
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 20

ISSN No. 0976-5697

User-Level Process Migration Mechanism

Dr. Narayan A. Joshi*
Assistant Professor, Computer Science Department,

Institute of Science & Technology for Adv. Studies &
Research, Vallabh Vidyanagar, India

narayan.joshi@yahoo.com

Dr. D. B. Choksi
Professor,

G. H. Patel Post Graduate Department of Computer Science
& Technology, Vallabh Vidyanagar, India

dbchoksi@yahoo.com

Abstract: In networks of workstations, running processes lead to a situation, in which some of the nodes are highly loaded whereas other nodes may
remain lightly loaded or almost idle. It may lead to reduction in throughput and lot of computational power offered by the lightly loaded or the idle
processors. This computational power goes unused while the jobs are striving for the availability of processor-cycles. The issue of efficient utilization
of computing resources is noteworthy in the networked workstations such as local area networks as well; which can be tackled by spreading the
running processes among the connected workstations by means of the mechanism such as process migration. The application of process migration
mechanism may consequent into the proficient utilization of the overall networked computing environment through the utilization of the lightly
loaded workstations or the almost idle workstations. The paper discusses characteristics of many user level process migration mechanisms.

Keywords: process migration, load balancing, process checkpointing, user-level process migration, distributed systems

I. INTRODUCTION

The implementation of distributed computing systems is
emerging day by day as an outcome of the availability of
advanced computing hardware resources at reduced cost and
innovations in the communication and networking
technologies. One of the primary objectives of distributed
systems is its capability of resource sharing in order to serve
its users with an augmented combination of computing
resources which are generally distributed around the
network’s workstations. Another important advantage with
distributed systems is that the concept of load balancing may
be implemented on such a network of workstations.

The earlier years have has perceived the realization of
parallel computing systems which have been in practices in
high performance computing applications [7]. Moreover, it is
often observed that, the hardware has been upgrading faster
than the relevant system software including the operating
systems. Moreover, some of the shortcomings do exist with
parallel systems, for example deficiency of fault tolerance
and negligible support in fast upgradation of hardware as the
augmenting of modern hardware components to the parallel
systems requires rebooting of the running system and
upgradation in underlying system software and operating
system policies and therefore results into discontinuity in the
availability of the system. Moreover, the developments in
computing technology and networking technology has led to
the availability of powerful, inexpensive CPUs and
economical loosely-coupled computing environments called
distributed systems; in which software modules sited at
interconnected workstations collaborate their jobs to
accomplish the characteristics like – resource sharing,
information sharing, higher throughput, better flexibility and
greater reliability. Moreover, in the network formed through
such distributed systems it becomes easier to supplement

more nodes or to disjoin the surplus or malfunctioning
workstations. These noteworthy features of distributed
systems overcome the aforesaid limitations of the parallel
computing systems [6], [10]. However, the total computing
capacity of the networked workstations may theoretically
appear to be larger than that of the single isolated
workstation. It is frequently observed that in such networks
of workstations, frequently seen that some of the nodes are
highly loaded while others are left as lightly loaded or nearly
idle; which results into application of merely a fraction of the
total theoretical computing power of the network [13], [14].
But, on the other side, in such circumstance, the technique of
load sharing or load balancing may become useful to achieve
better performance in the network of workstations. We may
implement the load balancing technique by migrating some
of the already running processes from the overloaded nodes
to the idle or lightly loaded nodes of the network [12].

Section 2 of this paper highlights the mechanism of
process migration. There are numerous types of process
migration techniques; the section 3 enlists some of them. The
paper mainly focuses on the user-level process migration
mechanisms, which have been discussed in the section 4. In
the later part of the paper, remarks on the study of the user
level techniques have been briefed in the section 5.

II. THE TECHNIQUE OF PROCESS MIGRATION

In the network of workstations, it is common that some
workstations remain lightly loaded or nearly idle to whom
the mechanism of migration of already running process may
produce better utilization of the overall computing
environment [4]. In addition to the advantage of load sharing,
the process migration mechanism also serves the features like
efficient utilization of computing resources and fault
tolerance and enhanced system management. The mechanism
involves migration of process from its originating

Narayan A. Joshi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 20-23

© 2010, IJARCS All Rights Reserved 21

workstation to some other workstation; the phases involved
are on the source workstation, checkpointing of the current
state information of the process which is to be migrated,
putting the checkpointed state information to a persistent
storage device, sending the state information to the
destination workstation on which the process is to be
resumed and after migrating to the destination workstation,
restoring and resuming the migrated process on destination

node. The migration can be either static or dynamic. Static
migration involves transfer of only newly submitted process
which has not begun its execution, whereas dynamic
migration involves migration of partially executed processes;
compared to static migration, the dynamic process migration
is a quite challenging mechanism. The scenario of dynamic
process migration mechanism is represented in figure 1 [12].

