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Abstract-Generally digital signature algorithms are based on a single hard problem like prime factorization problem, discrete logarithm 
problem, elliptic curve problem. If one finds solution of this single hard problem then these digital signature algorithms will no longer 
be secured and due to large computational power, this may be possible in future. There are many other algorithms which are based on 
the hybrid combination of prime factorization and discrete logarithms problem but different weaknesses and attacks have been devel-
oped against those algorithms. This paper also presents a new variant of digital signature algorithm which is based on two hard prob-
lems, prime factorization and discrete logarithm. 
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I. INTRODUCTION 

In modern cryptography [5], the security of digital sig-
nature algorithms are based on the difficulty of solving 
some hard number theoretical problems. These algo-
rithms stay secure as long as the problem, on which the 
algorithm is based, stays unsolvable. The most used hard 
problems for designing a signature algorithm are prime 
factorization (FAC) [27] and Discrete Logarithm (DL) 
[6] problems.  For improving the security, the algorithms 
may be designed based on multiple hard problems. Undoub-
tedly, the security of such algorithms is longer than algo-
rithms based on a single problem. This is due to the need 
of solving both the problems simultaneously.  Many 
digital signature algorithm have been designed based on 
both FAC and DL [8, 11, 12, 14, 17, 19, 26, 28, 30, 31] 
but to design such algorithms is not an easy task since 
many of them have been shown to be insecure [9, 18, 
19, 20, 21, 29, 30, 31].   
In 1994, He and Kiesler [11] proposed digital signature 
algorithms based on two hard problems-the prime facto-
rization problem and the discrete logarithm problem. In 
1995, Harn [9] showed that one can break the He-Kiesler 
algorithm if one has the ability to solve the prime factoriza-
tion. Lee and Hwang [18] showed that if one has the abili-
ty to solve the discrete logarithms, one can break the He-
Kiesler algorithm.  Shimin Wei  [31]  showed  that  any  
attacker  can  forge  the  signature of He-Kiesler algo-
rithm without solving any hard  problem. In 2002, Z. Shao 
[28] presents an algorithm based on factoring and dis-
crete logarithms.  But later Tzeng [30] showed that 
Shao digital signature algorithm is not secure and there 
are many weaknesses. He then proposed a new signa-
ture algorithm [30] to overcome the weaknesses inhe-
rent in Shaos signature algorithm. In 2005, Shao [29] 
proved that Tzeng signature algorithm is not secure as if 
attackers can solve discrete logarithm problems, they can 
easily forge the signature for any message by using a proba-
bilistic algorithm proposed by Pollard and Schnorr [24] 
and if attacker can factor the composite number, he can re-
cover the private keys of legal signers. Therefore the security 

of Tzeng digital signature algorithm depends only one of the 
problem, prime factorization or discrete logarithm. 
A signature scheme cannot be unconditionally secure, 
since Adv can test all possible signature for a given mes-
sage m. So, given sufficient time, Adv can always forge 
Sender’s signature on any message. Thus, our goal is to 
find signature schemes that are computationally or 
Provable secure. In this paper, a new variant of digital 
signature algorithm (DSA) is proposed which is based 
on the combined difficulties of integer factorization 
problem and discrete logarithm problem. Rest of the 
paper is organized as follows. Section II describes secu-
rity threats against DL and FAC problem based algo-
rithms. The proposed algorithm is described in section III. 
In section IV, security analysis is carried out for the pro-
posed algorithm. Performance analysis of the proposed 
algorithm is discussed in section V. Finally, in section VI, 
paper is concluded. 

