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Abstract:   This paper investigates the global exponential synchronization of hyperchaotic systems, viz.  identical hyperchaotic Liu systems 

(Wang and Liu, 2006), identical hyperchaotic Cai systems (Wang, Cai, Miao and Tian, 2010), and synchronization of hyperchaotic Liu and Cai 

systems. Active nonlinear feedback control is the method used to achieve the synchronization of the hyperchaotic systems addressed in this 

paper. Our theorems on global exponential synchronization for hyperchaotic Liu and Cai systems are established using Lyapunov stability 

theory. Since the Lyapunov exponents are not required for these calculations, the nonlinear feedback control method is effective and convenient 

to synchronize identical and different hyperchaotic Liu and Cai systems. Numerical simulations are also given to illustrate and validate the 

synchronization results for hyperchaotic Liu and Cai systems. 
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I. INTRODUCTION 

Chaotic systems are dynamical systems that are highly 

sensitive to initial conditions. This sensitivity is popularly 

referred to as the butterfly effect [1].  

Chaos synchronization problem was first described by 

Fujisaka and Yemada [2] in 1983. This problem did not receive 

great attention until Pecora and Carroll ([3]-[4]) published their 

results on chaos synchronization in early 1990s. From then on, 

chaos synchronization has been extensively and intensively 

studied in the last three decades ([3]-[22]). Chaos theory has 

been explored in a variety of fields including physical [5], 

chemical [6], ecological [7] systems, secure communications 

([8]-[10]) etc. 

Synchronization of chaotic systems is a phenomenon that 

may occur when two or more chaotic oscillators are coupled or 

when a chaotic oscillator drives another chaotic oscillator. 

Because of the butterfly effect which causes the exponential 

divergence of the trajectories of two identical chaotic systems 

started with nearly the same initial conditions, synchronizing 

two chaotic systems is seemingly a very challenging problem.  

In most of the chaos synchronization approaches, the 

master-slave or drive-response formalism is used. If a 

particular chaotic system is called the master or drive system 

and another chaotic system is called the slave or response 

system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that 

the output of the slave system tracks the output of the master 

system asymptotically. 

Since the seminal work by Carroll and Pecora ([3]-[4]), a 

variety of impressive approaches have been proposed for the 

synchronization for the chaotic systems such as PC method 

([3]-[4]), the sampled-data feedback synchronization method 

([10]-11]), OGY method [12], time-delay feedback approach 

[13], backstepping design method [14], adaptive design 

method ([15]-[19]), sliding mode control method [20], 

Lyapunov stability theory method [21], hyperchaos [22], etc.  

Hyperchaotic system is usually defined as a chaotic system 

with at least two positive Lyapunov exponents, implying that 

its dynamics are expanded in several different directions 

simultaneously. For a continuous dynamical system to exhibit 

hyperchaotic behaviour, the system must be at least four-

dimensional. Hyperchaotic systems have more complex 

dynamical behavious, which can be used to improve the 

security of a chaotic communication system. 

This paper has been organized as follows. In Section II, we 

give the problem statement and our methodology. In Section 

III, we discuss the chaos synchronization of two identical 

hyperchaotic Liu systems ([23], 2006). In Section IV, we 

discuss the chaos synchronization of two identical 

hyperchaotic Cai systems ([24], 2010). In Section V, we 

discuss the heterogeneous synchronization of hyperchaotic Liu 

and Cai systems. In Section VI, we present the conclusions of 

this paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY   

Consider the chaotic system described by the dynamics 

               ( )x Ax f x= +�                                        (1) 

where 
n

x ∈ R is the state of the system, A is the n n× matrix 

of the system parameters and : n n
f →R R is the nonlinear 

part of the system. We consider the system (1) as the master or 

drive system.  

As the slave or response system, we consider the following 

chaotic system described by the dynamics 

                    ( )y By g y u= + +�                                     (2) 
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where 
n

y ∈ R is the state vector of the response system, B is 

the n n×  matrix of the system parameters, : n n
g →R R is 

the nonlinear part of the response system and 
n

u ∈ R is the 

controller of the response system. 

 If A B= and ,f g= then x and y are the states of two 

identical chaotic systems. If A B≠ and ,f g≠ then x and 

y  are the states of two different chaotic systems. 