Figure 1. Process Migration Mechanism

III. PROCESS MIGRATION FLAVOURS

When a process itself performs self-migration, the
migration is called active migration; otherwise when some
other process performs migration of the process which is to be
migrated, the technique is called passive migration. When
migration occurs between same platforms, the technique is
called homogeneous migration, otherwise it is known as
heterogeneous migration. When associated file is only
transferred to the destination workstation, it is called weak
migration; otherwise the static and dynamic process migration,
strong and weak process migration. Moreover, the process
migration techniques can be classified into two more
significant types called kernel-space process migration and
user-space process migration.

The user-space process migration techniques perform
migration of the process without changing the code of the
kernel of the operating system; which makes implementation of
such techniques simpler. The primary and major difficulty in
user-level process migration mechanism implementation is -
such mechanisms cannot access the features which are
accessible to only kernel-space and which are out of sight in
the user-space; therefore, they cannot deal with migration of
certain state information of the process which is to be migrated,
thereby limiting the applicability of the process migration to all
processes [12], [13]. Whereas, the kernel-space techniques

utilize the services available to underlying operating system’s
kernel in order to perform migration of process from its
originating workstation to the destination workstation.
However, such techniques certainly require modification of the
kernel; which makes the scope and availability of such
techniques limited to particular kernels for which it has been
implemented [5], [12]. However, a good amount of research
has taken place in the areas of user-space and kernel-space
process migration. Here we describe some of the known
mechanisms in the domain of user-level process state
checkpointing and process migration.

IV. USER-SPACE PROCESS MIGRATION

This section focuses on some of the significant research
contributions in the field of user-space process migration
mechanism.

A. Libckpt:
The Libckpt utility is developed as library routines in the

form of includable header files. It is useful to perform the
checkpointing of processes on UNIX platform [9]. As Libckpt
is implemented in the form of library, it is applicable to self-
checkpointing processes, i.e. it supports the active process
migration. Furthermore, utilization of Libckpt requires
recompilation and relinking of the application’s source files in
association with the Libckpt header files. An important

Narayan A. Joshi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 20-23

© 2010, IJARCS All Rights Reserved 22

characteristic is that the generated checkpoint-image file
consumes less space that results into faster file transfer which
leads the mechanism towards better efficiency. However, it not
only requires modifications in the application source code but
also it requires renaming of some of its source files. Moreover,
the applied changes to the source files must be transformed into
final application executable files also; which may become
problematic in case of infeasibility of modifications of the
application’s source code.

B. Libckpt:
As like as the Libckpt utility (discussed above), the

Libtckpt utility is also developed in the form of a set of
libraries which can perform active process migration. An
additional capability that it possesses is that it can checkpoint
multithreaded processes involving the Linux and Solaris
threads [16]. In order to achieve its goal, the Libtckpt adds one
more thread of execution to the application which is to be
migrated. However, being a library implementation, the
Libtckpt library also requires modifications to the application’s
source files in addition to the execution of the initialization
routines.

C. Ckpt:
The Process Checkpoint Library package is a set of libraries

and programs which are capable to perform user-space process
checkpointing. The technique developed by Zandy does not
require modification and recompilation of the pre-compiled
and pre-linked application’s source and binary files. As well, it
is also possible to inject the library to the applications which
already are under execution. Moreover, the checkpointed
image file can be resumed later. It supports checkpointing of
environment of the process. But, migration of the credentials of
a process is problematic with the Process Checkpoint Library
[15].

D. Esky:
The Esky technique is a system is capable to checkpoint

and resume the processes in the UNIX environment [2]. One of
the characteristic of Esky is that the process (which is to be
migrated) must be directed to run in the ambience of the
monitor provided by the Esky software. This requires that the
application programmer or the user must know well in advance
that the process could be migrated later, which may create
inconveniency during its usage. The other point to be
considered while working with Esky is that the signal handers
for the signals such as sigalarm may not function transparently
as the Esky also takes help of sigalarm signal.

E. REXEC:
The REXEC utility facilitates a secure and decentralized

execution facility. Apart from enabling the feature of
migration, it also supports the features such as scalability,
transparency, availability, discovery of decoupled nodes,
dynamic cluster configuration, authentication, encryption and
support to the parallel applications. However, one of the
limitation with REXEC is it lacks in relinking with the remote
execution related requirements and its usage applicable for
certain version of kernel [1].

