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Abstract— This paper describes formulations of the University Course Timetabling Problem as used at Mkwawa University College of 
Education. University Course Timetabling is the Problem of scheduling resources such as lectures, courses and rooms to a number of timeslots 
over a planning horizon, normally a week, while satisfying a number of problem-specific constraints. In this study, we have developed three 
models and tested using real data from the stated University. It has been possible to get optimal solution for real problem instances through 
reformulations of models which involve a mixture of binary and time-indexed variables.   
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I. INTRODUCTION  

University Course Timetabling Problem (UCTP) refers to 
the allocation of University courses to given resources being 
placed in space time, in such a way as to satisfy a set of 
desirable objectives as much as possible [1]. Course 
timetabling specifically involves assigning courses to 
teachers and classrooms, as well as the teacher student and 
meeting times in days. Given the increasing number of 
student’s enrolment in Tanzanian Universities, a large 
number of courses are offered every semester. Each course 
has varying number of enrolled students who registers for 
different courses that are shared among programmes. 
Furthermore, classrooms are always scarce, which 
complicates the assignment of courses to classrooms.  

Two common techniques for solving timetabling 
problems are exact and heuristics. Exact methods include 
formulating and solving mathematical programming models. 
For large problems, it could be difficult to find and prove the 
existence of an optimal solution, within short computing 
times [2]. This follows from the fact that the problem is 
known to be NP-Hard i.e. no optimal algorithm is known for 
the solution of a general such problem within reasonable 
time. Consequently, many efforts have concentrated in 
developing heuristics in order to find a good solution within 
a reasonable amount of time. Some heuristic approaches for 
solving the course timetabling problem were proposed in 
(e.g. [3], [4] and [5]). However, exact approaches have 
provided optimal solutions to some specific cases. They have 
also provided benchmarks for testing the performance of 
heuristic procedures. One of applications of exact methods 
includes [6].  

This is also an extension of the basic mathematical 
programming model proposed in [7] in which it is shown that 
timetabling problems with data sizes comparable to that of 
some real institutions can be solved with the help of the 
proposed basic model. Tripathy [8] presents a large integer 
linear program to determine room and time allocations for 
graduate courses where students, subjects and rooms are 
grouped into appropriate categories in order to reduce the 
problem to a manageable size. A Lagrangean relaxation 
procedure in conjunction with sub gradient optimization to 
compute the multipliers is used to solve the problem. A two-

stage multi-objective 0-1 course scheduling model is 
proposed in [9]. Birbas et al [6] formulated a binary integer 
program to determine the weekly timetable for Greek high 
schools where, for each class-section, a sequence of courses 
to be taught on every day of the week must be determined. 
Dimopoulou and Miliotis [10] and Papoutsis [11] employ a 
column-generation approach to solve 0-1 timetabling 
problem for Greek schools and presented some good results 
in their case study. Mushi [12] shows the existence of 
various models for timetabling problem by using integer 
programming where the quality of a model depended on the 
closeness of the problem to the integer polytope. University 
of Dar es salaam was used as a case study. Al-Yakoob and 
Sherali [13] adopted a Mixed-Integer Programming approach 
to determine timeslots for courses at Kuwait University. 
Schedule Expert is a system that was developed by [4], and 
uses a 0-1 mathematical model to schedule courses at the 
Cornell University School of Hotel Administration.  

There are often different ways of mathematically 
representing the same optimization problem. Obtaining an 
optimal solution to a large integer programming problem in a 
reasonable amount of computer time may well depend on the 
way it is formulated. Much recent research has been directed 
towards the reformulation of integer programming problems. 
In this regard, it is sometimes advantageous to increase 
(rather than decrease) the number of integer variables, the 
number of constraints or both. Discussions of alternative 
formulation approaches are given in [14] and [15]. More 
recent work is presented by G. Lach and M.E. Lubbecke in 
which they formulated and solved Integer Programming 
model for curriculum-based course timetabling problem for 
Udine Benchmark test data [16]. Since the UCTP structures 
are not standard as they vary from one institution to another, 
most of the presented research findings are addressing 
specific case studies.  

