
Volume 4, No. 1, January 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 4 CONFERENCE PAPER
National Level Conference on

 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”
on 2nd September 2012

Organized by
St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

An Efficient Algorithm for Tile Size Selection
Mahesh Ubale*

Dept. of Computer Engineering/Information Technology
St. Vincent Pallotti College of Engineering & Technology,

Gavsi Manapur, Wardha Road, Nagpur
maheshubale@gmail.com

Priyanka Joshi
Department of Computer Science Engineering,
Visveswaraya National Institute of Technology,

Nagpur, Maharashtra, Pin 440010 (India)
priyankajoshi230@gmail.com

Abstract: Loop tiling is a well-known compiler transformation that increases data locality exposes parallelism and reduces synchronization costs.
Tiling increases the amount of data reuse that can be exploited by reordering the loop iterations so that accesses to the same data are closer together
in time [2]. Loop tiling is effective to improve hit ratio of cache. However, while eliminating self interference miss, tiling may produce small tiling
factors for the cases of some arrays [3]. This paper presents a new algorithm for choosing problem-size dependent tiles based on the cache size, cache
line size that eliminates the self-interference misses and uses 100% of available cache size. This algorithm covers the entire problem array size with
the selected tile size. The tile size selection is our choice, so based on the different tile sizes available for A[i][j], we can choose a rectangular or
square tile size.

Keywords: Loop tiling, self interference miss, and cache line size.

I. INTRODUCTION

Loop tiling is an effective method to reduce capacity
miss and interference miss. However, loop tiling sometimes
also may cause too small iterating times of inner loops,
which will enlarge the overhead for executing loops and
limit other optimizations. This is called the side effect of
loop tiling. Especially, eliminating self interference miss
makes tiling factors seriously dependent on the data layout
of arrays [3]. In order to fully exploit the benefits of caches,
compiler transformations have been developed to restructure
the computation [2].

Loop tiling reduces capacity misses by enhancing data
locality. However, tiling can introduce misses due to cache
mapping conflicts, namely interference misses, since it
causes non-contiguous regions of memory to be referenced
within a single tile. For a given cache size and configuration,
the amount of interference in a tiled loop nest varies
significantly with both array size and tile size, such that a
tile that works for one array size may cause a large amount
of interference for other array sizes [4].

This paper is an improvement on few of the previously
proposed algorithms in tile size selection. In this paper we
present an efficient algorithm for tile size selection that will
eliminate self-interference misses within iteration space. We
have considered cache line size to be an essential factor in
deciding the tile size. The available tile sizes avoid the side
effect of a loop tiling caused due to selection of too small
tiles. We can make a choice to use either rectangular or
square tile once we get the tile sizes for an array space. The
selected tiles uses the 100% of available cache and also
covers (overlaps) the entire array space

II. BACKGROUND AND RELATED WORK

A. Background
Tiling can be applied to registers, the TLB, or any other

level of memory hierarchy. We concentrate on tiling for the
first level of cache memory [1].

Interference misses occur when a cache line that
contains data that will be reused is replaced by another
cache line. An interference miss is distinguished from a
capacity miss because not all the data in the cache at the
point of the miss on the displaced data will be reused.
Intuitively, interference misses occur when there is enough
room for all the data that will be reused, but because of the
cache replacement policy data maps to the same location.
Self-interference misses result when an element of the same
array causes the interference miss. Cross interference misses
result when an element of a different array causes the
interference miss [1].

Tiling reduces the volume of data accessed between
reuses of an element, allowing a reusable element to remain
in the cache until the next time it is accessed.

(a) Matrix Multiply

DO I = 1, N
DO K = 1, N

R = X(K, I)
Do J = 1, N

Z(J,I) = Z(J,I) + R* Y(J,K)
(b) Tiled Matrix Multiply

DO KK = 1, N, TK
DO JJ = 1, N, TJ

DO I = 1, N
DO K = KK, MIN(KK+TK-1,N)

R = X(K,I)
DO J = JJ, MIN(JJ + TJ-1,N)

Z(J,I) = Z(J,I) + R * Y(J,K)

Figure 1. Matrix Multiplication as Tiling Example [1]

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013,4-7

© 2010, IJARCS All Rights Reserved 5 CONFERENCE PAPER
National Level Conference on

 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”
on 2nd September 2012

Organized by
St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

B. Related Work [2] :
Several researchers have addressed the problem of

minimizing cache interference [6, 7, 8, 9, 10, 11, 12, 13, 14].
Some of this work targets tiled loop nests, which are known
to exhibit significant interference depending on the problem
size. Lam, Rothberg and Wolf [l1], Coleman and McKinley
[6] and Esseghir [7] have proposed tile size selection
schemes for avoiding self interference in tiled loop nests.

