
Volume 4, No. 3, March 2013 (Special Issue) 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                           47 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

Analysis of Impacted Classes and Regression Test Suite Generation  
Aprna Tripathi  

Department of Computer Science and Engineering  
MNNIT Allahabad Allahabad, India 

rcs1051@mnnit.ac.in 

Dharmendra Singh Kushwaha 
Department of Computer Science and Engineering  

MNNIT Allahabad Allahabad, India 
dsk@mnnit.ac.in

 
Arun Kumar Misra 

Department of Computer Science and Engineering  
MNNIT Allahabad Allahabad, India 

akm@mnnit.ac.in 

Abstract: Software needs to be changed over time to deal with new requirements, existing faults and change requests. Change made to 
software will inevitably have some unforeseen and un desirable effects on other parts of the software. Software Change Impact Analysis 
(SCIA) is an approach used to identify the potential effects caused by change made o software. As any change is requested by the client or 
user the software project team have not only the objective to incorporate that change in the existing system while to maintain the software 
quality is also the other objective. The paper proposes an approach to find the impact set of the change requested by user or client.  Author 
uses the impact set of the requested change to prepare the test suite for regression testing. The results of proposed approach are illustrated 
with a case study. The approach used in this paper finds the regression test suite required for regression testing based on the impact set that 
is the sub set of the existing test suite of the system.  
 
Keywords: Software Change Impact Analysis, Regression Testing, Class, Regression Test Suite, Change Element and Impact set. 

I. INTRODAUCTION 

Software maintenance [1] has been recognized as the 
most costly and difficult part of software development. 
Software needs to be changed over time to deal with new 
requirements, existing faults and change requests, etc. 
Sometimes it may require addition of new requirements 
while in other cases amendment in the exiting is 
sufficient. For a successful and qualitative maintenance, it 
is essential that before moving towards change 
implementation, analysts should thoroughly analyze the 
impacts of requested changes on the existing software.  
Changes made to software have some unforeseen and 
undesirable effects on other parts of the software. A major 
problem for developers in an evolutionary environment is 
that seemingly small changes can ripple throughout the 
system to have major unintended impacts elsewhere. The 
complex relationship among classes makes it difficult to 
anticipate and identify the ripple effects of changes. 
Software Change Impact Analysis (SCIA) is a solution to 
identify unpredicted and potential effects caused by 
software changes. It starts with a set of changed elements 
in a software system, called the change set, and attempts 
to determine a possibly larger set of elements, called the 
impact set. In this paper we have used the class name as 
the change element for the change set. The impact set is 
the collection of the classes that would be impacted with 
reference to the class where the change occurs. After 
implementation the assurance is needed that the 
functionality of change is as needed and for this we 

perform regression testing. Thus it is essential to know 
which subset of existing test suite is needed to perform 
the regression testing  
This paper proposes a method for preparing the regression 
test suite for a requested change before actual 
implementation of that change.  The rest of the paper is 
organized as follows. Section II summarizes the related 
work of impact analysis and test suite reduction for 
regression testing. Section III details the proposed 
approach. Section IV and V presents the case study and 
results. Section VI, the last section of the paper, outlines 
conclusions and future work. 

II. STATE- OF - THE- ART 

SCIA is an approach used to identify the potential effects 
caused by changes made to software. Angelis and Wohlin 
[2] discuss the importance of the change impact analysis 
issues during software change implementation process.  
Ali [3] deals with impact analysis approach during project 
changes and identifies issues of impact analysis. Kenichi 
[4] defines the impact scale to quantify the change impact. 
After changes have been implemented in the original 
system, SCIA can be applied to guide regression, select 
test cases, perform change propagation, and ripple effect 
analysis. Xiao-Bo [5] proposes a method for SCIA based 
on program dependence graph (PDG). PDG is used for 
analyzing the data and control dependencies. Proposed 
approach is considering the fine grain level of the 
software that gives efficient knowledge about change 
impact but it gives equal credence to each type of change, 



Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 47-52 

© 2010, IJARCS All Rights Reserved                                                                                                                                           48 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

which is not practical. Ceccarelli [6] proposes a novel 
change impact analysis method based on the idea that the 
mutual relationships between software objects can be 
inferred with a statistical learning approach. Acharya [7] 
propose a novel framework for change impact analysis 
based on static program slicing, while addressing its 
performance and accuracy issues. Sun [8] proposes a new 
SCIA technique based on lattice of class and method 
dependence (LoCMD). The proposed approach can 
effectively capture the dependences between classes and 
methods. Based on the LoCMD, SCIA technique 
calculates a ranked list of potential impacted methods 
according to a metric, impact factor, which corresponds to 
the priority of these methods to be inspected. He does not 
claim that technique could be generalized to an arbitrary 
software system. Li [9] proposes a solution for analyzing 
SCIA of object oriented software.  
As a solution author gives a definitions for object-oriented 
data dependency graphs, a set of algorithms that allow 
software developers to evaluate proposed changes on 
object-oriented software, a set of object-oriented change 
impact metrics to quantitatively evaluate the change 
impacts, and a proof-of-concept tool (ChAT) that 
computes the impacts of changes but this approach is 
applicable only if codes are available, and the case where 
component based software development is used, this 
approach fails. Liu [10] proposes a method to analyze the 
change impacts caused by woven aspects. The changes 
introduced by aspects are assessed from the perspectives 
of control and data interactions between the base code and 
aspects.  
The simplest way to gain the bug free software after 
regression testing is to retest the complete test suite. 
Several techniques based on code and model exists in the 
literature. In software testing, there are the relationship 
between modules, and modules associated with test cases 
[11]. Xuepin [12] uses the association graph to represent 
relationships between modules, when requirements 
change, before modify codes of a module, according 
criterion of positive association is used to assess its effect. 
Gorthi [13] proposes an approach for regression test suite 
selection that utilizes Unified Modeling Language (UML) 
[14] based Use Case Activity Diagrams (UCAD).  Chen 
[15] proposes a new pairwise interaction of requirements 
based coverage criterion (PWIC) and a pairwise 
interaction based test suite reduction approach (PWIR). 
PWIC generates all the interactions of arbitrary two 
requirements (i.e., pairwise interaction) covered by test 
suite T. The new coverage criterion is designed with 
respect to the observation that covering all the interactions 
of requirements helps to detect more faults than only 
covering all the individual requirements. 

III. PROPOSED APPROACH 

It is not preferable to run complete test suite during 
regression testing. There are various techniques for 
selecting test cases from the existing test suite for 
regression testing. These techniques are broadly classified 
into the three classes: prioritization techniques, selection 

techniques and reduction techniques. To preparing the 
regression test suite, we use the test suite reduction 
approach. As the first step, we find the impact set with 
respect to the requested change.  The aim of finding the 
impact set is to provide the earlier generation of 
regression test suite based on the volume of impact set.  
For this we followed the following steps: 

a. Generation of XML representation of class 
diagram 

b. Finding dependencies between classes 
c. Finding classes impacted by requested change 
d. Locating error prone segment in the code 
e. Preparation of test suite for regression testing 

form impact set and 
f. Analysis of number of classes impacted with 

respect to a changed class. 
Figure 1 depicts the work flow of our proposed work. In 
this work we considered the XML of class diagram for 
finding the impact set, the test suite of the existing system 
for finding test suite for regression testing and the existing 
system code to analyze the potential areas of failure as 
inputs of our proposed approach. The whole work is 
divided into the following sub - activities: finding 
dependencies among classes, classes impacted by the 
requested change, percentage reduction in existing test 
suite and finally the error prone segments of code where 
the possibility of error lies.  

