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Abstract: Loop tiling is a well-known compiler transformation that increases data locality exposes parallelism and reduces synchronization costs. 
Tiling increases the amount of data reuse that can be exploited by reordering the loop iterations so that accesses to the same data are closer together 
in time [2]. Loop tiling is effective to improve hit ratio of cache. However, while eliminating self interference miss, tiling may produce small tiling 
factors for the cases of some arrays [3]. This paper presents a new algorithm for choosing problem-size dependent tiles based on the cache size, cache 
line size that eliminates the self-interference misses and uses 100% of available cache size. This algorithm covers the entire problem array size with 
the selected tile size. The tile size selection is our choice, so based on the different tile sizes available for A[i][j], we can choose a rectangular or 
square tile size. 
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I. INTRODUCTION 

Loop tiling is an effective method to reduce capacity 
miss and interference miss. However, loop tiling sometimes 
also may cause too small iterating times of inner loops, 
which will enlarge the overhead for executing loops and 
limit other optimizations. This is called the side effect of 
loop tiling. Especially, eliminating self interference miss 
makes tiling factors seriously dependent on the data layout 
of arrays [3]. In order to fully exploit the benefits of caches, 
compiler transformations have been developed to restructure 
the computation [2]. 

Loop tiling reduces capacity misses by enhancing data 
locality. However, tiling can introduce misses due to cache 
mapping conflicts, namely interference misses, since it 
causes non-contiguous regions of memory to be referenced 
within a single tile. For a given cache size and configuration, 
the amount of interference in a tiled loop nest varies 
significantly with both array size and tile size, such that a 
tile that works for one array size may cause a large amount 
of interference for other array sizes [4]. 

This paper is an improvement on few of the previously 
proposed algorithms in tile size selection. In this paper we 
present an efficient algorithm for tile size selection that will 
eliminate self-interference misses within iteration space. We 
have considered cache line size to be an essential factor in 
deciding the tile size. The available tile sizes avoid the side 
effect of a loop tiling caused due to selection of too small 
tiles. We can make a choice to use either rectangular or 
square tile once we get the tile sizes for an array space. The 
selected tiles uses the 100% of available cache and also 
covers (overlaps) the entire array space 

 
 
 

II. BACKGROUND AND RELATED WORK 

A. Background  
Tiling can be applied to registers, the TLB, or any other 

level of memory hierarchy. We concentrate on tiling for the 
first level of cache memory [1]. 

Interference misses occur when a cache line that 
contains data that will be reused is replaced by another 
cache line. An interference miss is distinguished from a 
capacity miss because not all the data in the cache at the 
point of the miss on the displaced data will be reused. 
Intuitively, interference misses occur when there is enough 
room for all the data that will be reused, but because of the 
cache replacement policy data maps to the same location. 
Self-interference misses result when an element of the same 
array causes the interference miss. Cross interference misses 
result when an element of a different array causes the 
interference miss [1]. 

Tiling reduces the volume of data accessed between 
reuses of an element, allowing a reusable element to remain 
in the cache until the next time it is accessed. 

 
(a) Matrix Multiply 

DO I = 1, N 
DO K = 1, N 

R = X(K, I) 
Do J = 1, N 

Z(J,I) = Z(J,I) + R* Y(J,K) 
(b) Tiled Matrix Multiply 

DO KK = 1, N, TK 
DO JJ = 1, N, TJ 

DO I = 1, N 
DO K = KK, MIN(KK+TK-1,N) 

R = X(K,I) 
DO J = JJ, MIN(JJ + TJ-1,N) 

Z(J,I) = Z(J,I) + R * Y(J,K) 

Figure 1.   Matrix Multiplication as Tiling Example [1] 
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B. Related Work [2] : 
Several researchers have addressed the problem of 

minimizing cache interference [6, 7, 8, 9, 10, 11, 12, 13, 14]. 
Some of this work targets tiled loop nests, which are known 
to exhibit significant interference depending on the problem 
size. Lam, Rothberg and Wolf [l1], Coleman and McKinley 
[6] and Esseghir [7] have proposed tile size selection 
schemes for avoiding self interference in tiled loop nests. 

Lam, Rothberg and Wolf [l1] present a model for 

predicting self interference and use it to evaluate self 
temporal interference in tiled matrix multiply. They also 
propose an algorithm (that we call LRW, as in [6]) for 
selecting the largest square tile that does not generate self 
interference for a particular array size. Although LRW 
improves the average cache performance for a range of 
array sizes, it chooses very small tiles for some array sizes, 
resulting in only a fraction of the cache being utilized and 
large loop overheads due to tiling. 

