
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 137

Low Power Compressed Context Architecture Based Processor Design

P.Sathiya*, Ms.M.Jasmin
PG Scholar*, Assistant Professor

Electronics& Communication Engineering Bharath University
sathiya_ravi2007@yahoo.co.in*, rifriz@gmail.com

Abstract: ACGR A that is focused on data path computations for a particular application domain is a balancing act akin to designing an ASIC
and a FPGA simultaneously. Narrowing the application domain significantly makes the design of the CGRA very much like that of a
programmable ASIC. Widening the application domain requires a more flexible data path that requires more configurable over head and has less
overall efficiency compared to an FPGA. Are configurable architecture issued with compressed context architecture in ALU arrays. There by
reducing power in cache (context memory). Architecture presented is replaceable to all processors including DSP processors and power can be
reduced.

Keyword: Coarse-grained reconfigurable architecture (CGRA), configuration cache, context architecture, low power

I. INTRODUCTION

An application specific architecture solution is too rigid,
and a general purpose processor solution is too inefficient.
Neither general purpose processors nor application specific
architectures are capable of satisfying the power and
flexibility requirements of future mobile devices. Instead,
we want to make the machine fit the algorithm, as opposed
to making the algorithm fit the machine. This is the area of
reconfigurable computing systems.

This paper proposes a scheme of dynamic context
Management aiming to minimize the reconfiguration
overhead by reusing and switching contexts [2]. The
technique permits background loading of configuration data
without interrupting the regular execution. It prevents
read/write operation for redundant part of context words
dynamically and overlaps computation with reconfiguration.
And stored configurations can be switched dramatically
reducing reconfiguration overhead if the next configuration
is present in one of the alternate contexts. In this paper, we
address the power reduction issues in CGRA and provide a
framework to achieve this[4],[5]. A new design flow and a
new configuration cache structure are presented to reduce
power consumption in configuration cache.

The power saving is achieved by dynamic context
compression in the configuration cache—only required bits
of the context words are set to enable and the redundant bits
are set to disable. Therefore, the new design flow for CGRA
has been proposed to generate architecture specifications
that are required for supporting dynamically compressible
context architecture without performance degradation. The
validation of the proposed approaches is demonstrated
through the use of real application benchmarks and gate
level simulations[2]. The proposed CGRA architecture has
shown to reduce power consumption by up to 39.72% in
configuration cache compared to conventional context
architecture with negligible area overhead of only 2.16%.

II. FINE GRAIN VS. COARSE GRAIN

Reconfigurable processors have been widely associated
with Field Programmable Gate Array (FPGA)-based system

designs[1]. An FPGA consists of a matrix of programmable
logic cells with a grid of interconnecting lines running
between them. In addition, there are I/O pins on the
perimeter that provide an interface between the FPGA, the
interconnecting lines and the chip's external pins. However,
FPGAs tend to be somewhat fine-grained in order to
achieve a high degree of flexibility. This flexibility has its
place for situations where the computational requirements
are either not known in advance or vary considerably
among the needed applications. However, in many cases
this extreme level of flexibility is unnecessary and would
result in significant overheads of area, delay and power
consumption.

Contrasted with FPGAs, the data-path width of coarse
grained reconfigurable architectures is more than one bit.
Over the last 15 years, many projects have investigated and
successfully built systems where the reconfiguration is
coarse-grained and is performed within a processor or
amongst processors. In such systems the reconfigurable unit
is a Specialized hardware architecture that supports logic
reconfiguration. The reconfiguration procedure is much
faster than that found in FPGAs[8]. Because the application
domain is known, full custom data paths could be designed,
which are drastically more area-efficient. Typically, a
CGRA consists of a main processor, reconfigurable array
architecture (RAA)[4][5], and their interface, as shown in
Fig. 1.1. The RAA has identical PEs containing functional
units and a few storage units such as ALU, multiplier,
shifter, and register file. The data buffer provides operand
data to PE array through a high-bandwidth data bus. The
configuration cache (or context memory) stores the context
words used for configuring the PE array elements. The
context register between a PE and a cache element (CE) in
configuration cache is used to keep the cache access path
from being the critical path of the CGRA[7].