II. SECURITY THREATS AGAINST DIS-
CRETE LOGARITHM AND FACTORIZATION 

PROBLEM BASED ALGORITHMS 

The ElGamal signature algorithm [6] is a digital signa-
ture algorithm which is based on the difficulty of com-
puting discrete logarithms. The main threat against the 
ElGamal algorithm is that the strength of the algorithm 
solely depends on the discrete logarithm problem. If the 
discrete logarithm problem can be solved then it is poss-
ible to obtain the secret x from the public value gx, and 
then one could sign messages as a genuine sender. In 
1993 Daniel M. Gordon presented an algorithm [7] that could 
solve discrete logarithms for small numbers in a finite field 
of prime order p, GF (p), using the Number Field Sieve. 
Takuya Hayashi [10] presented an algorithm that can 
solve a 676-bit Discrete Logarithm Problem in GF 
(36n) for n is any positive integer. It is clear from the 
work of Gordan and Hayashi that, in near future, it 
could be feasible to solve the discrete logarithms prob-
lem for large numbers in a polynomial time.  
RSA Digital Signature algorithm (RSADSA) [27] pro-
posed by Rivest, Shamir and Adleman, is a popular and 
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well known digital signature algorithm. RSADSA is an 
asymmetric digital signature algorithm as it uses a pair 
of keys, one of which is used to sign the data in such a 
way that it can only be verified with the other key. Se-
curity of RSADSA algorithm is based on difficulty of 
solving the prime factorization problem. Many efforts 
have been made in past to solve the prime factorization 
problem [13, 23, 22, 25]. In 2002, Weger [4] described 
a new attack for solving prime factorization problem as 
if there is small difference between the prime factors of 
modulus then a polynomial time cryptanalysis for fac-
toring modulus is possible. In 2003, Boneh and Brum-
ley [1] demonstrated a more practical attack capable of 
recovering RSA factorizations over a network connec-
tion.  
This attack takes advantage of information leaked by 
the Chinese remainder theorem optimization used by 
many RSA implementations. RSADSA is not only vul-
nerable to the prime factorization attacks but also to the 
private key d. Paul Kocher [16] described that if an Ad-
versary Eve knows Alice’s hardware in sufficient detail 
and is able to measure the decryption times for several 
known cipher texts, she can deduce the decryption key 
d quickly. Next, there are many threats if the RSA pri-
vate exponent is chosen small. The first significant at-
tack on small private exponent RSA was Wieners con-
tinued fraction attack [32]. Given only the public key (e, 
n), the attack factors the modulus using information 
obtained from one of the convergent in the continued 
fraction expansion of e/n. It was shown by Coppersmith 
[13], that an RSA modulus with balanced primes could 
be factored given only 1/2 of the most significant bits of 
one of the primes. It was later shown by Boneh, Durfee 
and Frankel [2] that 1/2 of the least significant bits of 
one of the primes was also sufficient. A theoretical 
hardware device named TWIRL designed by Shamir 
and Tromer in 2003 [15], questioned the security of 
1024 bit keys. Nowadays due to the availability of high 
end resources of computation the chances of the various 
types of attacks have increased. It is quite possible that 
an organization with sufficiently deep pockets can build 
a large scale version of his circuits and effectively crack 
an RSA 1024 bit message in a relatively short period of 
time. The RSADSA algorithm is also forgeable for cho-
sen-message attack, since RSA is multiplicative; the 
signature of a product is the product of the signatures. 

III. THE PROPOSED SIGNATURE ALGO-
RITHM 

This section proposes a new variant of digital signature algo-
rithm based on the two NP-Complete problems named 
prime factorization and discrete logarithm. Following are the 
formal definitions of the problems: 
Definition 1: (Discrete Logarithm problem :) If y = gx 
mod p such that p is a prime number and g is a primitive 
root in Zp   and a, y, and p are given then finding the value 
of x is a discrete logarithm problem. If g, x, p are large num-
bers then it is a hard number theoretic problem [6]. 
Definition 2: Prime factorization problem: For a given 
composite number n, such that n = p×q; where p and q are 
prime numbers, finding p and q is a prime factorization 
problem. If a large, b-bit number is the product of two 
primes that are roughly the same size, then no algorithm has 

been published that can factor in polynomial time, i.e., that 
can factor it in time O (bk ) for some constant k. 
A new digital signature algorithm based on combined appli-
cation of DL and FAC is described as follows: 

A. Key Generation: 

a. Choose a large prime p such that computing discrete 
logarithms modulo p is difficult and two large 
prime numbers p1 and q1 such that p < n where n = p1 
× q1. 

b. Choose random numbers k and v such that 1 < k, v 
<p−1. 

c. Choose random number b such that 1 < b < n − 1. 
d. Choose a primitive root g in Zp. 
e. Calculate φ(n) = (p1 − 1) × (q1 − 1). 
f. Choose e and x such that e, x  Zφ(n)  . 
g. Calculate d such that d × e mod φ(n) = 1. 
h. Calculate c such that bx × c(mod)n = 1. 
i. Calculate u, w, and t   as follows: u =  gk mod p, 

                    w =  gv mod p, 
                    t =  uw  mod p, 
j.       Public key is (e, x, c, g) and private key is (k, v, t, b, d). 

B. Signature Generation: 

Step-1: Choose an integer z such that 1 < z < (p 
− 1) and it is relative prime to (p − 1) i. e. gcd(z, p 
− 1) = 1. z should be different for every message 
m and is not public. Here H (.) is a one way hash 
function. 
Step-2: Calculate  
       h=gz mod p, 

γ  =   t ×wh mod p, 
s1 = H (m)d mod n, 
s2 = (H (m) × bs1) mod n, 
s3 = ((((H (m) − kw − hv) × z−1)) mod (p − 
1)). 

