
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 172

ISSN No. 0976-5697

The use of data Mining Techniques for Improving Software Reliability
Nadhem Sultan Ali*, Dr. V.P. Pawar

Computational Science Department
SRTM University Nanded, India

na_84ye@yahoo.com*, vrushvijay@yahoo.co.in

Abstract: The primary goal of software development is to deliver high-quality software efficiently and in the least amount of time whenever
possible. To achieve the preceding goal, developers often want to reuse existing frameworks or libraries instead of developing similar code arti-
facts from scratch. The challenging aspect for developers in reusing the existing frameworks or libraries is to understand the usage patterns and
ordering rules among Application Programming Interfaces (APIs) exposed by those frameworks or libraries, because many of the existing
frameworks or libraries are not well documented. Incorrect usage of APIs may lead to violated API specifications, leading to security and ro-
bustness defects in the software. Furthermore, usage patterns and specifications might change with library refactorings, requiring changes in the
software that reuse the library.
Data mining techniques are applied in building software fault prediction models for improving the software quality. Early identification of
high-risk modules can assist in quality enhancement efforts to modules that are likely to have a high number of faults. This paper presents the
data mining algorithms and techniques most commonly used to produce patterns and extract interesting information from software engineering
data. The techniques are organized in seven sections: classification trees, association discovery, clustering, artificial neural networks, optimized
set reduction, Bayesian belief networks, and visual data mining can be used to achieve high software reliability.

I. INTRODUCTION

Data mining is a process that employs various analytic
tools to extract patterns and information from large datasets.
Today, large numbers of datasets are collected and stored.
Human are much better at storing data than extracting know-
ledge from it, especially the accurate and valuable informa-
tion needed to create good software. Large datasets are hard
to understand, and traditional techniques are infeasible for
finding information from those raw data. Data mining helps
scientists in hypothesis formation in biology, physics, che-
mistry, medicine, and engineering. The data mining process
is shown in Figure.1.

Figure 1. Data Mining Process [1]

There are seven steps in the process: data integration, da-

ta cleaning, data selection, data transformation, data mining,
pattern evaluation and knowledge presentation. Data mining
techniques that can be applied in improving SE include ge-
neralization, characterization, classification, clustering, as-
sociative tree, decision tree or rule induction, frequent pat-
tern mining, and etc. [2].

The purpose of this study is to explore how data mining
techniques can be applied to improve Software Reliability.
Objectives of this study are:

(a). To review the concept of Software Reliability and
data mining

(b). To determine the problems in achieving the Soft-
ware Reliability

(c). To identify data mining techniques that can be ap-
plied to achieve high Software Reliability

A. Software Engineering:

Various types of software engineering data are available
like historical data, multirun and multisite data and source
code data. These data have some hidden patterns which are
very useful and knowledgeable and can be used to predict,
plan and understand various aspects of a project. Meaningful
information can be extracted from this data using several
data mining techniques. Mining transforms static software
engineering data to active data as depicted in Figure. 2.
These techniques make software engineering data actionable
by uncovering hidden patterns and trends. With the help of
mining techniques, we can mine common patterns and
detect violation of patterns, which are likely to be bugs. We
can mine huge data for patterns or locations to narrow down
the scope of human inspection. In this way, data is con-
verted into knowledge and we are able to achieve better
programming, defect detection, testing, debugging and
maintenance leading to highly productive and reliable soft-
ware.

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 173

Figure 2. Overview of Mining SE Data

II. LITERATURE SURVEY

Modeling Software Quality with Classification Trees
[3], this paper presents a study on the use of CART (a classi-
fication tree algorithm) to identify fault prone software
modules based on product and process metrics. The data is
drawn from large telecommunication software systems at
Nortel. A Neural Network Approach for Early Detection of
Program Modules aving High Risk in the Maintenance
Phase [4], this paper describes the use of neural networks to
classify software modules into high or low risk. Software
product attributes based on complexity metrics are used to
train the network. The authors argue that prediction tech-
nique such as regression and statistical analysis are too sen-
sitive to random anomalies in the data or are too dependent
on assumptions that are not always met. Estimation of Soft-
ware Reliability by Stratified Sampling [5], this paper
presents a methodology to estimate operational software
reliability by stratified sample of beta testers’ code execu-
tion profiles. Cluster analysis is used to group code execu-
tions into dissimilar profiles.

