
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 41

ISSN No. 0976-5697

A dynamic approach to generate behavior patterns of Virus and Worms for Intrusion
Detection System

Shahnawaz Ansari*, Rekh Ram Janghel

Disha Institute of Management and Technology, Raipur, India
shanu.anas81@gmail.com*, janghel1310@gmail.com

Abstract: In today’s society people become more and more dependent on computer systems. It is therefore vital that such systems are up and
running at all times. One factor that has the power to destroy the availability is computer network attacks (CNA). (CNA are defined as "methods
aimed at destroying, altering or obstructing information in computers, computer networks or the networks themselves"). Unfortunately, the
Internet show an increasing trend regarding the usage of malicious activities such as intrusion attempts, denial-of-service attacks, phishing,
spamming and worms. Some automated attacks can compromise a large number of computers in a short period of time. To try to minimize this
threat, it would be nice to have a security system which has the ability to detect new attacks and react on them. This work focuses on seeing how
good IDS rules that can be generated automatically based on data logged by a simple honypot. The result will be based on data collected by a
network intrusion detection system named SNORT, a low-interaction honeypot named honeyd and a vulnerability scanner named Nessus.

Keywords: Intrusion Detection, Honey pots, Longest common Substring, Worms, Confusion matrix

I. INTRODUCTION

This paper covers issues regarding behavior and
implementation of a simple honeypot and the use of such
technology in creating IDS rules. A honeypot is a computer
that is implemented in a network for the purpose of
attracting attackers. This computer has nothing to do with
the production network, thus all traffic into the honeypot is
by definition malicious [1]. This work focuses on signature
generation. At present, the creation of these signatures is a
tedious, manual process that requires detailed knowledge of
each software exploit that is supposed to be captured.
Simplistic signatures tend to generate large numbers of false
positives, too specific ones cause false negatives.

The goal is to attract attackers by pretending to be an
interesting network. The log files from the honeypot serve
as data collectors in conjunction with other widely used data
collectors such as tcpdump [4] if needed. A security scanner
named Nessus [2] is used to generate traffic towards the
honeypot, leaving us with full control of the entire system.
We use SNORT [3], a signature based Network intrusion
detection system (NIDS) to check if the rules we create are
usable. The main goal is to see how good SNORT rules that
can be made, with as little user intervention as possible,
based on information from the collected data.

II. LITERATURE REVIEW

A. Intrusion Detection System:
Many IDS’s in use today are signature based. These

IDS’ are only capable of detecting already known attacks
(attacks which have a signature entry in the database of the
IDS).

This is a huge problem when new attacks arrive. A
signature based IDS are only capable of detecting alterations
of already known attacks at best. Therefore there is an
interest in trying to make a rule generating system to
automatically generate new rules when new attacks arrive.

In this work we look at the possibility of using a low-
interaction honeypot to address this problem. The important
question is then if the honeypot logs sufficient information
to make rules out of. We propose a measurement method to
see how good the rules we create are, compared to original
rules alerting on the same threat.

Generally, a good signature must be narrow enough to
capture precisely the characteristic aspects of exploit it
attempts to address; at the same time, it should be flexible
enough to capture variations of the attack. Failure in one
way or the other leads to either large amounts of false
positives or false negatives.

Our system supports signatures for the Snort [3] NIDSs.
We include Snort here because of its current popularity and
large signature repository.

B. Honeypots:
Honeypots are decoy computer resources set up for the

purpose of monitoring and logging the activities of entities
that probe, attack or compromise them[5][6][7]. Activities
on honeypots can be considered suspicious by definition, as
there is no point for benign users to interact with these
systems. Honeypots come in many shapes and sizes;
examples include dummy items in a database, low-
interaction network components like preconfigured traffic
sinks, or full-interaction hosts with real operating systems
and services. Our system is an extension of honeyd [8], a
popular low-interaction open-source honeypot. honeyd
simulates hosts with individual networking personalities. It
intercepts traffic sent to nonexistent hosts and uses the
simulated systems to respond to this traffic. Each host's
personality can be individually configured in terms of OS
type (as far as detectable by common fingerprinting tools)
and running network services (termed subsystems).

