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Abstract: The primary goal of software development is to deliver high-quality software efficiently and in the least amount of time whenever 
possible. To achieve the preceding goal, developers often want to reuse existing frameworks or libraries instead of developing similar code arti-
facts from scratch. The challenging aspect for developers in reusing the existing frameworks or libraries is to understand the usage patterns and 
ordering rules among Application Programming Interfaces (APIs) exposed by those frameworks or libraries, because many of the existing 
frameworks or libraries are not well documented. Incorrect usage of APIs may lead to violated API specifications, leading to security and ro-
bustness defects in the software. Furthermore, usage patterns and specifications might change with library refactorings, requiring changes in the 
software that reuse the library. 
Data mining techniques are applied in building software fault prediction models for   improving the software quality. Early identification of 
high-risk modules can assist in quality enhancement efforts to modules that are likely to have a high number of faults. This paper presents the 
data mining algorithms and techniques most commonly used to produce patterns and extract interesting information from software engineering 
data. The techniques are organized in seven sections: classification trees, association discovery, clustering, artificial neural networks, optimized 
set reduction, Bayesian belief networks, and visual data mining can be used to achieve high software reliability.  

I. INTRODUCTION 

Data mining is a process that employs various analytic 
tools to extract patterns and information from large datasets. 
Today, large numbers of datasets are collected and stored. 
Human are much better at storing data than extracting know-
ledge from it, especially the accurate and valuable informa-
tion needed to create good software. Large datasets are hard 
to understand, and traditional techniques are infeasible for 
finding information from those raw data. Data mining helps 
scientists in hypothesis formation in biology, physics, che-
mistry, medicine, and engineering. The data mining process 
is shown in Figure.1.  
 

 
Figure 1. Data Mining Process [1] 

 
There are seven steps in the process: data integration, da-

ta cleaning, data selection, data transformation, data mining, 
pattern evaluation and knowledge presentation. Data mining 
techniques that can be applied in improving SE include ge-
neralization, characterization, classification, clustering, as-
sociative tree, decision tree or rule induction, frequent pat-
tern mining, and etc. [2].  

The purpose of this study is to explore how data mining 
techniques can be applied to improve Software Reliability. 
Objectives of this study are:  

(a). To review the concept of Software Reliability and 
data mining  

(b). To determine the problems in achieving the Soft-
ware Reliability 

(c). To identify data mining techniques that can be ap-
plied to achieve high Software Reliability  

A. Software Engineering: 

Various types of software engineering data are available 
like historical data, multirun and multisite data and source 
code data. These data have some hidden patterns which are 
very useful and knowledgeable and can be used to predict, 
plan and understand various aspects of a project. Meaningful 
information can be extracted from this data using several 
data mining techniques. Mining transforms static software 
engineering data to active data as depicted in Figure. 2. 
These techniques make software engineering data actionable 
by uncovering hidden patterns and trends. With the help of 
mining techniques, we can mine common patterns and 
detect violation of patterns, which are likely to be bugs. We 
can mine huge data for patterns or locations to narrow down 
the scope of human inspection. In this way, data is con-
verted into knowledge and we are able to achieve better 
programming, defect detection, testing, debugging and 
maintenance leading to highly productive and reliable soft-
ware. 
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Figure 2. Overview of Mining SE Data 

II. LITERATURE SURVEY 

Modeling   Software Quality with Classification Trees 
[3], this paper presents a study on the use of CART (a classi-
fication tree algorithm) to identify fault prone software 
modules based on product and process metrics. The data is 
drawn from large telecommunication software systems at 
Nortel. A Neural Network Approach for Early Detection of 
Program Modules aving High Risk in the Maintenance 
Phase [4], this paper describes the use of neural networks to 
classify software modules into high or low risk. Software 
product attributes based on complexity metrics are used to 
train the network. The authors argue that prediction tech-
nique such as regression and statistical analysis are too sen-
sitive to random anomalies in the data or are too dependent 
on assumptions that are not always met. Estimation of Soft-
ware Reliability by Stratified Sampling [5], this paper 
presents a methodology to estimate operational software 
reliability by stratified sample of beta testers’ code execu-
tion profiles. Cluster analysis is used to group code execu-
tions into dissimilar profiles.  