The authors show that more accurate estimates of failure
frequencies can be drawn by stratified samples of those
clustered execution profiles. A Critique of Software Defect
Prediction [6], this paper presents the use of Bayesian Belief
Networks (BBN) to build defect prediction models. These
are the preliminary results of an interesting work. The paper
has an wonderful discussion on the limitation of traditional
defect prediction models. The authors argue that BBN mod-
els are interpretable and can include contextual software
process information in them. This allows domain experts to
analyze how defect introduction and detection variables
affect the defect density counts in the model. A Web Labora-
tory for Software Data Analysis [7], this paper describes
how the authors’ ideas on software visualization are being
ported to a distributed system based on the World Wide
Web. The system accesses data from central repositories
enabling the users to visualize the most up to date data. The
authors also argue that the system encourages collaborative
research as observations and displays can be easily repli-
cated and studied in detail by teams working geographically
apart.

III. SOFTWARE RELIABILITY

(a). IEEE 610.12-1990 defines reliability as "The
ability of a system or component to perform its
required functions under stated conditions for a
specified period of time."

(b). IEEE 982.1-1988 defines Software Reliability
Management as "The process of optimizing the
reliability of software through a program that
emphasizes software error prevention, fault
detection and removal, and the use of
measurements to maximize reliability in light of
project constraints such as resources, schedule and
performance.“

(c). Using these definitions, software reliability is
comprised of three activities: (a) Error prevention
(b) Fault detection and removal (c) Measurements
to maximize reliability.

A. Why Mining for Soft Reliability?:

a. Finding bugs is challenging
b. Require specifications/properties, which often

don’t exist
c. Require substantial human efforts in analyzing data
d. We can mine common patterns as likely specifica-

tions/properties
e. Detect violations of patterns as likely bugs
f. We can mine huge data for patterns or locations to

narrow down the scope of human inspection
g. E.g., code locations or predicates covered more in

failing runs less in passing runs may be suspicious
bug locations

B. Software Reliability Methods:

a. Static Bug Detection: Without running the code,
detect bugs in code

b. Dynamic Bug Detection (aka. Testing): Run the
code with some test inputs and detect failures/bugs

c. Debugging: Given known test failures (symptoms),
pinpoint the bug locations in the code

Reliable software must include extra, often redundant,
code to perform the necessary checking for exceptional
conditions, the life cycle depicted in Figure.3.

Figure 3. Life Cycle Measurement Attributes

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 174

This reduces program execution speed and increases the
amount of store required by the program. Reliability should
always take precedence over efficiency for the following
reasons:
a) Computers are now cheap and fast: There is little

need to maximize equipment usage. Paradoxically,
however, faster equipment leads to increasing expecta-
tions on the part of the user so efficiency considera-
tions cannot be completely ignored.

b) Unreliable software is liable to be discarded by us-
ers: If a company attains a reputation for unreliability
because of single unreliable product, it is likely to af-
fect future sales of all of that company’s products.

c) System failure costs may be enormous: For some ap-
plications, such a reactor control system or an aircraft
navigation system, the cost of system failure is orders
of magnitude greater than the cost of the control sys-
tem.

d) Unreliable systems are difficult to improve: It is
usually possible to tune an inefficient system because
most execution time is spent in small program sections.
An unreliable system is more difficult to improve as
unreliability tends to be distributed throughout the sys-
tem.

e) Inefficiency is predictable: Programs take a long time
to execute and users can adjust their work to take this
into account. Unreliability, by contrast, usually sur-
prises the user. Software that is unreliable can have
hidden errors which can violate system and user data
without warning and whose consequences are not im-
mediately obvious. For example, a fault in a CAD pro-
gram used to design aircraft might not be discovered
until several plane crashers occur.

f) Unreliable systems may cause information
loss: Information is very expensive to collect and
maintains; it may sometimes be worth more than the
computer system on which it is processed. A great deal
of effort and money is spent duplicating valuable data
to guard against data corruption caused by unreliable
software.