C. String-based Pattern Detection Algorithms:
Our system is unique in that it generates signatures. In

contrast to NIDSs, it cannot read a database of signatures
upon startup to match them against live traffic to spot
matches.

Shahnawaz Ansari et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 41-45

© 2010, IJARCS All Rights Reserved 42

Thus, the commonly employed pattern-matching
algorithms in NIDSs are of no use to us. Instead, the system
tries to spot patterns in traffic previously seen on the
honeypot: we overlay parts of flows in the traffic and use a
longest common substring (LCS) algorithm to spot
similarities in packet payloads. Like pattern matching, LCS
algorithms have been thoroughly studied in the past. Our
LCS implementation is based on suffix trees, which are used
as building blocks for a variety of string algorithms. Using
suffix trees, the longest common substring of two strings is
straightforward to find in linear time [9]. Several algorithms
have been proposed to build suffix trees in linear time
[10][11].

III. RULE GENERATING SYSTEM

The following sections explain individual aspects of our
system in detail.

A. How to generate SNORT rules:
In this section we explain how we generate the rules

used in the experiments. Before the rule generating can
begin, we need a dataset with malicious traffic. This is taken
care of by the honeypot and Nessus. We use Nessus to scan
a specific service on a specific virtual host on the honeypot.
The traffic is also run through the SNORT IDS to see what
traffic raises alerts. Then the dataset is edited to only include
data SNORT alerted on. This is because we only want to
create rules for traffic we know SNORT has a rule for. The
reason for this is that we need to have a counterpart in order
to measure the differences between the original rules and the
new rules. The goal is to see if we are able to create working
rules based on information logged by a low-interaction
honeypot as honeyd. We will compare the new rules to the
originals by measuring the differences based on
performance (False positives/False negatives), in addition to
ranking each missing field by their importance as we see it.
An important part of the rule generating was to make it as
automatic as possible, using only information given by the
honeypot and the standard way of writing SNORT rules. We
had to use some assumptions in the procedure regarding
what fields SNORT most likely would use for the attacks we
deploy.

B. Longest Common Substring algorithm:
We use the LCS algorithm [12] to reduce the number of

rules created. By using this algorithm it is possible to create
one rule for several similar attacks. This is important
because it is a relation between SNORT’s processing speed
and the number of rules it loads.

The LCS algorithm [12] is used to find the longest
string(s) that is a substring or is substrings of two or more
strings. There are several ways of implementing this
algorithm, such as using suffix trees or dynamic
programming (matrix). We chose to use the latter because
our strings are short; hence the computational overhead is
not so important. It is also the easiest to understand. The
problem though is that the LCS is not suited for
polymorphic worms [13]. This is because polymorphic
worms change too much of its payload for LCS to get a
good result out of.

C. True/False Positive Ratio:
True Positive Ratio (TPR) is a way of showing how

good the IDS is at alerting on real attacks. In our setting we
use this to show how good our rules are compared to the
originals.

TPR is obtained by the following formula:

Where: TP = The number of alerts on malicious traffic,

FN = The number of missing alerts on malicious traffic. The
total number of intrusions is given by TP + FN.

False Positive Ratio (FPR) shows the proportion of
instances, which were not an attack but still were alerted on.
FPR is a result of the following formula:

Where: FP = The number of alerts on benign traffic, TN

= The number of correct decisions on benign traffic. The
total number of no-intrusions is given by FP + TN.

A perfect IDS would have TPR = 1 and FPR = 0. This
would result in alerts only on malicious traffic, and no alerts
on benign traffic.

 The confusion matrix in Fig 1 illustrates what FP,
FN, TP and TN mean.

A
tt

ac
k?

 Alert?

 YES NO
YES TP FN
NO FP TN

Figure 1: Confusion matrix

D. Signature Creation Algorithm:
The philosophy behind our approach is to keep the

system free of any knowledge specific to certain application
layer protocols. Each received packet causes system to
initiate the same sequence of activities:

a. If there is any existing connection state for the new
packet, that state is updated, otherwise new state is
created.

b. If the packet is outbound, processing stops here.
c. The model performs protocol analysis at the

network and transport layer.
d. For each stored connection:
(a). System performs header comparison in order to detect

matching IP networks, initial TCP sequence numbers,
etc.