P.Sathiya et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,137-140

© 2010, IJARCS All Rights Reserved 138

Figure 2.1 General block diagram of CGRA

A. Power Advantages In CGRA:

Studies of the power consumption within an FPGA, as
shown by Poor identify that 50% to 60% of the energy of an
FPGA is dissipated in the routing fabric, 20% to 40% in the
logic blocks and 5% to 40% in the clock network. Using
these number as a guideline, we see that the interconnect
offers the greatest chance for energy optimization, followed
by the logic blocks. One key aspect in the transition from
fine-grained to coarse-grained configurable architectures is
the overhead associated with configuration control logic.

Therefore, improvements in the CGRA will be measured
indirectly at the system level. By abstracting the effects of a
given silicon manufacturing technology, custom layout, or
even the specifics of implementing a power efficient
arithmetic unit we can focus on architectural features that
provide a significant power advantage. The primary source
of architectural power efficiency is the transition from a
bitwise to word-wide datapath, which can be further refined
into categories for interconnect, arithmetic and logic, and
configuration overhead.

Some options for improving the efficiency of the
interconnect within the data plane are:
a) Reducing the number of pair-wise routing options, i.e.

connectivity.
b) Reducing interconnect switching complexity by

bundling wires into buses.
c) Reducing the average interconnect length by inserting

pipelining registers.
d) Using a more power efficient numerical

representation, such as signed magnitude or Gray
code.

Some options for improving the efficiency of the
arithmetic and logic resources within the data plane are:
a) Using dedicated, atomic, resources for computation.
b) Pipelining arithmetic units.
c) Reduced resources for intra-word communication in

arithmetic units, e.g. carry-chains or conditional flags.
Reduction in the overhead of the configuration logic for

the data plane can be achieved by:
a) Configuring buses rather than individual wires.
b) Sharing configuration bits across larger compute

elements.
c) An overall reduction in total number of possible

configurations and thus a reduction in the configuration
state size.

Making an architecture more coarse-grained means that
computation is done via dedicated adders, multipliers, etc.
rather than constructing such units from more primitive
functional units such as a 4-LUT. While a dedicated
arithmetic unit is guaranteed to be more efficient than one
composed of 4-LUTs, finding a balance of dedicated
resources that match the flexibility of the 4-LUTs is
difficult, and the overhead of multiple dedicated resources
could easily outweigh the individual advantages of each
resource. One common use for CGRAs is to accelerate the
computationally intensive kernel(s) of a larger application.

These kernels are typically inner loops of algorithms or a
set of nested loops. Frequently, it is possible to pipeline
these kernels, thus exploiting the application’s existing
parallelism and increasing its performance. If the application
domain of a CGRA is rich with pipelinable kernels then it is
advantageous to have a general bias towards a specific flow
of computation and data in the datapath and to include
dedicated resources for pipelining in the interconnect. The
control plane of a CGRA plays a similar role to the general
purpose spatial computing fabric of an FPGA. It is
composed of bitwise logic and communication resources, is
flexible and highly connected. Given these requirements, it
is likely that the control plane’s architecture will be similar
to a standard FPGA’s architecture. From a power efficiency
standpoint, the control plane will perform similarly, and thus
provide no advantage over a standard FPGA. However, the
control plane will be only one portion of a CGRA making its
contribution to the energy overhead smaller

III. CONTEXT ARCHITECTURE

The configuration cache provides context words to the
context register of each PE on a cycle-by-cycle basis. From
the context register, these context words configure the PEs.
Fig. 2 shows an example of PE structure and context
architecture for MorphoSys [2]. Thirty-two bit context word
specifies the function for the ALU-multiplier, the inputs to
be selected from MUX_A and MUX_B, the amount and
direction of shift of the ALU output, and the register for
storing the result as Fig. 2(a). Context architecture means
organization of context word with several fields to control
resources in a PE, as shown in Fig. 2(b). The context
architectures of other CGRAs such as are similar to the case
of MorphoSys although there is a wide variance in context
width and kind of fields used by different functionality. For
particular coarse-grained reconfigurable array, the
performance improvement depends on the inherent
parallelism of target applications. In many cases, the
parallelism of an application is smaller than the number of
processing element (PE) arrays. Accordingly, PE array
shows lots of redundant PEs not used at runtime.

If the configuration cache can provide only required bits
(valid bits) of the context words to PE array at runtime, it is
possible to reduce power consumption in configuration
cache. The redundant bits of the context words can be set to
disable and make these invalid at runtime. That way, one
can achieve low-power implementation of CGRA without
performance degradation while context architecture
dynamically supports both the cases at runtime: one case is
uncompressed context word with full bit width and another
case is compressed context word with setting unused part of
configuration cache disabled. In order to support such a

P.Sathiya et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,137-140

© 2010, IJARCS All Rights Reserved 139

dynamic context compression, we propose a new context
architecture and configuration cache structure in this paper.