The software process used to develop that product influ-
ences the reliability of the software product. A repeatable
process, which is oriented towards defect avoidance, is like-
ly to develop a reliable system. However, there is not a sim-
ple relationship between product and process reliability.

Users often complain that systems are unreliable. This
may be due to poor software engineering. However, a com-
mon cause of perceived unreliability is incomplete specifica-
tions. The system performs as specified but the specifica-
tions do not set out how the software should behave in ex-
ceptional situations. As professionals, software engineers
must do their best to produce reliable systems, which take
meaningful and useful actions in such situations.

The Reliability of a software system is a measure of how
well users think it provides the services that they require.
Reliability is usually defined as the probability of failure-
free operation for a specified time in a specified environ-
ment for a specific purpose. Say it is claimed that software
installed on an aircraft will be 99.99% reliable during an
average flight of five hours. This means that a software fail-
ure of some kind will probably occur in one flight out of
10000.

IV. DATA MINING TECHNIQUES

This section presents the data mining algorithms and
techniques most commonly used to produce patterns and
extract interesting information from software engineering
data. The techniques are organized in seven sections: classi-
fication trees, association discovery, clustering, artificial
neural networks, optimized set reduction, Bayesian belief
networks, and visual data mining.

A. Classification Trees:

Classification or decision trees are induction techniques
used to discover classification rules for a chosen attribute of
a data set by systematically subdividing the information
contained in this data set. They have been one of the tools of
choice for building classification models in the software
engineering field [8] [9][10][11][12][13]. Figure 4 shows an
example of a classification tree extracted from [14]. In this
fictitious example, the goal is to identify risky software
modules based on attributes of the module and its system.
Consider as an example the right most path from root to leaf
in Figure 4’s tree, this path is saying that: IF a module has
more than 10 data bindings AND it is part of a non real-time
system THEN this module is unlikely to have errors.

The algorithms used to build classification trees seek to
find those attributes and values that provide maximum se-
gregation of data records in the data set at each level of the
tree. In Figure 4, “# of data bindings” was selected first
because this is the attribute that most equally divides records
for “error likelihood” in the data set. In terms of information
theory, this is the attribute that provides most information by
reducing the most uncertainty about the “error likelihood”
value. The reasoning is that the more information a tree has
at each node the smaller this tree will be. Below, we have
ID3, a classification tree induction algorithm proposed by
Quinlan in the eighties [15].
a. Select an attribute as the root of the tree, make branches

for all values this attribute can have;
b. Use generated tree to classify the training set. If all

examples at a particular leaf node have the same value
for the attribute being classified (e.g., error likely mod-
ule); this leaf node is labeled with this value. If all
leaves are labeled with a value, the algorithm termi-
nates.

c. Otherwise, label the node with an attribute that does not
occur on the path to the root, branch for all possible
values, and return to step 2.

Figure 4. A Classification Tree for “Error Likelihood” of Software Modules

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 175

B. Association Discovery Techniques:

Association discovery extracts information from coinci-
dences in the data set. Knowledge discovery takes place
when these coincidences are previously unknown, non-
trivial, and interpretable by a domain expert. For Example
Market Basket Analysis, techniques allow one to discover
correlations or co-occurrences of transactional events. Mar-
ket basket analysis uses cross-correlation matrices in which
the probability of an event occurring in conjunction with
every other event is computed.

C. Clustering Techniques:

Clustering techniques are among the oldest data mining
techniques. Unfortunately, we are aware of just a few works
in which they are used to analyze software engineering data
[16][17]. The concept of clustering is very simple; consider
the following example. Suppose that one is moving and
wants to pack all his belongings. One wants to group ma-
terial with similar characteristics together so he knows how
to handle them during transportation. Fragile objects should
be packaged together because they require careful handling.
Cooking utensils should be packaged together because they
will go to the kitchen. In this example, objects were clus-
tered together because they have attributes in common about
the way they behave. The same is true for data or informa-
tion clustering. One wants to group data records with similar
attributes together so information can be abstracted.