In the nonlinear feedback control approach, we design a 

feedback controller ,u which synchronizes the states of the 

master system (1) and the slave system (2) for all initial 

conditions (0), (0) .n
x z ∈ R  

If we define the synchronization error as 

                   ,e y x= −                                                  (3) 

then the synchronization error dynamics is obtained as 

            ( ) ( )e By Ax g y f x u= − + − +�                        (4) 

Thus, the global synchronization problem is essentially to 

find a feedback controller u so as to stabilize the error 

dynamics (4) for all initial conditions (0) ,n
e ∈ R i.e. 

             lim ( ) 0
t

e t
→∞

=                                               (5) 

for all initial conditions (0) .n
e ∈ R  

We use Lyapunov function technique as our methodology. 

We take as a candidate Lyapunov function 

           ( ) ,T
V e e Pe=                                                 (6) 

where P is a positive definite matrix. Note that 

: n n
V →R R is a positive definite function by construction. 

We assume that the parameters of the master and slave systems 

are known and that the states of both systems (1) and (2) are 

measurable. 

If we we find a feedback controller u so that  

                ( ) ,T
V e e Qe= −�                                                  (7) 

where Q  is a positive definite matrix, then : n n
V →� R R is a 

negative definite function. 

Thus, by Lyapunov stability theory [26], the error dynamics 

(4) is globally exponentially stable and hence the condition (5) 

will be satisfied for all initial conditions (0) .n
e R∈  Then the 

states of the master system (1) and slave system (2) are globally 

exponentially synchronized. 

III. SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC 

LIU  SYSTEMS 

In this section, we apply the nonlinear control technique for 

the synchronization of two identical hyperchaotic Liu systems 

([23], 2006) described by 

      

1 2 1

2 1 1 3 4

2

3 3 1

4 1

( )x a x x

x bx kx x x

x cx hx

x dx

= −

= − +

= − +

= −

�

�

�

�

                                         (8)  

which is the master or drive system and 

            

1 2 1 1

2 1 1 3 4 2

2

3 3 1 3

4 1 4

( )y a y y u

y by ky y y u

y cy hy u

y dy u

= − +

= − + +

= − + +

= − +

�

�

�

�

                               (9) 

which is the slave or response system, where all the parameters 

, , , , ,a b c d h k are positive real constants and  

             [ ]1 2 3 4

T
u u u u u=  

is the nonlinear controller to be designed. 

The hyperchaotic Liu system (8) is a new 4-D hyperchaotic 

system derived from the Liu system by Wang and Liu ([23], 

2006). 

 The four-dimensional system (8) is hyperchaotic when 

 10, 40, 1, 2.5, 10.6a b k c d= = = = =  and 4.h =  

Figure 1 depicts the portrait of the hyperchaotic Liu system 

(8). 

 
Figure 1. Portrait of the Hyperchaotic Liu System (8) 

The synchronization error e  is defined by 

          ,       ( 1,2,3, 4)i i ie y x i= − =                        (10) 

The error dynamics is obtained as 

           

1 2 1 1

2 1 4 1 3 1 3 2

2 2

3 3 1 1 3

4 1 4

( )

( )

( )

e a e e u

e be e k y y x x u

e ce h y x u

e de u

= − +

= + − − +

= − + − +

= − +

�

�

�

�

            (11) 

In order to find the synchronizing controller, we first let 

           
2 2 2

3 3 3

a b

a b

u u u

u u u

= +

= +
                                                (12) 

where 

                
( )

( )
2 1 3 1 3

2 2

3 1 1

b

b

u k y y x x

u h y x

= −

= − −
                                    (13) 

Substituting (12) and (13) into (11), we obtain the error 

dynamics as 
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1 2 1 1

2 1 4 2

3 3 3

4 1 4

( )

a

a

e a e e u

e be e u

e ce u

e de u

= − +

= + +

= − +

= − +

�

�

�

�

                                        (14) 

Next, we consider the candidate Lyapunov function 

          ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                (15) 

A simple calculation gives 

  

2 2

1 3 1 2 2 4 1 4

1 1 2 2 3 3 4 4

( ) ( )

             
a a

V e ae ce a b e e e e de e

e u e u e u e u

= − − + + + −

+ + + +

�

  (16) 

Therefore, we choose 

     

1 2

2 2

3

4 4 1

( )

0

a

a

u a b e

u e

u

u e de

= − +

= −

=

= − +

                                                      (17) 

Substituting (17) into (14), the error dynamics (14) 

simplifies to 

       

1 1 2

2 1 2

3 3

4 4

e ae be

e be e

e ce

e e

= − −

= −

= −

= −

�

�

�

�

                                                    (18) 

Substituting (17) into (16), we also obtain 

  
2 2 2 2

1 2 3 4( )V e ae e ce e= − − − −�                                    (19) 

which is a negative definite function on 
4

R since a and  c are 

positive constants. 