This paper presents a new case study on the UCTP at 
Mkwawa University College of Education (MUCE) by 
formulating and reformulating mathematical programming 
models. The paper is organized as follows; firstly the course 
timetabling problem at MUCE is described, secondly 
mathematical programming models are presented, followed 
by a summary of results and lastly a conclusion and a 
proposal for future research directions is given.  
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II. COURSE TIMETABLING AT MUCE  

MUCE being a young fast growing institution, it consists 
of 3,000 students (from 1st to 3rd year), 150 lecturers, 19 
lecture and seminar rooms excluding laboratories. Currently 
there are a total of 95 courses offered in all faculties, that is 
Science, Humanity and Education. The timetable starts from 
7:00am and ends at 7:00pm, and repeats for five working 
days (Monday to Friday), making a total of sixty five time 
slots.  

Table I: MUCE Timetable Layout 
TIME-SLOTS 

DAYS 7:00am ... 1:00pm … 7:00pm 
Monday 1 … 7 … 13 
Tuesday 14 … 20 … 26 
Wednesday 27 … 33 … 39 
Thursday 40 … 46 … 52 
Friday 53 … 59 … 65 
 

Table I shows a typical layout of timeslots at MUCE. 
Timetabling constraints are normally divided into hard and 
soft. Hard constraints ought to be respected while soft 
constraints are to be satisfied as much as possible. 
Constraints at MUCE’s course timetable are as follows;  

A. Hard Constraints: 
A feasible timetable is one in which all courses have been 

assigned a timeslot and a room, so that the following hard 
constraints are satisfied; 
(i) No student attends more than one course at the same 

time;  
(ii) The assigned room is big enough for all the attending 

students and possess all the features required by the 
course;  

(iii) Only one course is taking place in each room at a given 
time.  

(iv)  No lecturer is assigned more than one course in the 
same timeslot 

B. Soft constraints: 
We need to minimize the use of the following timeslots;  

(i) Early morning timeslots due to cold and distant off 
campus students and lecturers,  

(ii) Lunch timeslots to allow for lunch breaks,  
(iii) Friday afternoon slots to allow for Muslims prayers 

from 12 noon to 2 pm and seventh day Adventist 
worshippers starting from 18 hours.  

Note that, some students and lecturers may prefer 
morning sessions to evening ones and vice versa, therefore, 
soft constraints cannot always be satisfied, they can only be 
treated to reasonable state and in a fairly way possible by 
minimizing violations as much as possible. As pointed 
earlier, a timetable is said to be feasible if it satisfies all the 
hard constraints. The objective is to minimize the number of 
soft constraint violations in a feasible timetable. The 
mathematical programming formulations for this problem 
are of the form;  
Minimize:  
Subject to.   

Where is the solution vector and  is the objective 
function. The objective function in this case will represent 
all soft constraints and  contains all hard constraints. 

Many formulations are possible for these problems, and 
therefore analysis of their performances and the upper limit 

on problems sizes are discussed. For instance the choice of 
the solution vector representation could be integral, mixed 
integer, binary, time indexed and many others. These 
choices have implications to the formulations and properties 
of the associated model. Three models are developed in this 
paper with different features and compare their 
performances as presented in the next section.  

III.  MATHEMATICAL FORMULATIONS  

We define the following structures;  
Sets: 

       Set of timeslots  
       Set of rooms 
     Set of Courses 

       Set of classrooms 
Decision Variables  

 
Parameters  

=  
Note that, two courses collide if they have students or 

lecturers in common. The matrix M is called a ‘conflict 
matrix’ and is used to detect collisions between courses.  
Tm      Maximum number of timeslots for MUCE timetable, 
N        Total number of courses at MUCE, 
       Total number of rooms at MUCE, 

1λ       Weight given to morning timeslots, 

 2λ        Weight given to lunch timeslots, 

 3λ        Weight given to Friday afternoon timeslots,  

A. Model 1: A Single 0/1 variable:  
This model uses full binary variables for decision 

making. Although they tend to create large variable set 
models, their inherently sparse matrices could sometimes be 
easily solved. Constraints of the resulting model are 
therefore represented as follows;  

a. Hard Constraints:  
(i) Course Collisions: 

This constraint ensures that there is no course collision 
i.e. no courses with common students or common lecturer is 
scheduled in the same timeslot. The conflict is detected from 
the conflict matrix as follows;  

, for all   and all   
This enforces the fact that for any pair of courses  

where , if there is a collision (i.e. ), then the 
two courses cannot be scheduled in the same time slot, .  