If γ = 0 and/or s1  = 0 and/or s2  = 0 and/or s3  = 0 and/or 
H(m) ≡ (kw + hv) mod (p − 1) then repeat step 1 and 2 else 
tuple (γ,h, s1, s2, s3) is the signature of m. 
Here −kw, −hv are additive inverse of kw and hv respectively 
and z−1  is the multiplicative inverse of z  with respect to 
mod(p − 1).  

C. Signature Verification: 

a. Calculates H(m) using the received message m at 
receiver’s end. 

b. If gH(m) × s1×x ≡ (γ × hs3 × s2 × cs1 mod n) mod 
p 

     then the signature is valid else reject the signature. 

D. Proof of correctness: 
L.H.S.  =(gH(m) × s1×x) mod p, 
     =(gH(m) × (H(m)dmod n)e×x) mod p, 
     =(gH(m) × H(m)xmod n) mod p, 
     =(gH(m))mod p × (H(m)xmod n) mod p, 
R.H.S.=(γ × hs3  × s2 × cs1 mod n) mod p, 
        =((t × wh  mod p) ×h((((H(m)−kw−hv)×z−1 )) mod 
(p−1)) ×s2 × cs1  mod n) mod p, 
        =(((uw  mod p × wh  mod p) ×(gH(m) × u−w × w−h) 
mod p) × s2 × cs1  mod n) mod p, 
        =(gH(m)  mod p × ((H(m) × bs1 ) mod n)x ×cs1  
mod n) mod p, 
        =(gH(m)  mod p × ((H(m)x × bs1×x) mod n) ×cs1  
mod n) mod p, 
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       =(gH(m)  mod p × H(m)x  mod n) mod p, 
       =gH(m) mod p × ( H(m)x mod n) mod p, 
         = L.H.S. 
Therefore, L. H. S. is equal to R. H. S. 

IV. SECURITY ANALYSIS 

In this section, security analysis of the proposed algo-
rithm is carried out. We shall show that the security of 
proposed algorithm is based on solving both the problem; 
prime factorization and discrete logarithm, simultaneously. It 
is observed that if an oracle O breaks the FAC and DL then 
it can break the proposed algorithm also, if given the pub-
lic key of the scheme and a message madv  
Theorem 1: If  there is an ORACLE that can solve the 
prime factorization and discrete logarithm problem, 
then it can also break the proposed algorithm. 
Proof: Let us the oracle O gives values of prime factor 
(p1, q1) of n and (k, v, z, w) from solving DL and FAC 
using (γ, h). We know that n = p1 × q1, and φ(n) is the 
Euler’s totient function. Consider the equation 
  bx × c = mod n (1) 

Where b and x  Zn. Now from Diophantine equation 
for x and φ(n);  u and v such that xu − φ(n)v = f , 
where f Zn .Now a sin the proposed algorithm 
gcd(x,φ(n))=1, so it is easy to solve equation (1) and the 
computation b ≡ (c)u(mod )n gives the required value of b, 
since 
b = (1/c)u mod n 
   = (1/c) 1+v_(n)x mod n; 
   = (1/c) 1/x mod n:  
Further, consider the equation 
               d×e≡1 mod φ(n)               (2) 
where  d  is  a  private  key  element  and  e  is  a  public  key 
element. If Adv knows the prime factorization of modulus 
n then he can easily calculate φ(n) and hence using equation 
(2), private key d. Therefore, one can easily find the value of 
private key elements d and b. 
Further, we know the value of z, k and v, hence the 
signature (γ, h, s1, s2, s3)  of  a  message  madv ,  can  be  
generated  as follows: 
        u =  gk mod p, 

w =  gv mod p, 
t =  uw  mod p, 
h =  gz mod p, 
γ  =  t×wh mod p, 

s1 =  H(m)dmod n, 
s2 = (H(m) × bs1 ) mod n, 
s3 = ((((H(m) − kw − hv) × z−1)) mod (p − 1)). 

Therefore, the tuple (γ, h, s1, s2, s3) is a valid 
signature of message madv  using the proposed algo-
rithm. 
There are some possible areas where an adversary (Adv) may try 
to attack on this new developed signature algorithm. Follow-
ing are the possible attacks (not exhaustive) and the reasons 
why that would fail: 
Key-Only Attack:  Adv wishes to obtain private key (k, 
v, t, b, d) using all information that is available from the 
system. In this case, Adv needs to solve the prime facto-
rization problem to find d and b from modulus n = p1 × 
q1. Also he  has  to  solve  discrete  logarithm  problem  to  
find  z, k and v  using γ, h and g. For finding b, Adv has 
to solve b=c−1/x mod n which is NP-Complete for large b 

