One more method to 
reduce power is by dividing the ALU into two parts that’s 
in compressed and non-compressed method. The normally 
repeating instructions are executed in compressed mode and 
instructions that are frequently not used such as branching 
instructions are  executed in non-compressed mode. The 
normal instructions are add, sub etc are executed in 
compressed mode. 

 
Figure 4.2. Overall Block Diagram 

In compressed mode we use a carry look ahead adder 
for execution the normal instructions. The use of carry look 
ahead adder is helpful in increasing the speed and saving 
power than that of ripple carry adder. Also it reduces area 
than the ripple carry adder. 

 

 
Figure 4.3 and4.4 Shows the output obtained using the logic based on the 

compressed ALU idea explained in this paper. 

 

Figure 4.4.Output 
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V. CONCLUSION 

Power consumption is very crucial for the CGRA for 
embedded systems and all reconfigurable architectures have 
a configuration cache for dynamic reconfiguration, which 
consumes significant amount of power. In this paper, we 
introduced new context architecture with its design flow. 
We are compressing the architecture in each instruction 
cycle from the decoding section of the processing of a 
instructions. The exploration flow efficiently rearranges 
PEs with reducing array size, and changes interconnection 
scheme to save area and power. In addition, we suggest the 
design scheme which splits the computational resources 
into two groups (primitive resources and critical resources). 
Primitive resources are replicated for each processing 
element of the reconfigurable array, whereas area-critical 
resources are shared among multiple basic PEs. 
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