Data clustering can be used to: (1) produce a high-level
view of what is going on in the data; (2) automatically iden-
tify data outliers; or (3) classify or predict the value of new
records using a technique called nearest neighbor classifica-
tion.

D. Artificial Neural Networks:

Neural networks have been one of the tools of choice for
building predictive software engineering models
[18][19][20][21][22]. They are heavily interconnected net-
works of simple computational elements [23][24]. An ex-
ample of such an element, often called a neuron, is shown in
Figure 5. The neuron has N inputs x1, x2, … , xN and one
output y, all having continuous values in a particular do-
main, usually [0,1]. Each neuron input also has a weight
(w1, w2, … , wN) that determines how much each input
contributes to the neuron output y.

Figure 5. A Neuron and a Sigmoid Function

The neuron computes its output by calculating the
weighted sum of its inputs and passing it through a non-
linear filtering function f(x). Figure 5 shows a sigmoid, a
function commonly used for this purpose. The output is
calculated as: Neural networks are built by connecting the
output of a neuron to the input of one or more neurons. Input

connections are then assigned to a layer of nodes, called
input nodes, and outputs are assigned to another layer of
nodes, called output nodes. Figure 6 shows a neural network
adapted from [19]. In this example, the network architecture
aims to build a software effort estimation model. It uses
inputs derived from COCOMO’s cost drivers and other
important software attributes. The COCOMO cost drivers
are discussed in depth in [25] and [26]. The attributes shown
as inputs here are: adjusted delivered source instructions
(AKDSI); total delivered source instructions (TKDSI); ex-
ecution time constraints (TIME-const); storage time con-
straints (STOR-const); and, computer language (L-Cobol, L-
Fortran, and L-PL1). The output is an effort estimate based
on the input values and the weights of the network connec-
tions.

Figure 6. A Neural Network for Software Development Effort Estimation

Reiterate

The main steps in building a neural network for classifi-
cation or prediction, such as the one in Figure 6 , are: (1)
identify the network inputs and outputs; (2) process the in-
put and output values so that they fall into a numeric range,
usually between 0 and 1; (3) choose an appropriate topology
for the network by defining the number of hidden layers; (4)
train the network on a representative set of examples; (5)
test the network on a test set independent of the training set
and retrain the network if necessary; (6) apply the generated
model to predict outcomes in real situations. The main chal-
lenge in building a neural network model is to train the net-
work (step 4). This is achieved by setting the network con-
nection weights so that the network produces the appropriate
output patterns (effort estimation, in our case) for corres-
ponding input patterns (software attributes and cost drivers
values, in our case). The idea is to use a set of examples,
called a training set, to adjust the network weights to the
right predictive values.

E. Optimized Set Reduction:

Optimized Set Reduction (OSR) is a technique that was
specifically developed in the realms of software engineering
data analysis [27][28]. Its approach is to determine what
subsets of data records provides the best characterization for
the entities being assessed. It works by successive decompo-
sitions of the training set into subsets. At each step of de-
composition an attribute is selected and records having the
same values on the selected attribute are extracted from the
training set to form a new subset. This is done recursively
on the subsets until a termination criteria is met. Prediction
and classification can then be done based on the average

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 176

value of the dependent variable on the terminal subsets. A
simplified example of an OSR process is seen in Figure 7.
The example, adapted from [29], shows part of a model for
maintenance effort prediction. Subset1 is a subset of the
training set for which the maintainers confidence on the task
to be performed is HIGH. Similarly, Subset2 is extracted
from Subset1 by limiting the type of maintenance task to
corrective (CORR) activities. In the figure, Subset2 meets
the termination criterion and the effort prediction is done
based on the record contained in this subset. Like classifica-
tion trees, OSR produces models that can be interpreted by a
domain expert. However, unlike classification trees, OSR
does not select a unique attribute at each decomposition
level. In the above example, the technique does not have to
use the attribute confidence to derive others subsets from the
training set. This helps the technique to work well in small
data sets.