The authors show that more accurate estimates of failure 
frequencies can be drawn by stratified samples of those 
clustered execution profiles. A Critique of Software Defect 
Prediction [6], this paper presents the use of Bayesian Belief 
Networks (BBN) to build defect prediction models. These 
are the preliminary results of an interesting work. The paper 
has an wonderful discussion on the limitation of traditional 
defect prediction models. The authors argue that BBN mod-
els are interpretable and can include contextual software 
process information in them. This allows domain experts to 
analyze how defect introduction and detection variables 
affect the defect density counts in the model. A Web Labora-
tory for Software Data Analysis [7], this paper describes 
how the authors’ ideas on software visualization are being 
ported to a distributed system based on the World Wide 
Web. The system accesses data from central repositories 
enabling the users to visualize the most up to date data. The 
authors also argue that the system encourages collaborative 
research as observations and displays can be easily repli-
cated and studied in detail by teams working geographically 
apart. 

III. SOFTWARE RELIABILITY 

(a). IEEE 610.12-1990 defines reliability as "The 
ability of a system or component to perform its 
required functions under stated conditions for a 
specified period of time." 

(b). IEEE 982.1-1988 defines Software Reliability 
Management as "The process of optimizing the 
reliability of software through a program that 
emphasizes software error prevention, fault 
detection and removal, and the use of 
measurements to maximize reliability in light of 
project constraints such as resources, schedule and 
performance.“ 

(c). Using these definitions, software reliability is 
comprised of three activities: (a) Error prevention 
(b) Fault detection and removal (c) Measurements 
to maximize reliability. 

A. Why Mining for Soft Reliability?: 

a. Finding bugs is challenging 
b. Require specifications/properties, which often 

don’t exist 
c. Require substantial human efforts in analyzing data 
d. We can mine common patterns as likely specifica-

tions/properties 
e. Detect violations of patterns as likely bugs 
f. We can mine huge data for patterns or locations to 

narrow down the scope of human inspection 
g. E.g., code locations or predicates covered more in 

failing runs less in passing runs may be suspicious 
bug locations 

B. Software Reliability Methods: 

a. Static Bug Detection: Without running the code, 
detect bugs in code 

b. Dynamic Bug Detection (aka. Testing): Run the 
code with some test inputs and detect failures/bugs 

c. Debugging: Given known test failures (symptoms), 
pinpoint the bug locations in the code 

Reliable software must include extra, often redundant, 
code to perform the necessary checking for exceptional 
conditions, the life cycle depicted in Figure.3.  

 
Figure 3. Life Cycle Measurement Attributes 
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This reduces program execution speed and increases the 
amount of store required by the program. Reliability should 
always take precedence over efficiency for the following 
reasons: 
a) Computers are now cheap and fast: There is little 

need to maximize equipment usage. Paradoxically, 
however, faster equipment leads to increasing expecta-
tions on the part of the user so efficiency considera-
tions cannot be completely ignored. 

b) Unreliable software is liable to be discarded by us-
ers: If a company attains a reputation for unreliability 
because of single unreliable product, it is likely to af-
fect future sales of all of that company’s products. 

c) System failure costs may be enormous: For some ap-
plications, such a reactor control system or an aircraft 
navigation system, the cost of system failure is orders 
of magnitude greater than the cost of the control sys-
tem. 

d) Unreliable systems are difficult to improve: It is 
usually possible to tune an inefficient system because 
most execution time is spent in small program sections. 
An unreliable system is more difficult to improve as 
unreliability tends to be distributed throughout the sys-
tem. 

e) Inefficiency is predictable: Programs take a long time 
to execute and users can adjust their work to take this 
into account. Unreliability, by contrast, usually sur-
prises the user. Software that is unreliable can have 
hidden errors which can violate system and user data 
without warning and whose consequences are not im-
mediately obvious. For example, a fault in a CAD pro-
gram used to design aircraft might not be discovered 
until several plane crashers occur. 

f) Unreliable systems may cause information 
loss: Information is very expensive to collect and 
maintains; it may sometimes be worth more than the 
computer system on which it is processed. A great deal 
of effort and money is spent duplicating valuable data 
to guard against data corruption caused by unreliable 
software. 

The software process used to develop that product influ-
ences the reliability of the software product. A repeatable 
process, which is oriented towards defect avoidance, is like-
ly to develop a reliable system. However, there is not a sim-
ple relationship between product and process reliability. 