F. Condor:
The Condor system is a scheduling system for an

environment of UNIX workstations which provides the feature
of checkpointing and migration [11]. The Condor’s job
scheduling system migrates job from some non-idle node to
some idle node. In order to attain such characteristic, the
Condor system performs first checkpoints the process on its
originating node, transfers the checkpointed image to some idle
node and makes arrangements on that idle node such that the
migrated process image resumes its execution [3]. Moreover, it
enables the process to perform self-checkpointing with help of
its library which can be activated through the checkpoint signal
provided by Condor [8]. However, the Condor system requires
recompilation and relinking of the application’s source files.

V. CONCLUDING REMARKS

Although abundant work has been accomplished in the
domain of process state checkpointing and migration, a major
part of the work stays incongruous or difficult to get to the
computing environments produced by means of recent
hardware and system software including operating systems and
networks connected using modern networking technologies.
The discussed mechanisms are either publicly unavailable or
involve usage of operating systems which are not supported by
contemporary hardware or too old or, simply do not meet the
functional requirements demanded in real world scenarios.

VI. REFERENCES

[1] B. N. Chun and D. E. Culler, “REXEC: A Decentralized,
Secure Remote Execution Environment for Clusters”,
CANPC ’2000: Proceedings of the 4th International
Workshop on Network-Based Parallel Computing, pages 1-
14, London, UK, 2000. Springer-Verlag

[2] D. Gibson, “Checkpoint/restart for Solaris and Linux”, 1999,
Available from
http://ccnuma.anu.edu.au/cap/cap/reports/report99/node14.ht
m

[3] D. Thain, T. Tanenbaum, and M. Livny, "Distributed
Computing in Practice: The Condor Experience", ACM
Journal of Concurrency and Computation: Practice and
Experience, Vol. 17 Issue 2 -4, February-April, 2005

[4] J. Basney, M. Livny and P. Mazzanti, “Utilizing Widely
Distributed Computational Resources Efficiently with
Execution Domains”, Journal of Computer Physics
Communications, Vol. 140, 2000

[5] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa and S. Jiang,
“Current practice and a direction forward in
checkpoint/restart implementations for fault tolerance”,
Proceedings of 19th IEEE International Symposium on
Parallel and Distributed Processing, 2005

[6] J. D. Smith, “Fault Tolerance using Whole-Process Migration
and Speculative Execution”, M. S. thesis at California
Institute of Technology, 2003

[7] J. M. Smith, “A Survey of Process Migration Mechanisms”,
Technical Report CUCS-324-88, , Columbia University

Narayan A. Joshi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 20-23

© 2010, IJARCS All Rights Reserved 23

[8] J. Meehean and M. Livny, “A Service Migration Case Study:
Migrating the Condor Schedd”, Midwest Instruction and
Computing Symposium, April 2005

[9] J. S. Plank , M. Beck, G. Kingsley and K. Li, “Libckpt:
transparent checkpointing under Unix”, USENIX 1995
Technical Conference Proceedings

[10] M. Kozuch and M. Satyanarayanan, “Internet
suspend/resume”, Proceedings of the IEEE Workshop on
Mobile Computing Systems and Applications, IEEE CS
Press, 2002

[11] M. Livny and J. Basney, “Managing Network Resources in
Condor”, Proceedings of the Ninth IEEE Symposium on
High Performance Distributed Computing (HPDC9), 2000

[12] N. A. Joshi, “Development of Algorithms for Optimized
Process Migration for Load Balancing in Distributed
Systems”, PhD Thesis, Sardar Patel University, 2012

[13] N. A. Joshi and D. B. Choksi “Process Migration
Techniques”, International Journal of Information &
Computing Technology, Vol. 2 Issue 2, Nov. 2012

[14] S. Malik, “Dynamic Load Balancing in a Network of
Workstations”, 95.515F Research Report, 2000

[15] V. C. Zandy, “CKPT: A Checkpoint Library under UNIX”,
2004, http://www.cs.wisc.edu/~zandy/ckpt

[16] W. R. Dieter and J. E. Lumpp; “User-level Checkpointing for
Linux Threads Programs”, Proceedings of FREENIX Track:
USENIX 2001 Annual Technical Conference,2001

	INTRODUCTION
	THE TECHNIQUE OF PROCESS MIGRATION
	PROCESS MIGRATION FLAVOURS
	USER-SPACE PROCESS MIGRATION
	Libckpt:
	Libckpt:
	Ckpt:
	Esky:
	REXEC:
	Condor:

	CONCLUDING REMARKS
	REFERENCES