Figure 7. An OSR Hierarchy

F. Bayesian Belief Networks:

Bayesian Belief Networks (BBN) are graphical networks
that represent probabilistic relationship between variables
[30][31]. Recently, BBNs have attracted attention from the
software engineering community [32][33]. BBNs can be
used by domain experts to articulate their beliefs about the
dependencies between different process and product
attributes. With them one can propagate consistently the
impact of known attribute values on to probabilities of un-
certain outcomes. Figure 8 shows a BBN from an example
kindly provided by Norman Fenton [34]. In the example a
BBN is built to predict software reliability. The nodes
represent continuous and discrete software attributes. The
arcs represent influential relationships between the
attributes. For example, reliability is defined by the number
of latent faults and frequency of operational usage. Similar-
ly, the coder’s performance is defined by their experience,
the problem complexity, and the use of IEC 1508 (a safety
integrity standard). Each node is associated with a probabili-
ty table (PT) that maps the inputs value distribution into an
output value distribution. The probabilities table may be
derived based on subjective expert opinion or based on ob-
jective measured data. This flexibility is one of the main
strengths of this technique. Once the PTs are defined the

BBN model is ready to be used. The BBN will produce a
probability distribution for its output attributes once its input
attributes are measured.

Figure 8. A BNN for Software Reliability Prediction

Current BBN tools support the construction of large
networks and complex node probability tables for both dis-
crete and continuous attributes. BBNs produce interpretable
models that allow experts to understand complex chain of
events through visual graphical displays. They also model
uncertainty explicitly in their estimates. For these reasons,
BBN is a promising technique for supporting decision mak-
ing and forecasting in the software engineering field.

G. Visualization and Visual Data Mining:

Data visualization can be thought of as the science of
mapping volumes of multidimensional data into two dimen-
sional computer screens. Visualization is an important tech-
nique for data mining because humans excel at processing
visual information. Humans can extract important features
of complex visual scenes in a matter of milliseconds. Good
visualization techniques play with this human strength by
displaying complex information in a form that can be quick-
ly processed by the human brain. Bell Labs work on source
code visualization is an excellent example of how visualiza-
tion can be used in software engineering [35][36].

a. Visualization of Multivariate Data:

There are several ways that data can be visually dis-
played. The challenge is to display multidimensional infor-
mation in a two dimensional screen. This is achieved by
associating data records or set of data records with a series
of “visual attributes.” Each visual attribute is then associated
with a dimension in the real data. Consider the example in
Table 1. In this table, the data records, representing software
modules, are described in five dimensions: fan-out, fan-in,
coupling, number of modifications, and cyclomatic number.

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 177

Table 1. Data Records Describing Software Modules on Several Attributes

Modules A B C D E F G H I J K L M N O
Fan-out 7 8 4 6 5 7 7 2 2 5 5 6 6 4 6
Fan-in 4 5 2 3 3 1 1 4 3 3 2 7 6 3 7
Coupling 14 22 7 8 4 4 3 5 5 6 12 11 10 7 13
Number of
Modifications

29 25 5 21 19 2 8 3 12 14 35 30 9 15 27

Cyclomatic
Number

122 132 21 85 87 23 19 24 34 84 134 110 124 89 129

In order to display those five dimensions at the same

time in a visual display, the visualization application has to
map each software module attribute to a visual attribute.
Figure 9 shows a screen shot of a display built using a data
mining tool called Data Miner. A description of Data Miner
can be found in Appendix B. The picture displays the data
records of Table 1 mapping the software module attributes
to the following visual attributes: fan-out is shown as size,
fan-in is shown as color, coupling is shown as X-position,
number of modification is shown as Y-position, and cyclo-
matic number is shown Z-position.

Figure 9. A Multivariate Display Built Using Data Miner

b. Visual Data Mining:

Many modern data visualization tools combine powerful
visual displays with easy to operate data selection and dis-
play controls. These functionalities allow domain experts to
interactively explore data so efficiently that they are able to
find interesting data patterns without using automated data
mining algorithms. This type of data mining is sometimes
called visual data mining. A good visual data mining tool
has the following functionalities:
a. _ Ability to interactively navigate on the visual canvas

allowing zooms, rotations, and scans over the dis-
played data.

b. _ Ability to interactively control display formats and
the visual attributes of the displayed data.

c. _ Ability to interactively control the granularity in
which the data is visualized, allowing the domain ex-
pert to look at it from a high level perspective or to
drill down to particular data sets. This enables domain
experts to analyze the big picture or to focus on details
and singularities of the displayed information.