Research Paper 

 
Figure 2. Iteration space traversal in (a) untiled and (b) tiled matrix multiply 

[1] 

Esseghir’s approach (ESS) [7] consists of selecting the 
maximum number of rows (assuming row-wise allocation) 
that fit in the cache. His approach eliminates self interference, 
but it can result in low cache utilization by leaving potentially 
large portions of the cache unused. Furthermore, it may result 
in low temporal locality, if the temporal reuse of outer tiled 
loops is not exploited. The result of not fully exploiting cache 
utilization and temporal reuse is an increase in capacity misses 
and loop overheads. 

A third tile selection technique (TSS) was proposed by 
Coleman and McKinley [6]. TSS selects rectangular tiles that 
eliminate self interference and minimize cross-interference 
misses, achieving better performance than ESS. However, for 
some matrix sizes, TSS selects tiles that do not fully exploit 
temporal reuse, resulting in a high number of capacity misses. 

Ghosh, Martonosi and Malik [9,10] proposed a technique 
for selecting tile sizes, based on their Cache Miss Equations 
framework for quantifying both capacity and interference 
misses. Their algorithm determines the largest rectangular tile 
without self interference that fits in an iteration subspace 
bounded by integer solutions to the cache miss equations. 

Minimizing self interference independently of capacity and 
cross interference does not always result in the lowest miss 
rates or execution times. To minimize the total number of 
cache misses it is necessary to minimize the sum of the 
contributions of the capacity, cross and self-interference 
misses. Since self interference is often the main cause of 
interference misses, and self interference is costly to estimate 
[5, 10, 14], our work focuses on finding tiles that do not 
introduce self interference based on cache line size, cache size 
and array size. 

III. TILE SELECTION ALGORITHM 

A. Concept of Tiling: 
Tiling reduces the volume of data accessed between reuses 

of an element, allowing a reusable element to remain in the 
cache until the next time it is accessed. Consider the code for 
matrix multiply in Figure l(a) and its corresponding reuse 
patterns illustrated in Figure 2(a). The reference Y(J,K) is 
loop-invariant with respect to the I loop. Each iteration of the 
loop also accesses one row each of X and Z. Therefore, 2*N + 
N2 elements are accessed per iteration of the I loop. Between 
each reuse of an element of Y there are N distinct elements of 
Z accessed on the J loop, N elements of the X array on the K 
loop, and N2 - 1 elements of Y array. If the cache is not large 
enough to hold this many elements, then the reusable Y data 
will be knocked out of the cache, and the program will have to 
repeat a costly memory access [1]. 

The largest tile with the most reuse on the I loop is the 
access to Y. We therefore target this reference to fit and stay 
in cache. We want to choose TK and TJ such that the TK x TJ 
sub matrix of Y will still be in the cache after each iteration of 
the I loop and there is enough room in the cache for the 
working set size of the I loop, TK * TJ + TK + TJ[1]. 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 

B. Inefficient cache usage: 
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Figure 3. Column Layout for a 1280*1280 array in an 8192 element cache 

 
Figure 4.   Limits of tile size as per theorem for A[N][N] 

Consider the layout of 1280x1280 array Y in a direct 
mapped cache that can hold 8192 elements of Y as illustrated 
in Figure 3. We assume that the first element of array Y falls 
in the first position of the cache. 

The number of columns (Col) that can fit in cache is 
⌊Cache Size / N⌋ 

Where N is the column dimension (the consecutively 
stored dimension). For Figure 3, Col = 6 for a tile of 1280 x 6 
Esseghir selects this tile [15]. A 1280 x 6 tile uses 93% 
percent of an 8192 element cache, but leaves a single 
contiguous gap of 512 elements that can’t fit into the tile 
perfectly. If N evenly divides CS, we also select this tile size. 
Otherwise, we look for a smaller column dimension with a 
larger row size that does not incur interference which 
combines to use a higher percentage of the cache [1]. 

C. Tile size selection approach: 
Given a target array size, cache line size, cache size and 

size of each array element, we now show how to select a 
desired square or rectangular tile. 

a. Theorem [3]: 
Let CS the size of cache, CLS the size of cache line. Let 

CS=2n, CLS=2k, base A be the base address of the array A 
[N1][N2]. We have the following theorem: 

a) Theorem: 
If N2=d*2m, where d is an odd number, m is the step of A, 

and k<=m<n, then the reference of A, A[i][j], won't cause self-
interference misses within the range: i0<=i<i0+2n- m, 
j0<=j<j0+2m-2k+l. (i0 can be any value between 0 and N1-1, j0 
can be any value between 0 and N2- 1). 

According to theorem 1, one can select suitable value of m, 
and adjust the N2 as odd time of 2m, it will eliminate the self-
interference miss within iteration space [16]. 