because Adv has to find prime factorization of modulus n to 
calculate xth root of c−1. Further, d can also be calculated 
easily, if factorization of modulus n is known. Therefore 
an Adv has to solve DL problem and FAC problem for 
finding the private key. This makes the proposed algo-
rithm secure enough for this type of attacks. 
Chosen-Message Attack: In this attack, Adv requires a 
sign on some messages of his choice by the authorized 
signatory. With  the  help  of  chosen-messages  and  
corresponding signatures,  Adv  generates  another  
message  and  can  forge sender’s signature on it. The 
RSADSA algorithm is forgeable for this attack. For 
attack on RSADSA, suppose, Adv asks signer to sign 
two legitimate messages m1   and m2   for him. Let us 
assume s1 and s2 are signatures of   m1 and   m2 respec-
tively. Adv later creates a new message m = m1 × m2 with 
signature s = s1 × s2. Adv can then claim that signer has 
signed m. The chosen-message attack for the proposed algo-
rithm  is  a matter  of  further  research  as  there  is  no ob-
vious method which shows that the proposed algorithm is 
vulnerable to this attack. 
Known partial key and Message Attack: Let us assume 
that Adv is able to solve FAC problem hence, he knows 
the secret key component b and d. Therefore Adv is able to 
calculate the signature element s1 and s2. Adv may also have i 
valid signatures (γj , hj , s1j , s2j , s3j ) on message mj  where j = 
1,2,...,i and public key (e,c,x,g) and he attempts to find 
secret keys (k, v, u, w, zj ). Now, Adv has i equations as fol-
lows representing zj −1  as lj : 

s31 = ((H (m1)l1 − kwl1 − 
hvl1) 
s32 = ((H (m2)l2 − kwl2 − 
hvl2) 
s3i = ((H (mi)li − kwli − 
hvli) 

In the above i equations, there are (i + 3) variables namely 
k,w,v and lj  where j = 1,2,...,i which are not known 
by the Adv. Hence, k, w, v and lj  stay hard to detect be-
cause for Adv, there are i+3 unknowns to be found from i 
equations. 
Blinding:  In this attack, in case of RSADSA suppose Adv 
wants sender’s signature on his message m. For this Adv 
try the following:  he picks a random r  Zn  and calcu-
lates m′ = re × m mod n. He then asks sender to sign the 
message m′. Sender may provide his signature s′  on the mes-
sage m′. But we know that s′ = (m′)d  mod n. Adv now 
computes s = s′/r mod n and obtains sender’s signature s 
on the original m. This technique, called blinding, 
enables Adv to obtain a valid signature on a message of 
his choice by asking Sender to sign a random blinded 
message. Sender has no information as to what message 
he is actually signing. So, RSA is vulnerable to this 
attack.  Again an intensive research is required to check 
whether the proposed algorithm is vulnerable to Blind-
ing or not. Currently, best of authors’ efforts it seems 
not vulnerable for Blinding. 

V. PERFORMANCE ANALYSIS 

Using the criterion presented in [3], the complexity of 
each method is estimated as a function of number of bit op-
erations required. The basic exponential operation here is 
abmod n and time complexity of this operation is O (logb 
× M (n)), where M (n) is the complexity of multiplying 
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two n bit integers. In the proposed algorithm signature 
generation requires 4 modular exponentiation and signature 
verification requires 5 modular exponentiation which leads to 
the complexity of the algorithm to be O(4 × log3n) and O(5 
× log3n) for signature generation and verification respec-
tively as here b = O(n) and time complexity of multip-
lying two n bit integers is O(log2n). If the complexity of 
proposed DSA compared with other DSA algorithms of 
same category (i.e.  DSA algorithms that are based on 
multiple hard problems) then we see that the Dimitrios 
Poulakis signature algorithm [26] requires 6 modular 
exponentiation in signature generation and 2 modular 
exponentiation in signature verification. Ismail E. S 
signature algorithm [14] requires 5 modular exponentia-
tion in signature generation and 5 modular exponentia-
tion in signature verification. Shimin Wei signature 
algorithm [31], requires 5 modular exponentiation in 
signature generation and 5 modular exponentiation in 
signature verification. So it is clear that the complexity 
of the proposed algorithm is competitive equivalent to 
most of the digital signature algorithms which are based 
on prime factorization and discrete logarithm. 

A. Changing the Length/Size of the Prime Num-
ber (p) or Modulus (n):  

Effect of Changing the Modulus Size with Constant 
Public Key Size (E) 512 Bit 
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B. Changing the Size of Public Key:  
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VI. CONCLUSION 

In this paper, a new variant of digital signature algorithm is 
proposed which is based on the two hard problems 
called prime factorization and discrete logarithm. It is 
shown that one has to solve both the problems simulta-
neously for crypt-analysis of this algorithm. The perfor-
mance of the proposed algorithm  is  found  to  be  competi-
tive  to  the  most  of  the digital signature algorithms 
which are based on multiple hard problems. 
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