(b). If the connections have the same destination port,
System attempts pattern detection on the
exchanged messages.

(c). If no useful signature was created in the previous
step, processing stops. Otherwise, the signature is
used to augment the signature pool as described in
Section III-.

(d). Periodically, the signature pool is logged in a
configurable manner, for example by appending the
Bro representation of the signatures to a file on
disk.

Figure 2 illustrates the algorithm. Each activity is
explained in more detail in the following sections.

Shahnawaz Ansari et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 41-45

© 2010, IJARCS All Rights Reserved 43

Figure 2: High level overview of Signature creation algorithm.

E. Connection Tracking:
The rule generating system maintains state for a limited

number of TCP and UDP connections, but has rather unique
requirements concerning network connection state keeping.
Since our aim is to generate signatures by comparing new
traffic on the honeypot to previously seen one, we cannot
release all connection state immediately when a connection
is terminated. Instead, we only mark connections as
terminated but keep them around as long as possible, or until
we can be sure that we will not benefit from storing them
any longer.

Connections that have exchanged lots of information are
potentially more valuable for detecting matches with new
traffic. The system must prevent aggressive port scans from
overflowing the connection hash-tables which would cause
the valuable connections to be dropped. Therefore, both
UDP and TCP connections are stored in a two-stage fashion:
Connections are at first stored in a “handshake” table and
move to an “established” table when actual payload is
exchanged.

The system performs stream reassembly: for TCP, we
reassemble flows up to a configurable total maximum of
bytes exchanged in the connection. We store the
reassembled stream as a list of exchanged messages up to a
maximum allowed size, where a message is all the payload
data that was transmitted in one direction without any
payload (i.e., at most pure ACKs) going the other way. For
example, a typical HTTP request is stored as two messages:
one for the HTTP request and one for the HTTP reply. For
UDP, we similarly create messages for all payload data
going in one direction without payload data going the other
way. Figure 3 illustrates the idea.

F. Protocol Analysis:
After updating connection state, The proposed system

will create an empty signature record for the flow and starts
inspecting the packet. Each signature record has a unique
identifier and stores discovered facts (i.e., characteristic
properties) about the currently investigated traffic
independently of any particular NIDS signature language.

The signature record is then augmented continuously
throughout the detection process, maintaining a count of the
number of facts recorded.

In proposed system, protocol analysis will be performed
at the network and transport layers for IP, TCP and UDP
packet headers, using the header-walking technique
previously used in traffic normalization [14]. Instead of
correcting detected anomalies, we record them in the
signature, for example invalid IP fragmentation offsets or
unusual TCP flag combinations. Note that for these checks,
System does not need to perform any comparison to
previously seen packets. We refer to a signature at this point
as the analysis signature.

Figure: 3

Fig. 3. A TCP packet exchange (left) and the way
System traces the connection (right). The packet initiating
the connection is copied separately. afterwards, two 100-
Byte payloads are received and assembled as one message.
200 Bytes follow in response, forming a new message. This
in turn is answered by another 300 Bytes, forming the final
message. The successful completion of the TCP teardown
triggers the labeling of the connection as “terminated”.

The proposed system will then performs header
comparison with each currently stored connection of the
same type (TCP or UDP). If the stored connection has
already moved to the second level hash-table, Honeycomb
tries to look up the corresponding message and uses the
headers associated with that message.

G. Pattern Detection in Flow Content:
After protocol analysis, The system proceeds to the

analysis of the reassembled flow content. The model applies
the LCS algorithm to binary strings built out of the
exchanged messages. It does this in two different ways,
illustrated in Figures 4 and 5.
a. Horizontal Detection: Assume that the number of

messages in the current connection after the connection
state update is n. The model then attempts pattern
detection on the nth messages of all currently stored
connections with the same destination port at the
honeypot by applying the LCS algorithm to the
payload strings directly.

b. Vertical Detection: Honeycomb also concatenates
incoming messages of an individual connection up to a
configurable maximum number of bytes and feeds the
concatenated messages of two different connections to
the LCS algorithm. The point here is that horizontal
detection will fail to detect patterns in interactive

Shahnawaz Ansari et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 41-45

© 2010, IJARCS All Rights Reserved 44

sessions like Telnet, whereas vertical detection will
still work.