(ii) Room size violations: 
 

Where  refers to the size of room  and  is the 
capacity of course   

(iii) Room collisions: 
Two courses should not be allocated in 

the same room r at the same timeslot k  
i.e. 1 for all   
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(iv) Courses assignment: 
 for all .  

This ensures that each course is slotted and assigned one 
room.  

b. Soft constraints: 
As pointed earlier, soft constraints are associated with 

time desirability and we have the following soft constraints;  
(i) Minimize early morning sessions due to cold and 

distant residence off campus, both for students and 
lecturers,  

Let = the early morning slots, then,  
Minimize   

Where  counts the number of times the morning 
slots have been violated.  
(ii) Make lunch hours as free as possible, 

Given = the lunch hours, then,  

Minimize   
Where Counts the number of times the lunch hours 

have been violated.  
(iii) Minimize the religion timeslots;  

Let = religion timeslots, then,  
Minimize   

c. Objective function: 
Objective function is a linear combination of the soft 

constraints, making a function of the form
, where λ is constant which is 

given a weight depending on the importance of the 
associated constraint in relation to others. This weight is 
normally determined from the experience of the scheduler 
and other stakeholders of the timetabling system.  

From the objective function and hard constraints we 
have to;  
Minimize:  

  
Subject to:  

(a). ,   and all  
(b).  
(c). 1 for all  
(d). for all   
(e). , ,  and 

.  
Given a timetable with C courses, R rooms, and T 

timeslots, we have a problem with CRT variables. A typical 
Course timetable at MUCE involves 95 courses, 19 rooms, 
3,000 students and 160 Lecturers on a 65 slots time interval. 
This gives a problem with CRT= 95×65×19= 
117,325variables. The problem was too big to solve by 
common Mathematical Programming software available to 
us. We attempt to minimize the number of variables by 
breaking the variable definition into two separate sets of 
variables. This gives the second model as presented below;  

B. Model 2: Two 0/1 variables: 
In this case we break the decision variable into two as 

follows: 
Let, 

 

 

The problem constraints are divided into hard and soft as 
stated in the previous model and are now modelled as 
follows:- 

a. Hard Constraints: 

(i) Course collision: 

Courses 1i  and 2i  cannot be allocated to the same 
timeslot k if   
That is; 

,  either   or  or both, thus;  
 or  

  

(ii) Room size:  
Total students registered for course ‘ ’ should not exceed 

the corresponding room capacity , 
Mathematically, written as  

(iii) Room collision: 
Two courses  and  should not be allocated in the 

same room at the same timeslot. Note that, two courses may 
be in the same timeslot but in different rooms.  

Thus if  then 1 and vice 
versa  

We have therefore;  
, for all  such that 

  

(iv) Each course must be assigned a room and a 
timeslot: 

For each course, the sum of all timeslots must be 1 
(assigned exactly once) 
 , for all courses i   

(v) For each course, the sum of all rooms must be 1 
(assigned exactly once)  
 , for all courses i   

b. Soft constraints: 
(i). Minimizing the use of the first sessions due to cold and 

distant residence off campus;  
Minimize   

(ii). Making lunch hours (slots) as free as possible; 
Minimize =  

(iii). Minimizing the use of religion priority hours;  
Minimize   

c. Objective function: 
+ +  

Then complete model becomes;  
Minimize  +  + 

 
Subject to  

(a).   
(b). .  
(c). , for all i =1…95  
(d). , for all i =1…95  
(e). , for all courses i  
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(f). , , 
i C∈ , 1..k Tm∈  and r R∈ .  

In this model we have C (T+R) = 95(65+19) = 7,980 
variables. This is a considerable reduction from the previous 
model. However, the number of variables is still high to be 
able to solve a real timetable problem with software that is 
available to us. The number of variables can be further 
refined if we minimize the number of 0/1 variables by 
reformulation from model 2. This prompted the formulation 
of mixed pure integer (time-indexed) and 0/1 variables as 
shown in the next model.  

C. Model 3: Combined Time-indexed and binary 
variables Let; 

= Timeslot of course i  
, if course i  is slotted in room r and 0 otherwise  

= number of students in course i  
=Capacity of room r  

  

  

  

a. Objective function: 

+ +  

b. Constraints: 
(i) Enforcing : That is, if  then   which 

can be modeled as follows;  
,  

Where N is a sufficiently large value (in this case we 
take the value of the largest timeslot number, which is 65).  
Note that, if  then , which 
implies that .  
(ii) Enforcing : that is if ; 

this is modeled as follows;  
, for all   

Note: if then .  