A. Generation of XML Representation of Class 
Diagram: 

Before moving towards applying our approach we 
generate class diagram using a plug-in in Eclipse called 
ObjectAid [16] that generates class diagrams. Internally, 
this class diagram is represented in the form of an XML 
file, which contains the information about classes, their 
methods, attributes and dependencies, associations and 
generalizations between them. Each class has an id, and 
each dependency has a source and a target, both of which 
is an id of the class which acts as the source or the target 
of the dependency. Association (a relationship between 
classes of objects that allows one object instance to cause 
another to perform an action on its behalf) and 
generalization (shared characteristics, especially methods 
and attributes, usually as an outcome of inheritance 
between classes) are also a form of dependency between 
classes, and has been taken into consideration. In the 
following section, we illustrate how the dependencies 
between the various classes in a given software have been 
extracted using its class diagram. 

B. Finding Dependencies between Classes: 

We can generate the class diagram for any given software. 
We now have the xml representation of the class diagram 
for the software as well. We use the XML DOM 
(Document Object Model) parser API in JAVA, which is 
included in org.w3c.dom package for JAVA. 
Firstly, all nodes that have the tag-name as Class are 
extracted, along with the id given to that class. These 
classes are stored in an array, with index corresponding to 
their respective ids. 



Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 47-52 

© 2010, IJARCS All Rights Reserved                                                                                                                                           49 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

After all the classes have been extracted, all nodes that 
have tag-names as dependency, association or 
generalization have been extracted. These nodes contain, 
within their source and target attributes the ids of classes. 
Using these values, a two dimensional dependency matrix 
DM has been created, which is a matrix of 0’s and 1’s, 
where row represents the source class, the column 
represents the target class, and the value 1 of a particular 

cell shows that there exists a dependency from the ith row 
to the jth column, and 0 shows the independency between 
two classes. So, by parsing the XML file, we now have 
the list of all classes in the software as well as the 
dependency matrix for those classes. In the following 
section, we figure out, that if a change is made to a 
particular class, which classes would be impacted due to 
that change. 

 

 

Figure: 1 Proposed Approach Framework 

C. Finding Classes Impacted by Requested 
Change: 

These would include the classes that are directly 
dependent on the modified class, as well as the 
transitively or indirectly dependent classes. The algorithm 
shown in figure 2 illustrates the process to find the classes 
impacted by the requested change. E.g. in Figure 3, when 
a change is made to the Equality class, then the impacted 
classes would be the Equality class itself, Bitwise class, 
which is directly dependent on it, and the Multiplicative 
class, which in turn is dependent on Bitwise class, and 
hence indirectly on Equality class and so on. 
So, to find the set of impacted classes, we apply BFS 
(Breadth First Search) algorithm approach on the 
dependency matrix, with the source index as the id of the 
modified class to find all connected components in the 
matrix with root as given source id. In section D, we 
analyze the source code to find all areas which have the 
maximum potential of failure on a set of test cases due 
modifications made in a particular class. 
Algorithm: IMPACT_SET_GENERATION 
Input:   Class Name (C) to which change is made, 
Dependency matrix (DM) of classes, Class Name versus 
ID mapping (M) and Class array (A) 
Output:  Set of classes impacted by that change 

a. Let S be the initially empty set of impacted 
classes. 

b. Let Q be an initially empty queue for temporary 
storage of nodes. 

c. Let V be an array to mark visited nodes, initially 
having all 0 elements. 

d. J=0 
e. Q. Push(M[C]) 
f. While Q is not empty 

a. F = Q. Pop() 
b. S[J++] = A[F] 
c. Mark V[F] = 1 
d. For i = 1 to DM_MAXROWS 

i. If DM[F][i]=1and 
V[i]=0 

   1 Q. Push (i) 
   2 V[i] = 1 

g. Return the required Impact Set S 

Algorithm to find impact set for a modification made in a 
particular class 

D. Locating Error Prone Segments of Code: 

At this point, we are making an assumption that the 
maximum error prone segments of code of failure are 
those which have branching, looping, or a call to a 
function of some other class. We have already extracted 
the set of classes that are impacted when a class is 
modified for implementing the requested change. For all 
classes present in the impact set, we parse the source code 
of the class to find those areas, and the output of this 
section is the class name accompanied with the line 
number where the failure potential exists in the code. 



Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 47-52 

© 2010, IJARCS All Rights Reserved                                                                                                                                           50 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

E. Preparation of test suite for Regression Testing 
from the Impact Set: 

Once we have the impact set for requested change, we 
will prepare the test suite for regression testing from the 
existing test suite. The testing can be reduced if we can 
identify those test cases from the test suite that may be 
impacted due to the modifications made. Other test cases 
need not be run again and again. From the existing test 
suite, we select only those test cases that test one or more 
of the classes available in the impact set. Thus the test 
cases that require to be run again, to test the correctness of 
the software are separated from those test cases which are 
independent of the change made. So, now we can say that 
the total reduction in testing is the ratio of test cases that 
are not covered by impacted classes to the the whole 
existing test suite.  
Required in Regression Testing =  

(Total number of test cases for impacted classes / Total 
number of test cases in Test suite)  

In the next section we will analyze the area of the class 
diagram impacted because of the change class. 

F. Analysis of number of classes impacted with 
respect to a changed class: 

It is also an important dimension to analyze the content of 
impact set. There are two main observations. It might be 
possible that the classes having the same size of  impact 
set but not have the same size of test suit for regression 

testing and the second is that the class that have the 
largest impact set must have the largest test suite for 
regression testing. 

IV. CASE STUDY 

We demonstrate the proposed methodology work using a 
small self-made mini-application Computer Operations 
Tutorial (COT) on JAVA that takes a mathematical 
expression as input, parses it and displays the solution as 
the output. For example: 122+23 to compute the sum of 
122 and 23. The exit condition for the application is to 
give the input "exit".  
This example was chosen as the inputs and outputs, and 
thus the test suite created for this application is easy to 
understand. The main focus of the project is to efficiently 
represent the impact of change requested to the 
application. 
The class diagram for the same is shown in Figure 2. The 
Main class gets a mathematical expression from the user 
as input, which is then sent to be computed and is parsed 
and handed internally by the various other classes having 
their respective functions. The other classes like Additive, 
Arithmetic, Bitwise, Compute, Main, Multiplicative, 
Prefix, Shift, Unary and Equality in the application 
provides the different functionalities needed for 
computing the user given mathematical expression. 
 

 

 

Figure: 2 Class Diagram for COT  



Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 47-52 

© 2010, IJARCS All Rights Reserved                                                                                                                                           51 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

 

V. RESULTS 

For COT, we have following classes whose names are 
stored in an array A: 
A[ ] = {" Additive", "Arithmetic", "Bitwise", "Compute", 
"Main", "Multiplicative", "Prefix", "Shift", "Unary", 
"Equality" }.  
Now suppose we make a change to the Equality class for 
implementing the requested change, then the impact set 
(S) thus produced would be: Equality, Bitwise, Compute, 
Multiplicative and Main. This can be verified by applying 
Breadth First Search algorithm to find all connected 
components with the id of Equality class as source, on 
matrix DM shown in figure 4. The zero value of DM[i][j] 
represents the independency between class i and class j 
while the one shows that the class j depends on the class i. 
In fig. 3 we used the symbols to represent the class name 
i.e. 'A' Additive, 'A1' Arithmetic, 'B' Bitwise, 'C' 
Compute, 'M' Main, 'M1 ' Multiplicative, 'P' Prefix, 'S' 
Shift, 'U' Unary, 'E' Equality. 