Hence, by Lyapunov stability theory [25], the error 

dynamics (18) is globally exponentially stable. 

Combining (12), (13) and (17), the synchronizing nonlinear 

controller u is obtained as 

      
( )

1 2

2 2 1 3 1 3

2 2

3 1 1

4 4 1

( )

( )

h

u a b e

u e k y y x x

u y x

u e de

= − +

= − + −

= − −

= − +

                                 (20) 

Thus, we have proved the following result. 

Theorem 1. The identical hyperchaotic Liu systems (8) and (9) 

are exponentially and globally synchronized for any initial 

conditions with the nonlinear controller u defined by (19).  

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method is used to solve the systems using MATLAB 

with time-step equal to 
610 .−

 

For the hyperchaotic Liu system (8), the parameter values 

are taken as those which result in the hyperchaotic behaviour of 

the system, viz. 10, 40, 1, 2.5, 10.6a b k c d= = = = =  and 

4.h =  [23]. 

The initial values of the master system (8) are taken as 

     1 2 3 4(0) 5,  (0) 7,  (0) 8,  (0) 3x x x x= = = =  

while the initial values of the slave system (9) are taken as 

          1 2 3 3(0) 9,  (0) 2,  (0) 4,  (0) 8.y y y y= = = =  

Figure 2 shows that synchronization between the states of 

the master system (8) and the slave system (9) occur in 8 

seconds. 

 
Figure 2. Synchronization of the States of (8) and (9) 

IV. SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC 

CAI  SYSTEMS 

In this section, we apply the nonlinear control technique for 

the synchronization of two identical hyperchaotic Cai systems 

([24], 2010) described by 

       

1 2 1

2 1 2 1 3 4

2

3 2 3

4 1

( )x x x

x x x x x x

x x rx

x kx

α

β γ

= −

= + − +

= −

= −

�

�

�

�

                             (21)  

which is the master or drive system and 

             

1 2 1 1

2 1 2 1 3 4 2

2

3 2 3 3

4 1 4

( )y y y u

y y y y y y u

y y ry u

y ky u

α

β γ

= − +

= + − + +

= − +

= − +

�

�

�

�

                  (22) 

which is the slave or response system, where all the parameters 

, , , ,r kα β γ are positive real constants and  

             [ ]1 2 3 4

T
u u u u u=  

is the nonlinear controller to be designed. 

The hyperchaotic Cai system (21) is a new 4-D 

hyperchaotic system derived by Wang, Cai, Miao and Tan 

([24], 2010).  

The Cai system (21) is hyperchaotic when           
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27.5,  3,  19.3,  2.9rα β γ= = = =   and  3.3.k =  

Figure 3 illustrates the portrait of the hyperchaotic Cai 

system (21). 

 

 

Figure 3.  Portrait of the Hyperchaotic Cai System (21) 

 The synchronization error e  is defined by 

          ,       ( 1, 2,3,4)i i ie y x i= − =                        (23) 

The error dynamics is obtained as 

          

1 2 1 1

2 1 2 4 1 3 1 3 2

2 2

3 3 2 2 3

4 1 4

( )e e e u

e e e e y y x x u

e re y x u

e ke u

α

β γ

= − +

= + + − + +

= − + − +

= − +

�

�

�

�

       (24) 

In order to find the synchronizing controller, we first let 

           
2 2 2

3 3 3

a b

a b

u u u

u u u

= +

= +
                                                (25) 

where 

                
2 1 3 1 3

2 2

3 2 2

b

b

u y y x x

u y x

= −

= − +
                                          (26) 

Substituting (25) and (26) into (24), we obtain the error 

dynamics as 

                 

1 2 1 1

2 1 2 4 2

3 3 3

4 1 4

( )

a

a

e e e u

e e e e u

e re u

e ke u

α

β γ

= − +

= + + +

= − +

= − +

�

�

�

�

                           (27) 

Next, we consider the candidate Lyapunov function 

    ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

T
V e e e e e e e= = + + +                    (28) 