(iii) Course collision: 
, for all  

Note: if  then  that is  

(iv) Room size:  
 , for all i  and r .  

(v) Room collision:  
If and  then we must have , and 

is modeled as follows;  
, for all 1 2i i≠  

Note: when and , then, . 
We would then like to have a constraint of the form; 

, that is, , then 
 must be zero.  

In this model we have reduced the number of variables 
to 1,965 and fortunately the used solver (GLPK-Solver) can 
accommodate this number of variables.  

The complete model 3 is therefore as follows;  
Minimize:  

+ +  

Subject to: 
a.  , where N is 65  
b. , for all 1 2i i≠  

c. , for all i and r ,  
d. , for all , where   
e. , for all   

IV. SUMMARY OF RESULTS  

This section presents a summary of results for the three 
models. Tables below summarize parameters, data and 
results as discussed in the previous sections;  

Table2: Summary of Results for model 1 (single 0/1 variable)  
No. 

Si
ze

(n
) 

R
ow

s 

C
ol

um
ns

 

N
on

-z
er

os
: 

O
bj

ec
tiv

e 

T
im

e(
Se

cs
) 

1 5 5,001,811 6,175  485,640 0 1.0 
2 10 2,235,361 12,350  2,784,260 0 7.3 
3 15 - - - - Too big 

 
This model managed to run and gave results for up to 

n=10 as shown in Table II. The number of rows is 
exponentially increasing with the value of n, where n is the 
number of courses. It is worth noting that the underlying 
matrix is sparse with many zeros, but still the solution is 
hard to find for a sizeable problem. Time spent is rather 
small for the solved problem, but drastically increases with a 
slight increase in size of n. This is typical of NP-Hard 
problems which are normally exponential, and therefore 
difficult to solve to optimality. 

It was observed that the searching space can be reduced 
by dividing it into regions for some constraints. For 
instance, a constraint that involves searching throughout the 
course combinations for course conflicts can be reduced to 
half. This steams from the fact that the collision matrix is 
symmetric and therefore only suffices to search in one 
triangle, either upper or lower. Furthermore, it was observed 
that some constraints require exclusion of the cases where 
courses are equal, since they don’t bring any new 
information or constraint. These reformulations on the 
bounds of constraints in model 1 resulted into a summary 
shown in Table III.  

Table II: Result summary of model 1 for i1≠i2 and i2>i1.  

Si
ze

(n
) 

 

Rows Columns objective Time (secs) 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

5 5,001,811 

253,181 

6,175 

6,175 

0 0 1.0 0.7 

10 2,235,361 

1,123,861 

12,350 

12,350 

0 0 7.3 3.1 

15 - 2,612,041 

- 18,525 

- 0 Too 
big 

10.3 
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From Table III, the number of constraints is reduced to 
almost half of its original values. That is, number of rows 
for  is approximately twice the number of rows for 
the model solved using . However, this did not 
improve performance, as only problems up to size n=10 
could be solved to optimality. This indicates that reduction 
of constraints does not necessarily improve performance 
since it may not necessarily reduce the polyhedron 
associated with the specific problem. 

Next, we show results for model 2 which divides the 
decision variable into two components. This is still a purely 
0/1 variable model, but the division of the decision variable 
is expected to cut-off considerably the number of variables 
and possibly reduce infeasibilities in the resulting 
polyhedron. 

Table 4: Summary of Results for model 2 

 
After reduction of problem size in terms of constraints 

and decision variables, the formulated model has been able 
to solve problems up to size n=41 as shown in Table IV. 
This is a considerable improvement over the previous model 
where only the size n=10 was possible. The highest time 
used was 253 seconds which is just over four minutes, a 
quite tolerable time. This indicates that, further 
reformulations may result into a model which could actually 
solve a realistic timetabling instance to optimality. Further 
reformulation by grouping the searching space as it was 
done in the previous model was implemented and the 
summary of results is as shown in Table V. 