Users often complain that systems are unreliable. This 
may be due to poor software engineering. However, a com-
mon cause of perceived unreliability is incomplete specifica-
tions. The system performs as specified but the specifica-
tions do not set out how the software should behave in ex-
ceptional situations. As professionals, software engineers 
must do their best to produce reliable systems, which take 
meaningful and useful actions in such situations. 

The Reliability of a software system is a measure of how 
well users think it provides the services that they require. 
Reliability is usually defined as the probability of failure-
free operation for a specified time in a specified environ-
ment for a specific purpose. Say it is claimed that software 
installed on an aircraft will be 99.99% reliable during an 
average flight of five hours. This means that a software fail-
ure of some kind will probably occur in one flight out of 
10000. 

IV. DATA MINING TECHNIQUES 

This section presents the data mining algorithms and 
techniques most commonly used to produce patterns and 
extract interesting information from software engineering 
data. The techniques are organized in seven sections: classi-
fication trees, association discovery, clustering, artificial 
neural networks, optimized set reduction, Bayesian belief 
networks, and visual data mining. 

A. Classification Trees: 

Classification or decision trees are induction techniques 
used to discover classification rules for a chosen attribute of 
a data set by systematically subdividing the information 
contained in this data set. They have been one of the tools of 
choice for building classification models in the software 
engineering field [8] [9][10][11][12][13]. Figure 4 shows an 
example of a classification tree extracted from [14]. In this 
fictitious example, the goal is to identify risky software 
modules based on attributes of the module and its system. 
Consider as an example the right most path from root to leaf 
in Figure 4’s tree, this path is saying that: IF a module has 
more than 10 data bindings AND it is part of a non real-time 
system THEN this module is unlikely to have errors.  

The algorithms used to build classification trees seek to 
find those attributes and values that provide maximum se-
gregation of data records in the data set at each level of the 
tree. In Figure 4, “# of data bindings” was selected first 
because this is the attribute that most equally divides records 
for “error likelihood” in the data set. In terms of information 
theory, this is the attribute that provides most information by 
reducing the most uncertainty about the “error likelihood” 
value. The reasoning is that the more information a tree has 
at each node the smaller this tree will be. Below, we have 
ID3, a classification tree induction algorithm proposed by 
Quinlan in the eighties [15].  
a. Select an attribute as the root of the tree, make branches 

for all values this attribute can have;  
b. Use generated tree to classify the training set. If all 

examples at a particular leaf node have the same value 
for the attribute being classified (e.g., error likely mod-
ule); this leaf node is labeled with this value. If all 
leaves are labeled with a value, the algorithm termi-
nates.  

c. Otherwise, label the node with an attribute that does not 
occur on the path to the root, branch for all possible 
values, and return to step 2. 
 

 
Figure 4. A Classification Tree for “Error Likelihood” of Software Modules 
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B. Association Discovery Techniques: 

Association discovery extracts information from coinci-
dences in the data set. Knowledge discovery takes place 
when these coincidences are previously unknown, non-
trivial, and interpretable by a domain expert. For Example 
Market Basket Analysis, techniques allow one to discover 
correlations or co-occurrences of transactional events. Mar-
ket basket analysis uses cross-correlation matrices in which 
the probability of an event occurring in conjunction with 
every other event is computed.  

C. Clustering Techniques: 

Clustering techniques are among the oldest data mining 
techniques. Unfortunately, we are aware of just a few works 
in which they are used to analyze software engineering data 
[16][17]. The concept of clustering is very simple; consider 
the following example. Suppose that one is moving and 
wants to pack all his belongings. One wants to group ma-
terial with similar characteristics together so he knows how 
to handle them during transportation. Fragile objects should 
be packaged together because they require careful handling. 
Cooking utensils should be packaged together because they 
will go to the kitchen. In this example, objects were clus-
tered together because they have attributes in common about 
the way they behave. The same is true for data or informa-
tion clustering. One wants to group data records with similar 
attributes together so information can be abstracted.  

Data clustering can be used to: (1) produce a high-level 
view of what is going on in the data; (2) automatically iden-
tify data outliers; or (3) classify or predict the value of new 
records using a technique called nearest neighbor classifica-
tion. 

D. Artificial Neural Networks: 

Neural networks have been one of the tools of choice for 
building predictive software engineering models 
[18][19][20][21][22]. They are heavily interconnected net-
works of simple computational elements [23][24]. An ex-
ample of such an element, often called a neuron, is shown in 
Figure 5. The neuron has N inputs x1, x2, … , xN and one 
output y, all having continuous values in a particular do-
main, usually [0,1]. Each neuron input also has a weight 
(w1, w2, … , wN) that determines how much each input 
contributes to the neuron output y. 