Figure. 3.1. PE structure and context architecture of MorphoSys. (a) PE

structure. (b) Context architecture.

IV. PROPOSED SYSTEM

A. Compressed ALU Architecture:

In order to design and evaluate compressible context
architecture, we propose a new context architecture design
flow. This design starts from context architecture
initialization, which is similar to the architecture
specification stage of general CGRA design flow.

Figure 4.1. Compressed ALU Architecture

If the configuration cache can provide only required bits
(valid bits) of the context words to PE array at runtime, it is
possible to reduce power consumption in configuration
cache [3]. The redundant bits of the context words can be
set to disable and make these invalid at runtime. That way,
one can achieve low-power implementation of CGRA
without performance degradation. One more method to
reduce power is by dividing the ALU into two parts that’s
in compressed and non-compressed method. The normally
repeating instructions are executed in compressed mode and
instructions that are frequently not used such as branching
instructions are executed in non-compressed mode. The
normal instructions are add, sub etc are executed in
compressed mode.

Figure 4.2. Overall Block Diagram

In compressed mode we use a carry look ahead adder
for execution the normal instructions. The use of carry look
ahead adder is helpful in increasing the speed and saving
power than that of ripple carry adder. Also it reduces area
than the ripple carry adder.

Figure 4.3 and4.4 Shows the output obtained using the logic based on the

compressed ALU idea explained in this paper.

Figure 4.4.Output

P.Sathiya et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,137-140

© 2010, IJARCS All Rights Reserved 140

V. CONCLUSION

Power consumption is very crucial for the CGRA for
embedded systems and all reconfigurable architectures have
a configuration cache for dynamic reconfiguration, which
consumes significant amount of power. In this paper, we
introduced new context architecture with its design flow.
We are compressing the architecture in each instruction
cycle from the decoding section of the processing of a
instructions. The exploration flow efficiently rearranges
PEs with reducing array size, and changes interconnection
scheme to save area and power. In addition, we suggest the
design scheme which splits the computational resources
into two groups (primitive resources and critical resources).
Primitive resources are replicated for each processing
element of the reconfigurable array, whereas area-critical
resources are shared among multiple basic PEs.

VI. REFERENCES

[1]. H. Reiner, “A decade of reconfigurable computing: A
visionaryretrospective,” in Proc. Des. Autom. Test Eur.
Conf., Mar. 2001, pp. 642–649.

[2]. H. Reiner, M. Herz, T. Hoffmann, and U. Nageldinger,
“KressArrayXplorer: A new CAD environment to optimize
reconfigurable datapath array architectures,” in Proc. Asia
South Pacific Des. Autom. Conf., Jan. 2000, pp. 163–168.

[3]. B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins,
“Design methodology for a tightly coupled

VLIW/reconfigurable matrix architecture: A case study,” in
Proc. Des. Autom. Test Eur. Conf., Mar. 2004, pp. 1224–
1229.

[4]. N. Bansal, S. Gupta, N. Dutt, and A. Nicolau, “Analysis of
the performance of coarse-grain reconfigurable architectures
with different processing element configurations,” presented
at theWorkshop Appl. Specific Processors, San Diego, CA,
Dec. 2003.

[5]. A. Lambrechts, P. Raghavan, and M. Jayapala, “Energy-
aware interconnect- exploration of coarse-grained
reconfigurable processors,” presented at the Workshop
Appl. Specific Processors, New York, Sep.2005.

[6]. R.Hartenstein. A decade of reconfigurable computing: A
visionary retrospective. In Proc. DATE, pages 642-649,
2001.

[7]. Hideharu Amano, Yohei Hasegawa, Satoshi Tsutsumi
"MuCCRA chips: Configurable Dynamically-
Reconfigurable Processors" IEEE Asian Solid-State Circuits
Conference November 12-14,2007 / Jeju, Korea [3] Sudang
Yu, LeibaLiu,"Automatic Contexts Switch in Loop Pipeline
for Embedded Coarse-grained Reconfigurable Processor"
Communications, Circuits and Systems, 2008, ICCCAS
2008, International Conference.

[8]. F.Veredas,M.Scheppler,W.Moffat, and B.Mei, "Custom
Implementation of the Coarse-Grained Reconfigurable
ADRES Architecture for Multimedia Purposes," in Proc. Of
FPL, Aug. 2005, pp. 106-111.