In our approach we have considered array of size A[N][N] 
instead of A[N1][N2] as considered in the above theorem. The 
theorem gives us the upper limit for the tile size as Imax and 
Jmax for which self-interference misses will be eliminated. 
We have the freedom to choose either a square tile or a 
rectangular tile with these constraints on tile size. 

Our main intension is to utilize the cache size to the fullest 
i.e. 100% cache usage with the selected tile. 

One more limitation for tile selection that we have 
considered is, the set of all possible tiles (square or 

rectangular) for a given array size and cache size is given by, 
{ T = < I , J > | I*J ≤ min(N2, CS) } 

Where CS is the maximum number of array elements that 
can fit in cache, I and J are respectively the size of the sub-
column and sub-row of tile T and 1≤I, J≤CS. [2] 

Sometimes it may happen that, for T < I, J >, (multiple of 
I) ≠ N or/and (multiple of J) ≠ N i.e. the selected tile does not 
completely overlap or covers the entire array space. We are 
finding tile that should cover up the array entirely. All the 
goals stated above are fulfilled by finding GCD of array size, 
cache size and cache line size. 

The main idea behind our tile selection algorithm is 
finding a tile that will eliminate self-interference misses, the 
tile should use the cache fully to 100%, it should overlap the 
entire array and finally it should avoid side effect of a loop 
tiling. 

Once we find the gcd of the three essential parameters in 
tile size selection, we get a set of values that can be chosen as 
tile on i and j axis for the array. We have to check these values 
for the two constraints that we have imposed on tiles and then 
we can select a square or rectangular tile as desired. Among 
the total tile resulted from algorithm, we have to avoid the 
small tile size and try for the larger tiles. This will give us less 
choice for tiles but will avoid side effect. The actual algorithm 
for which the results are tabulated in TABLE-I is given in 
Figure 5 below. 

Algorithm tileSizeSelection (CS, CLS, array_size) 
{ 

CS= 2n CLS 
= 2k 
x = array_size / 2k 
for i = k, n 

for j = 1, x 
{ 
if ( array_size = j * 2i ) 

{ 
m = i d = j 

} 
j++ 

} 
Imax = 2n-m 
Jmax = 2m  – 2k  + 1 
gcd = Algo_gcd (CLS, CS, array_size) tile = 
Algo_factor (gcd) 

} 

Figure 5.   Tile size selection algorithm 

IV. RESULT ANALYSIS AND CONCLUSION 

The result in the below table gives us the needed tile size 
as per our choice i.e. square or rectangular tile. 

Consider second column, where L1 cache size is 16k. The 
corresponding row for Imax shows 32 and Jmax shows 385 
and the last row shows three values 64, 32, 16. It means we 
are free to choose a square tile of size 16×16, 32×32 likewise 
we can choose rectangular tile of sizes 16×32, 16×64, 32×16, 
32×64. But we can’t choose a square tile of size 64×64 or a 
rectangular tile of size 64×32 or 64×16, this is mainly because 
of the maximum limit Imax as 32. This limitation says that we 
can’t choose a tile with I greater than 32, because beyond this 
size the self-interference misses will occur. 

The work done in this paper has a limited set of values for 
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testing because of the gcd computation of the three parameters 
i.e. cache size, matrix size and cache line size. We have 
considered cache line size as an essential parameter in the 
experimentation with the implementation of the algorithm, so 
we got very limited choices for tile. If we give a bit relaxation 
by considering the gcd of cache size and matrix size only then 
the set of values will have a larger set to choose for tile size. 

Also, the choice for m and d based on the theorem has 
made the choices for array size to be very specific in the 
experimentation. If we considered 2n to be the cache size in 
Kbytes and 2n as cache line size then some of the choices for 
matrix size for which the theorem satisfies with some integer 
values of m and d are as 640, 768, 896, 1280, 1536, 1792, 
2560, 3584. 

Table: 1 Possible Tile Sizes for Different Combination of CS, CLS and Array Size 

Sr. 
No. 

L1 
Cache 

size 
(bytes) 

Cache 
Line 
Size 

(bytes) 

Array 
Size 
(N)  

Array 
Eleme 
nt Size 
(bytes) 

No. of 
Elements in 

Single Cache 
Line 

No. of 
Elements 
in Cache 

No. of 
Elements 
in Array 

n k m d Imax Jma
x 

Possible 
Tile Size 

1 32k 64 1280 4 16 8192 1638400 15 6 8 5 128 193 16,8,4 

2 16k 128 3584 2 64 8192 12845056 14 7 9 7 32 385 64,32,16 

3 128k 256 1536 4 64 32768 2359296 17 8 9 3 256 257 64,32,16,8 

4 64k 128 1792 4 32 16384 3211264 16 7 8 7 256 129 32,16,8 

5 128k 128 1024 4 32 32768 1048576 17 7 10 1 128 897 32,16,8 
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