 
1 1

0 0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0

1

0 0

1

0

1

1 0

1

A A B C M M P S U E

A

A

P

S

U

E

C

M

M

B
 

 

Dependency Matrix for Equality class (E) of COT  

 

 

Figure: 3 No. of impacted class and % reduction in Existing test 
suite  for regression testing 

Table: 1 Classes and their impact area along with percentage reduction 
in existing test suite for regression testing 

Classes No of 
classes 

impacted 

No. of test 
cases to be 
run after 
reduction 

% reduction in 
existing test suit 
for regression 

testing

Arithmetic  6  99  47  

Equality  5  86  54  

Bitwise  4  86  54  

Additive  4  60  68  

Multiplicative  3  47  75  

Prefix  3  34  82  

Shift  3  34  82  

Unary  3  34  82  

Compute  2  8  95  

 
For COT, we have following classes whose names are 
stored in an array A: A[ ] = {" Additive", "Arithmetic", 
"Bitwise", "Compute", "Main", "Multiplicative", "Prefix", 
"Shift", "Unary", "Equality" }.  
The requested change can impact the system in two ways: 
directly or indirectly, as has been depicted in the 
dependency matrix shown above. When the equality class 
is considered as the element of change set, the directly 
impacted class will be bitwise, while compute, 
multiplicative and main will be indirectly impacted 
classes. This can be easily depicted from the figure 3. The 
brown colored class is the initial class to which the 
change is requested. The green colored classes represent 
the directly impacted classes. Blue colored classes are the 
indirectly impacted classes, and the black colored classes 
are those that are unaffected by the change that has been 
requested. 
For a change requested in Equality classes, in the existing 
test suite there are 190 test cases, out of which we require 
to re-run only 86 test cases, thus we can conclude that to 
test the requested change in Equality class, we need to run 
only 46% test cases of the existing test suite and the % of 
reduction in testing will be 54% of the existing system 
testing. 
The fig. 5 and table 1 shows the relation between Number 
of impacted classes and the percentage reduction in 
existing test suite of the existing test suite. From fig 5 it is 
cleared that as the number of impacted classes raises for a 
class, more the test cases are required for regression 
testing.  

VI. CONCLUSION AND FUTURE WORK 

As discussed in the beginning of the paper, change 
decision depends on the change analysis to identify 
impacted elements of the existing system for requested 



Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 47-52 

© 2010, IJARCS All Rights Reserved                                                                                                                                           52 CONFERENCE PAPER                                    II International Conference on 
“Advance Computing and Creating Entrepreneurs (ACCE2013)”  

On 19-20 Feb 2013 
Organized by 

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council , 
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India 

change. The paper looks for a solution for finding the 
required test suite for regression testing with respect to the 
type of change requested by user or client. We are finding 
test suite required for regression testing based on the 
impact set that is the sub set of the existing test suite of 
the system. During work, we reached at a very interesting 
conclusion that the size of the test suite for regression 
testing is not only depends on the number of the classes 
impacted while it also depends on the size of the impacted 
classes for the requested change. And this fact is shown in 
the results. Currently the plug-in that we use ObjectAid 
specifically creates class diagrams for java classes only. 
In future, we aim to use a self-designed approach to create 
class diagrams independent of the platform used. 
Currently we are finding the impact set with the 
assumption that we have the class name, where the 
change will be implemented against the requested change. 
In future we will include function and data in the change 
set. Since there may be scenarios where only a few 
dependent functions are impacted due to the requested 
change instead of the whole class and we have the class 
name as well as the function where the change is made. 
So, in future we aim to analyze the impact at function 
level to further reduce the test suite by a much greater 
margin and more efficient impact set having impact 
elements in terms of class name with their function name.  

VII. REFERENCES 

[1] Software Engineering - K. K. Aggarawal & Yogesh 
Singh, 2nd Ed., New Age International 

[2] Lefteris Angelis and Claes Wohlin. 2008. An 
Empirical Study on Views of Importance of Change 
Impact Analysis Issues. IEEE Trans. Softw. Eng. 34, 
4 (July 2008), 516-530. 