Table 5: Result summary of model two for i1≠i2 and i2>i1   
Size 
(n) 

Rows Columns Objective Time (secs) 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

i1 ≠i
2

 

i2
>i

1 

7 261,06 13,106 420 420 0 0 0.2 0.1 

10 117,211 58,711 840 840 0 0 0.8 0.6 
15 273,316 136,816 1,260 1,260 0 0 3.4 2.7 
20 494,421 247,421 1,680 1,680 0 0 11.8 7.8 

25 780,526 390,526 2,100 2,100 0 0 33.6 16.5 
30 1,131,631 566,131 2,520 2,520 0 0 67.3 39.3 

35 1,547,736 774,236 2,940 2,940 0 0 130.1 59.6 

40 2,028,841 1,014,841 3,360 3,360 0 0 249.7 - 

45       Too 
big 

 

The same trend as in the previous model is observed, 
where despite of reduction in searching space, there is no 
improvement in the performance. If anything, the size n=40 
could not obtain a solution within reasonable time. This was 
solved in four minutes in the un-reformulated model 2. 
Again, it signifies the fact that a good model does not 
necessarily result from reduction of problem size.  

Previous studies have shown that, time indexed 
formulations coupled with binary variables can provide 
good models [12]. Note that, it may not be possible to avoid 
binary variables all-together, since they are needed in 
specifying various decisions situations. Model 3 is designed 
to combine these variables and the results are presented in 
Table VI.  

Table 6: Results summary for model 3  

Si
ze

(n
) Rows Columns 

O
bj

 

T
im

e 
(S

ec
s)

 

5 636 (435 integer, 335 binary) 0 0 

10 1,796 (895 integer, 695 binary) 0 0.1 

20 5,691 (1,890 integer, 1,490 binary) 0 0.4 

30 11,686 (2,985 integer, 2,385 binary) 0 1.1 
40 19,781 (4,180 integer, 3,380 binary) 0 3.9 
50 29,976 (5,475 integer, 4,475 binary) 0 8.9 
60 42,271 (6,870 integer, 5,670 binary) 0 23.6 

70 56,666 (8,365 integer, 6,965 binary) 0 615.7 
80 73,161 (9,960 integer, 8,360 binary) 0 122.7 
85 82,196 (10,795 integer, 9,095 binary) 0 871 
90 91,756 (11,655 integer, 9,855 binary) 0 894.2 
95 101,841 (12,540 integer, 10,640binary) 0 1,160.2 
 

This model managed to solve the whole of MUCE 
timetabling problem by securing an optimal solution to the 
problem of size n=95, which is the total number of courses 
at MUCE. This formulation therefore means that it provides 
a better polyhedron by starting with a model which is closer 
to the required polytope than the previous models. This 
solution was found after 1,160 seconds which is more than 
19 minutes. The time is tolerable for timetabling problems 
and is not strange for optimal solution algorithms. 

V. CONCLUSIONS AND FUTURE RESEARCH  

In this research, we developed an algorithm for UCTP 
and use Mkwawa University College of Education as a case 
study, where exact approach was employed (mixed integer 
programming). All three models were solved to optimality, 
however models 1 and 2 were only solved for small 
instances. This is expected since the problem is NP-Hard 
and therefore the solution space is expected to grow 
exponentially with the size n. 

Fortunately, reformulation of the previous models made 
it possible to solve a real problem instance to optimality. 
Although this is not a guarantee that all future instances 
would be solved to optimality through the formulation, it 
provides a good benchmark for future research in the 
problem. 

A. Future Research Directions:  
In this study we have applied exact techniques to solve 

the UCTP at MUCE. As MUCE grows, there is a need to 
apply state of the art global heuristic techniques. 
Furthermore, this study considered only a few time 

Si
ze

 
(n

) 

Rows Columns Objective  Time 
(Secs) 

5 26,106 420 0 0.2 

10 117,211 840 0 0.8 

15 273,316 1,260 0 3.9 

20 494,421 1,680  0 11.8 

25 780,526 2,100  0 33.6 

30 1,131,631 2520  0 67.3 

35 1,547,736 2,940  0 130.1 

40 2,028,841 3,360  0 249.7 

41 2,132,862 3,444  0 253.6 

42    Too big 
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restrictions on soft constraints. Other soft constraints exist 
such as teacher and student preferences and the need to 
spread courses over the week. It is worth considering 
addition of as many soft constraints as possible so as to 
improve the quality of solution. Exact approach can still be 
extended with further reformulations and development of 
deepest-cut constraints (facets) which defines the problem’s 
polytope ([17], [18]).  
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