 

 
Figure 5. A Neuron and a Sigmoid Function 

The neuron computes its output by calculating the 
weighted sum of its inputs and passing it through a non-
linear filtering function f(x). Figure 5 shows a sigmoid, a 
function commonly used for this purpose. The output is 
calculated as: Neural networks are built by connecting the 
output of a neuron to the input of one or more neurons. Input 

connections are then assigned to a layer of nodes, called 
input nodes, and outputs are assigned to another layer of 
nodes, called output nodes. Figure 6 shows a neural network 
adapted from [19]. In this example, the network architecture 
aims to build a software effort estimation model. It uses 
inputs derived from COCOMO’s cost drivers and other 
important software attributes. The COCOMO cost drivers 
are discussed in depth in [25] and [26]. The attributes shown 
as inputs here are: adjusted delivered source instructions 
(AKDSI); total delivered source instructions (TKDSI); ex-
ecution time constraints (TIME-const); storage time con-
straints (STOR-const); and, computer language (L-Cobol, L-
Fortran, and L-PL1). The output is an effort estimate based 
on the input values and the weights of the network connec-
tions. 
 

 
Figure  6. A Neural Network for Software Development Effort Estimation 

Reiterate 

The main steps in building a neural network for classifi-
cation or prediction, such as the one in Figure 6 , are: (1) 
identify the network inputs and outputs; (2) process the in-
put and output values so that they fall into a numeric range, 
usually between 0 and 1; (3) choose an appropriate topology 
for the network by defining the number of hidden layers; (4) 
train the network on a representative set of examples; (5) 
test the network on a test set independent of the training set 
and retrain the network if necessary; (6) apply the generated 
model to predict outcomes in real situations. The main chal-
lenge in building a neural network model is to train the net-
work (step 4). This is achieved by setting the network con-
nection weights so that the network produces the appropriate 
output patterns (effort estimation, in our case) for corres-
ponding input patterns (software attributes and cost drivers 
values, in our case). The idea is to use a set of examples, 
called a training set, to adjust the network weights to the 
right predictive values. 

E. Optimized Set Reduction: 

Optimized Set Reduction (OSR) is a technique that was 
specifically developed in the realms of software engineering 
data analysis [27][28]. Its approach is to determine what 
subsets of data records provides the best characterization for 
the entities being assessed. It works by successive decompo-
sitions of the training set into subsets. At each step of de-
composition an attribute is selected and records having the 
same values on the selected attribute are extracted from the 
training set to form a new subset. This is done recursively 
on the subsets until a termination criteria is met. Prediction 
and classification can then be done based on the average 



Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                  176 

value of the dependent variable on the terminal subsets. A 
simplified example of an OSR process is seen in Figure 7. 
The example, adapted from [29], shows part of a model for 
maintenance effort prediction. Subset1 is a subset of the 
training set for which the maintainers confidence on the task 
to be performed is HIGH. Similarly, Subset2 is extracted 
from Subset1 by limiting the type of maintenance task to 
corrective (CORR) activities. In the figure, Subset2 meets 
the termination criterion and the effort prediction is done 
based on the record contained in this subset. Like classifica-
tion trees, OSR produces models that can be interpreted by a 
domain expert. However, unlike classification trees, OSR 
does not select a unique attribute at each decomposition 
level. In the above example, the technique does not have to 
use the attribute confidence to derive others subsets from the 
training set. This helps the technique to work well in small 
data sets. 
 

 
Figure 7. An OSR Hierarchy 

F. Bayesian Belief Networks: 

Bayesian Belief Networks (BBN) are graphical networks 
that represent probabilistic relationship between variables 
[30][31]. Recently, BBNs have attracted attention from the 
software engineering community [32][33]. BBNs can be 
used by domain experts to articulate their beliefs about the 
dependencies between different process and product 
attributes. With them one can propagate consistently the 
impact of known attribute values on to probabilities of un-
certain outcomes. Figure 8 shows a BBN from an example 
kindly provided by Norman Fenton [34]. In the example a 
BBN is built to predict software reliability. The nodes 
represent continuous and discrete software attributes. The 
arcs represent influential relationships between the 
attributes. For example, reliability is defined by the number 
of latent faults and frequency of operational usage. Similar-
ly, the coder’s performance is defined by their experience, 
the problem complexity, and the use of IEC 1508 (a safety 
integrity standard). Each node is associated with a probabili-
ty table (PT) that maps the inputs value distribution into an 
output value distribution. The probabilities table may be 
derived based on subjective expert opinion or based on ob-
jective measured data. This flexibility is one of the main 
strengths of this technique. Once the PTs are defined the 

BBN model is ready to be used. The BBN will produce a 
probability distribution for its output attributes once its input 
attributes are measured. 