A simple calculation gives 

2 2 2

1 2 3 1 2 1 4

1 1 2 2 3 3 4 4

( ) ( )

              a a

V e e e re e e ke e

e u e u e u e u

α γ α β= − + − + + −

+ + + +

�

    (29) 

 

 

Therefore, we choose 

              

1 2

2 2

3

4 1 4

( )

( 1)

0

a

a

u e

u e

u

u ke e

α β

γ

= − +

= − +

=

= −

                                            (30)                   

Substituting (30) into (27), the error dynamics (27) 

simplifies to 

       

1 1 2

2 1 2

3 3

4 4

e e e

e e e

e re

e e

α β

β

= − −

= −

= −

= −

�

�

�

�

                                                 (31) 

Substituting (30) into (29), we also obtain 

  
2 2 2 2

1 2 3 4( )V e e e re eα= − − − −�                                    (32) 

which is a negative definite function on 
4

R since  α and   r  

are positive constants. 

Hence, by Lyapunov stability theory [25], the error 

dynamics (32) is globally exponentially stable. 

Combining (25), (26) and (30), the synchronizing nonlinear 

controller u is obtained as 

     

1 2

2 2 1 3 1 3

2 2

3 2 2

4 4 1

( 1)

( )

e

u e

u y y x x

u y x

u e ke

γ

α β

+

= − +

= − + −

= − +

= − +

                             (33) 

Thus, we have proved the following result. 

Theorem 2. The identical hyperchaotic Cai systems (21) and 

(22) are exponentially and globally synchronized for any initial 

conditions with the nonlinear controller u defined by (33).  

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method is used to solve the systems using MATLAB 

with time-step equal to 
610 .−

 

For the hyperchaotic Cai system (21), the parameter values 

are taken as those which result in the hyperchaotic behaviour of 

the system, viz.  

 27.5,  3,  19.3,  2.9rα β γ= = = =  and 3.3.k =  

The initial values of the master system (21) are taken as 

     1 2 3 4(0) 10,  (0) 6,  (0) 4,  (0) 9x x x x= = = =  

while the initial values of the slave system (22) are taken as 
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          1 2 3 3(0) 4,  (0) 12,  (0) 15,  (0) 16.y y y y= = = =  

Figure 4 shows that synchronization between the states of 

the master system (21) and the slave system (22) occur in 8 

seconds. 

 
Figure 4. Synchronization of the States of (21) and (22) 

V. SYNCHRONIZATION OF HYPERCHAOTIC LIU AND CAI 

SYSTEMS  

In this section, we apply the nonlinear control technique for 

the synchronization of non-identical hyperchaotic Liu and Cai 

systems. As the master system, we consider the hyperchaotic 

Liu system ([23], 2006) described by 

      

1 2 1

2 1 1 3 4

2

3 3 1

4 1

( )x a x x

x bx kx x x

x cx hx

x dx

= −

= − +

= − +

= −

�

�

�

�

                                         (34)  

As the slave system, we consider the hyperchaotic Cai 

system ([24], 2010) described by  

          

1 2 1 1

2 1 2 1 3 4 2

2

3 2 3 3

4 1 4

( )y y y u

y y y y y y u

y y ry u

y ky u

α

β γ

= − +

= + − + +

= − +

= − +

�

�

�

�

                      (35) 

where all the parameters  are positive real constants and  

              [ ]1 2 3 4

T
u u u u u=  

is the nonlinear controller to be designed. 

The synchronization error e  is defined by 

       ,       ( 1,2,3, 4)i i ie y x i= − =                          (36) 

The error dynamics is obtained as 

           

1 2 1 2 1 1

2 1 2 4 1

2 1 3 1 3 2

2 2

3 3 3 2 1 3

4 1 1 4

( ) ( )( )

( )

        + 

( )

( )

e e e a x x u

e e e e b x

x y y kx x u

e re c r x y hx u

e ke d k x u

α α

β γ β

γ

= − − − − +

= + + − −

− + +

= − + − + − +

= − + − +

�

�

�

�

           (37) 

 

 

In order to find the synchronizing controller, we first let 

       

1 1 1

2 2 2

3 3 3

4 4 4

a b

a b

a b

a b

u u u

u u u

u u u

u u u

= +

= +

= +

= +

                                                   (38) 

where 

         

1 2 1

2 1 2 1 3 1 3

2 2

3 3 2 1

4 1

( )( )

( )

( )