Figure 10. Shows a screen shot from a visual data mining tool called Spot-

fire.

V. CONCLUSION

In this paper we have discussed data mining, software
engineering and software reliability. We also discussed how
the different Data mining techniques can be used to explore
the software engineering data which can be used to achieve
higher Software Reliability.

VI. REFERENCES

[1]. Y. Chen, X. H. Shen, P. Du, and B. Ge, “Research on soft-
ware defect prediction based on data mining,” 2nd Interna-
tional Conference on Computer and Automation Engineer-
ing (ICCAE) 2010, Vol. 1, pp. 563-567, Apr. 2010.

[2]. R. W. DePree, “Pattern recognition in software engineer-
ing,” IEEE Computer 1983, pp. 48-53, 1983.

[3]. Taghi M. Khoshgoftaar and Edward B. Allen. Modeling
Software Quality with Classification Trees. In Recent Ad-
vances in Reliability and Quality Engineering, Hoang
Pham Editor. World Scientific, Singapore, 1999.

[4]. Taghi M. Khoshgoftaar and D. L. Lanning. A Neural Net-
work Approach for Early Detection of Program Modules
Having High Risk in the Maintenance Phase. J. Systems
Software, 29(1), pp. 85-91, 1995.

[5]. Andy Podgurski, Wassim Masri, Yolanda McCleese, and
Francis G. Wolff. Estimation of Software Reliability by

Nadhem Sultan Ali et al, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,172-178

© 2010, IJARCS All Rights Reserved 178

Stratified Sampling. ACM Trans. on Soft. Eng. and Me-
thodology, (8)3, pp. 263-283, July 1999.

[6]. Norman Fenton and Martin Neil. A Critique of Software
Defect Prediction Models. To appear in the IEEE Trans. on
Soft. Eng., 1999.Stephen G. Eick, Audris Mockus, Tood L.
Graves, Alan F. Karr. A Web Laboratory for Software Data
Analysis. World Wide Web, 12, pp. 55-60, 1998.

[7]. Stephen G. Eick, Audris Mockus, Tood L. Graves, Alan F.
Karr. A Web Laboratory for Software DataAnalysis. World
Wide Web, 12, pp. 55-60, 1998.

[8]. A. A. Porter and R. W. Selby. Empirically Guided Soft-
ware Development Using Metric-Based Classification
Trees. IEEE Software, 7(2), pp. 46-54, March 1990.

[9]. A. A. Porter and R. W. Selby. Evaluating Techniques for
Generating Metric-based Classification Trees. J. Systems
Software, pp. 209-218, December 1990.

[10]. R. W. Selby and A. A. Porter. Learning from Examples:
Generation and Evaluation of Decision Trees for Software
Resource Analysis. IEEE Trans. on Soft. Eng., 14(12), pp.
1743-1757,December 1988.

[11]. K. Srinivasan and D. Fisher. Machine Learning Approach-
es to Estimating Software Development Effort. IEEE
Trans. On Soft. Eng., 21(2), pp. 126-137, February 1995.

[12]. J. Tian. Integrating Time Domain and Input Domain Ana-
lyses of Software Reliability Using Tree-Based Models.
IEEE Trans. on Soft. Eng., 21(12), pp. 945-958, December
1995.

[13]. J. Tian and J. Palma. Analyzing and Improving Reliability:
A Tree-based Approach. IEEE Software, pp. 97-104, 15(2),
March-April 1998.

[14]. R. P. Lippmann. An Introduction to Computing with Neur-
al Nets. IEEE Acoustical, Speech, and Signal Processing
Magazine, 4, pp. 4-22, 1987. Reprinted in Neural Net-
works: Theoretical Foundations and Analysis, Edited by
Clifford Lau, IEEE Press, 1992. Also reprinted in Optical
Neural Networks, Edited by S. Jutamulia, SPIE Optical
Engineering Press, 1994.