 

 
Figure 8. A BNN for Software Reliability Prediction 

Current BBN tools support the construction of large 
networks and complex node probability tables for both dis-
crete and continuous attributes. BBNs produce interpretable 
models that allow experts to understand complex chain of 
events through visual graphical displays. They also model 
uncertainty explicitly in their estimates. For these reasons, 
BBN is a promising technique for supporting decision mak-
ing and forecasting in the software engineering field. 

G. Visualization and Visual Data Mining: 

Data visualization can be thought of as the science of 
mapping volumes of multidimensional data into two dimen-
sional computer screens. Visualization is an important tech-
nique for data mining because humans excel at processing 
visual information. Humans can extract important features 
of complex visual scenes in a matter of milliseconds. Good 
visualization techniques play with this human strength by 
displaying complex information in a form that can be quick-
ly processed by the human brain. Bell Labs work on source 
code visualization is an excellent example of how visualiza-
tion can be used in software engineering [35][36]. 

a. Visualization of Multivariate Data: 

There are several ways that data can be visually dis-
played. The challenge is to display multidimensional infor-
mation in a two dimensional screen. This is achieved by 
associating data records or set of data records with a series 
of “visual attributes.” Each visual attribute is then associated 
with a dimension in the real data. Consider the example in 
Table 1. In this table, the data records, representing software 
modules, are described in five dimensions: fan-out, fan-in, 
coupling, number of modifications, and cyclomatic number.
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Table 1. Data Records Describing Software Modules on Several Attributes 

Modules A B C D E F G H I J K L M N O 
Fan-out 7 8 4 6 5 7 7 2 2 5 5 6 6 4 6 
Fan-in 4 5 2 3 3 1 1 4 3 3 2 7 6 3 7 
Coupling 14 22 7 8 4 4 3 5 5 6 12 11 10 7 13 
Number of  
Modifications 

29 25 5 21 19 2 8 3 12 14 35 30 9 15 27 

Cyclomatic  
Number 

122 132 21 85 87 23 19 24 34 84 134 110 124 89 129 

 
In order to display those five dimensions at the same 

time in a visual display, the visualization application has to 
map each software module attribute to a visual attribute. 
Figure 9 shows a screen shot of a display built using a data 
mining tool called Data Miner. A description of Data Miner 
can be found in Appendix B. The picture displays the data 
records of Table 1 mapping the software module attributes 
to the following visual attributes: fan-out is shown as size, 
fan-in is shown as color, coupling is shown as X-position, 
number of modification is shown as Y-position, and cyclo-
matic number is shown Z-position. 

 

 
Figure  9. A Multivariate Display Built Using Data Miner 

b. Visual Data Mining: 

Many modern data visualization tools combine powerful 
visual displays with easy to operate data selection and dis-
play controls. These functionalities allow domain experts to 
interactively explore data so efficiently that they are able to 
find interesting data patterns without using automated data 
mining algorithms. This type of data mining is sometimes 
called visual data mining. A good visual data mining tool 
has the following functionalities:  
a. _ Ability to interactively navigate on the visual canvas 

allowing zooms, rotations, and scans over the dis-
played data. 

b. _ Ability to interactively control display formats and 
the visual attributes of the displayed data. 

c. _ Ability to interactively control the granularity in 
which the data is visualized, allowing the domain ex-
pert to look at it from a high level perspective or to 
drill down to particular data sets. This enables domain 
experts to analyze the big picture or to focus on details 
and singularities of the displayed information. 

 

 
Figure  10. Shows a screen shot from a visual data mining tool called Spot-

fire. 

V. CONCLUSION 

In this paper we have discussed data mining, software 
engineering and software reliability.  We also discussed how 
the different Data mining techniques can be used to explore 
the software engineering data which can be used to achieve 
higher Software Reliability.  
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