( )

b

b

b

b

u a x x

u b x x y y kx x

u r c x y hx

u k d x

α

β γ

= − −

= − − + −

= − − +

= −

               (39)                              

Substituting (38) and (39) into (37), the error dynamics 

simplifies to 

             

1 2 1 1

2 1 2 4 2

3 3 3

4 1 4

( )
a

a

a

a

e e e u

e e e e u

e re u

e ke u

α

β γ

= − +

= + + +

= − +

= − +

�

�

�

�

                               (40) 

Next, we consider the candidate Lyapunov function 

          ( )2 2 2 2

1 2 3 4

1 1
( )

2 2

TV e e e e e e e= = + + +             (41) 

A simple calculation gives 

 

2 2 2

1 2 3 1 2 1 4

1 1 2 2 3 3 4 4

( ) ( )

              a a a a

V e e e re e e ke e

e u e u e u e u

α γ α β= − + − + + −

+ + + +

�

     (42)           

Therefore, we choose 

       

1 2

2 2

3

4 1 4

( )

( 1)

0

a

a

a

a

u e

u e

u

u ke e

α β

γ

= − +

= − +

=

= −

                                              (43) 

Substituting (43) into (40), the error dynamics reduces to 

       

1 1 2

2 1 2

3 3

4 4

e e e

e e e

e re

e e

α β

β

= − −

= −

= −

= −

�

�

�

�

                                              (44) 

 Substituting (43) into (42), we also obtain 

  
2 2 2 2

1 2 3 4( )V e e e re eα= − − − −�                                (45) 
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which is a negative definite function on 
4

R since  α and   r  

are positive constants. 

Hence, by Lyapunov stability theory [25], the error 

dynamics (43) is globally exponentially stable. 

Combining (38), (39) and (43), the synchronizing nonlinear 

controller u is obtained as follows: 

      

1 2 2 1

2 2 1 2 1 3 1 3

2 2

3 3 2 1

4 1 4 1

( ) ( )( )

( 1) ( )

( )

( )

u e a x x

u e b x x y y kx x

u r c x y hx

u ke e k d x

α β α

γ β γ

= − + + − −

= − + + − − + −

= − − +

= − + −

  (46)                                

Thus, we have proved the following result. 

Theorem 4. The non-identical hyperchaotic Liu system (34) 

and hyperchaotic Cai system (35) are exponentially and 

globally synchronized for any initial conditions with the 

nonlinear controller u defined by (46).  

Numerical Results  

For the numerical simulations, the fourth-order Runge-

Kutta method is used to solve the system using MATLAB with 

time-step equal to 
610 .−

 

For the hyperchaotic Liu system (34), the parameter values 

are taken as those which result in the hyperchaotic behaviour of 

the system, viz.   

10, 40, 1, 2.5, 10.6a b k c d= = = = =  and 4.h =  

For the hyperchaotic Cai system (35), the parameter values 

are taken as those which result in the hyperchaotic behaviour of 

the system, viz.   

27.5,  3,  19.3,  2.9rα β γ= = = =   and  3.3.k =  

The initial values of the hyperchaotic Liu system (34) are 

taken as 

     1 2 3 4(0) 10,  (0) 6,  (0) 12,  (0) 5x x x x= = = =  

while the initial values of the Cai system (33) are taken as 

          1 2 3 4(0) 2,  (0) 16,  (0) 8,  (0) 18.y y y y= = = =  

Figure 5 shows that synchronization between the states of 

the hyperchaotic Liu system (34) and hyperchaotic Cai system 

(35) occur in 5 seconds. 

 
Figure 5. Synchronization of the States of (34) and (35) 

 

VI. CONCLUSIONS 

Since the hyperchaotic systems have more complex 

dynamical behaviours, they can be used to improve the 

security of a chaotic communication system. In this paper, we 

have used nonlinear control method based on Lyapunov 

stability theory to achieve global chaos synchronization for the 

following three cases of hyperchaotic systems: 

(A) Identical Hyperchaotic Liu systems (2006). 

(B) Identical Hyperchaotic Cai systems (2010). 

(C) Non-Identical Hyperchaotic Liu and Cai Systems. 

 Numerical simulations are also given to validate the 

proposed synchronization approach for the global chaos 

synchronization of the hyperchaotic systems. Since the 

Lyapunov exponents are not required for these calculations, 

the nonlinear control method is very effective and convenient 

to achieve global chaos synchronization for the three cases of 

hyperchaotic systems discussed in this paper. 
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