[15]. J. R. Quinlan. Induction of Decision Trees. Machine Learn-
ing, 1(1), pages 81-106, 1986.

[16]. Y. Kodratoff and R. S. Michalski, editors. Machine Learn-
ing, an Artificial Intelligence Approach, Volume 3. Mor-
gan Kaufmann, San Mateo, California, 1990.

[17]. A. Podgurski, W. Masri, Y. McCleese, and F. G. Wolff.
Estimation of Software Reliability by Stratified Sampling.
ACM Trans. on Soft. Eng. and Methodology, (8)3, pp. 263-
283, July 1999.

[18]. M. Jørgensen. Experience With the Accuracy of Software
Maintenance Task Effort Prediction Models. IEEE TSE,
21(8), pp. 674-681, August 1995.

[19]. T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J.
Aud. Neural Networks for Software Quality Modeling of a
Very Large Telecommunications System. IEEE Trans. On
Neural Networks, (8)4, pp. 902-909, July, 1997.

[20]. F. Lanubile and G. Visaggio, Evaluating predictive quality
models derived from software measures lessons learned”,
The Journal of Systems and Software, 38:225-234, 1997.

[21]. K. Srinivasan and D. Fisher. Machine Learning Approach-
es to Estimating Software Development Effort. IEEE
Trans. On Soft. Eng., 21(2), pp. 126-137, February 1995.

[22]. J. P. Bingus. Data Mining With Neural Networks: Solving
Business Problems – From Application Development to
Decision Support. McGraw-Hill, New York, 1996.

[23]. K. Swingler. Applying Neural Networks: A Practical
Guide. Academic Press, London, 1996.

[24]. B. W. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[25]. B. W. Boehm. Software Engineering Economics. IEEE
Trans. On Soft. Eng., 10(1), pp. 4-21, January 1994.

[26]. L. C. Briand, V. R. Basili, and C. J. Hetmanski. Develop-
ing Interpretable Models with Optimized Set Reduction for
Identifying High-Risk Software Components. IEEE Trans.
on Soft. Eng., 19(11), pp. 1028-1044, November 1993.

[27]. L. C. Briand, V. R. Basili, and W. Thomas. A Pattern
Recognition Approach for Software Engineering Data
Analysis. IEEE Trans. on Soft. Eng., 18(11), pp. 931-942,
November 1992.

[28]. M. Jørgensen. Experience With the Accuracy of Software
Maintenance Task Effort Prediction Models. IEEE TSE,
21(8), pp. 674-681, August 1995.

[29]. W. L. Buntine. Operations for Learning with Graphical
Models. Journal of Artificial Intelligence Research, 2, pp.
159-225, 1994.

[30]. G. F. Cooper and E. Herskovitz. A Bayesian Method for
the Induction of Probabilistic Networks from Data. Ma-
chine Learning, 9, pp. 309-347, 1992.

[31]. M. Neil and N. E. Fenton. Predicting software quality using
Bayesian belief networks. Proc 21st Annual Software Eng
Workshop, NASA Goddard Space Flight Centre, pp. 217-
230, Dec, 1996.

[32]. M. Neil, B. Littlewood, and N. E. Fenton. Applying Baye-
sian belief networks to systems dependability assessment,
in Proceedings of 4th Safety Critical Systems Symposium,
Springer Verlag, pp. 71-93, 1996.

[33]. N. E. Fenton. Bayesian Belief Networks – An Overview
Web Article. In WWW:
http://www.agena.co.uk/bbn_article/bbns.html. Agena Ltd,
1999.

[34]. T. A. Ball and S. G. Eick. Software Visualization in the
Large. IEEE Computer, (29)4, pp. 33-43, April 1996.

[35]. S. G. Eick, A. Mockus, T. L. Graves, A. F. Karr. A Web
Laboratory for Software Data Analysis. World Wide Web,
12, pp. 55-60, 1998.

[36]. S.G.Eick , J.L. steffen. And E.E . Summer, Jr. SeeSoft – A
Tool for Visualizing Line-Oriented Software Statistics.
IEEE Trans. on Soft. Eng., (18)11, pp. 957-968. November
1992.