Figure. 4. Horizontal pattern detection.

Figure. 5 Vertical pattern detection: for both connections, several incoming
messages are concatenated into one string and then passed as input to the

LCS algorithm for detection.

In either case, if a common substring is found that
exceeds a configurable minimum length, the substring is
added to the signature as a new payload byte pattern.

IV. EVALUATION

The implementation will consist of roughly 9000 lines of
C code, with about 3000 lines for a separate library
implementing the LCS algorithm. The system will be tested
on an unfiltered cable modem connection in three
consecutive sessions, covering a total period of three days.
We will particularly interest in the traffic patterns and
signatures created for a typical home-user connection, which
can be assumed to be often only weakly protected, if at all.

A. Signature Lifecycle:
If the signature record contains no facts at this point,

processing of the current packet ends. Otherwise, System
will check how the signature can be used to improve the
signature pool, which represents the recent history of
detected signatures.

B. Signature Detection:
The proposed system will create a number of signatures

for hosts that just probed common ports. These are relatively
long; on average they contain 136 bytes. The longest strings
are those describing worms.

C. Performance Overhead:
We will measure the performance overhead involved

when running proposed system compared to normal honeyd
operation.

V. DISCUSSION

In implementation part we are going to show that the
proposed system works and produces interesting signatures,
and how easily the generated signatures can be used in
production environments, and how the system performs
under higher load.

However, honeypots generally see only relatively little
traffic, so this problem should be manageable.

VI. SUMMARY

In this proposed model, we have presented a system that
can produce NIDS signatures automatically by analyzing
traffic on a honeypot. The system will produce good-quality
signatures on a typical end user's Internet connection. The
system is particularly good at producing signatures for
worms.

VII. BIBLIOGRAPHY

[1.] Honeynets article.
http://project.honeynet.org/papers/honeynet/index.html.
Visited Oct2011.

[2.] Nessus, vulnerability scanner. www.nessus.org.
[3.] Snort. http://www.snort.org/. (Visited Nov. 2011).

[4.] Van Jacobson, Craig Leres, and Steven McCanne.
Tcpdump, intercept and display communications.
www.tcpdump.org. (Visited Dec. 2011).

[5.] C. Stoll, The Cuckoo's Egg. Addison-Wesley, 1986.

[6.] W. R. Cheswick, .An Evening with Berferd, in which a
Cracker is lured, endured, and studied,. in Proceedings of
the 1992 Winter USENIX Conference, 1992.

[7.] L. Spitzner, Honeypots: Tracking Hackers. Addison-
Wesley, 2003. [Online]. Available: http://www.tracking-
hackers.com/book/

[8.] N. Provos, .Honeyd - A Virtual Honeypot Daemon,. in
10th DFN-CERT Workshop, Hamburg, Germany,
February 2003.

[9.] D. Gusfield, Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.

[10.] P. Weiner, Linear pattern matching algorithms. in
Proceedings of the 14th IEEE Symposium on Switching
and Automata Theory, 1973, pp. 1.11.

[11.] E. M. McCreight, .A space-economical suf_x-tree
construction algorithm. Journal of the ACM, vol. 23, pp.
262.272, 1976.

http://www.nessus.org/�

Shahnawaz Ansari et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 41-45

© 2010, IJARCS All Rights Reserved 45

[12.] Dan Gusfield. Algorithms on strings, trees, and sequences:
computer science and computational biology. Cambridge
University Press, New York, NY, USA, 1997.

[13.] James Newsome, Brad Karp, and Dawn Song. Polygraph:
Automatically generating signatures for polymorphic

worms. IEEE Computer Society Washington, DC, USA,
2005.

[14.] M. Handley, C. Kreibich, and V. Paxson, .Network
Intrusion Detection: Evasion, Traffic Normalization, end
End-to-End Protocol Semantics,. In Proceedings of the 9th
USENIX Security Symposium, 2000.