[3] Ali, H.O.; Rozan, M.Z.A.; Sharif, A.M.; , 
"Identifying challenges of change impact analysis for 
software projects," Innovation Management and 
Technology Research (ICIMTR), 2012 International 
Conference on , vol., no., pp.407-411, 21-22 May 
2012 

[4] Kobayashi, K.; Matsuo, A.; Inoue, K.; Hayase, Y.; 
Kamimura, M.; Yoshino, T.; , "ImpactScale: 
Quantifying change impact to predict faults in large 
software systems," Software Maintenance (ICSM), 
2011 27th IEEE International Conference on , vol., 
no., pp.43-52, 25-30 Sept. 2011 

[5] Zhou Xiao-Bo, Jiang Ying, and Wang Hai-Tao. 2011. 
Method on Change Impact Analysis for Object-
Oriented Program. In Proceedings of the 2011 4th 
International Conference on Intelligent Networks and 
Intelligent Systems (ICINIS '11). IEEE Computer 
Society, Washington, DC, USA, 161-164. 

[6] Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, 
and Massimiliano Di Penta. 2010. An eclectic 
approach for change impact analysis. In Proceedings 
of the 32nd ACM/IEEE International Conference on 

Software Engineering - Volume 2 (ICSE '10), Vol. 2. 
ACM, New York, NY, USA, 163-166 

[7] Mithun Acharya and Brian Robinson. 2011. Practical 
change impact analysis based on static program 
slicing for industrial software systems. In 
Proceedings of the 33rd International Conference on 
Software Engineering (ICSE '11). ACM, New York, 
NY, USA, 746-755. 

[8] Xiaobing Sun, Bixin Li, Sai Zhang, Chuanqi Tao, 
Xiang Chen, and Wanzhi Wen. 2011. Using lattice of 
class and method dependence for change impact 
analysis of object oriented programs. In Proceedings 
of the 2011 ACM Symposium on Applied Computing 
(SAC '11). ACM, New York, NY, USA, 1439-1444. 

[9] Li and A. Jefferson Offutt. 1996. Algorithmic 
Analysis of the Impact of Changes to Object-
Oriented Software. In Proceedings of the 1996 
International Conference on Software Maintenance 
(ICSM '96). IEEE Computer Society, Washington, 
DC, USA, 171-184.  

[10] Chien-Hung Liu, Shu-Ling Chen, and Wei-Lun Jhu. 
2011. Change impact analysis for object-oriented 
programs evolved to aspect-oriented programs. In 
Proceedings of the 2011 ACM Symposium on 
Applied Computing (SAC '11). ACM, New York, 
NY, USA, 59-65. 

[11] Sun Yingying, Zhang Yikun, Yang Kaifeng, Zhang 
Baowei, Xia Hui .Software test approach based on 
analyzing program association[J]. Application 
Research of Computers, 2008, 12. 

[12] Guo Xuepin, Chen Huandong, Wu Shulei, Zhan 
Jinmei, Zhong Sheng, A Method of Fast Module 
Location Test Based on Requirements Changes, 
Procedia Environmental Sciences, Volume 11, Part 
A, 2011, Pages 372-379, ISSN 1878-0296, 
10.1016/j.proenv.2011.12.060. 

[13] Gorthi, R.P.; Pasala, A.; Chanduka, K.K.P.; Leong, 
B.; , "Specification-Based Approach to Select 
Regression Test Suite to Validate Changed 
Software," Software Engineering Conference, 2008. 
APSEC '08. 15th Asia-Pacific , vol., no., pp.153-160, 
3-5 Dec. 2008. 

[14] Xiang Chen, Lijiu Zhang, Qing Gu, Haigang Zhao, 
Ziyuan Wang, Xiaobing Sun, and Daoxu Chen. 2011. 
A test suite reduction approach based on pairwise 
interaction of requirements. In Proceedings of the 
2011 ACM Symposium on Applied Computing (SAC 
'11). ACM, New York, NY, USA, 1390-1397. 

[15] L. C. Briand, Y. Labiche, and L. O'Sullivan. 2003. 
Impact Analysis and Change Management of UML 
Models. In Proceedings of the International 
Conference on Software Maintenance (ICSM '03). 
IEEE Computer Society, Washington, DC, USA, 
256- 265.  

[16] www.objectaid.com/ accessed on 01.11.2012. 

 