Lam, Rothberg and Wolf [l1] present a model for

predicting self interference and use it to evaluate self
temporal interference in tiled matrix multiply. They also
propose an algorithm (that we call LRW, as in [6]) for
selecting the largest square tile that does not generate self
interference for a particular array size. Although LRW
improves the average cache performance for a range of
array sizes, it chooses very small tiles for some array sizes,
resulting in only a fraction of the cache being utilized and
large loop overheads due to tiling.

Research Paper

Figure 2. Iteration space traversal in (a) untiled and (b) tiled matrix multiply

[1]

Esseghir’s approach (ESS) [7] consists of selecting the
maximum number of rows (assuming row-wise allocation)
that fit in the cache. His approach eliminates self interference,
but it can result in low cache utilization by leaving potentially
large portions of the cache unused. Furthermore, it may result
in low temporal locality, if the temporal reuse of outer tiled
loops is not exploited. The result of not fully exploiting cache
utilization and temporal reuse is an increase in capacity misses
and loop overheads.

A third tile selection technique (TSS) was proposed by
Coleman and McKinley [6]. TSS selects rectangular tiles that
eliminate self interference and minimize cross-interference
misses, achieving better performance than ESS. However, for
some matrix sizes, TSS selects tiles that do not fully exploit
temporal reuse, resulting in a high number of capacity misses.

Ghosh, Martonosi and Malik [9,10] proposed a technique
for selecting tile sizes, based on their Cache Miss Equations
framework for quantifying both capacity and interference
misses. Their algorithm determines the largest rectangular tile
without self interference that fits in an iteration subspace
bounded by integer solutions to the cache miss equations.

Minimizing self interference independently of capacity and
cross interference does not always result in the lowest miss
rates or execution times. To minimize the total number of
cache misses it is necessary to minimize the sum of the
contributions of the capacity, cross and self-interference
misses. Since self interference is often the main cause of
interference misses, and self interference is costly to estimate
[5, 10, 14], our work focuses on finding tiles that do not
introduce self interference based on cache line size, cache size
and array size.

III. TILE SELECTION ALGORITHM

A. Concept of Tiling:
Tiling reduces the volume of data accessed between reuses

of an element, allowing a reusable element to remain in the
cache until the next time it is accessed. Consider the code for
matrix multiply in Figure l(a) and its corresponding reuse
patterns illustrated in Figure 2(a). The reference Y(J,K) is
loop-invariant with respect to the I loop. Each iteration of the
loop also accesses one row each of X and Z. Therefore, 2*N +
N2 elements are accessed per iteration of the I loop. Between
each reuse of an element of Y there are N distinct elements of
Z accessed on the J loop, N elements of the X array on the K
loop, and N2 - 1 elements of Y array. If the cache is not large
enough to hold this many elements, then the reusable Y data
will be knocked out of the cache, and the program will have to
repeat a costly memory access [1].

The largest tile with the most reuse on the I loop is the
access to Y. We therefore target this reference to fit and stay
in cache. We want to choose TK and TJ such that the TK x TJ
sub matrix of Y will still be in the cache after each iteration of
the I loop and there is enough room in the cache for the
working set size of the I loop, TK * TJ + TK + TJ[1].

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations in
the title or heads unless they are unavoidable.

B. Inefficient cache usage:

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013,4-7

© 2010, IJARCS All Rights Reserved 6 CONFERENCE PAPER
National Level Conference on

 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”
on 2nd September 2012

Organized by
St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

Figure 3. Column Layout for a 1280*1280 array in an 8192 element cache

Figure 4. Limits of tile size as per theorem for A[N][N]

Consider the layout of 1280x1280 array Y in a direct
mapped cache that can hold 8192 elements of Y as illustrated
in Figure 3. We assume that the first element of array Y falls
in the first position of the cache.

The number of columns (Col) that can fit in cache is
⌊Cache Size / N⌋

Where N is the column dimension (the consecutively
stored dimension). For Figure 3, Col = 6 for a tile of 1280 x 6
Esseghir selects this tile [15]. A 1280 x 6 tile uses 93%
percent of an 8192 element cache, but leaves a single
contiguous gap of 512 elements that can’t fit into the tile
perfectly. If N evenly divides CS, we also select this tile size.
Otherwise, we look for a smaller column dimension with a
larger row size that does not incur interference which
combines to use a higher percentage of the cache [1].

C. Tile size selection approach:
Given a target array size, cache line size, cache size and

size of each array element, we now show how to select a
desired square or rectangular tile.

a. Theorem [3]:
Let CS the size of cache, CLS the size of cache line. Let

CS=2n, CLS=2k, base A be the base address of the array A
[N1][N2]. We have the following theorem:

a) Theorem:
If N2=d*2m, where d is an odd number, m is the step of A,

and k<=m<n, then the reference of A, A[i][j], won't cause self-
interference misses within the range: i0<=i<i0+2n- m,
j0<=j<j0+2m-2k+l. (i0 can be any value between 0 and N1-1, j0
can be any value between 0 and N2- 1).

According to theorem 1, one can select suitable value of m,
and adjust the N2 as odd time of 2m, it will eliminate the self-
interference miss within iteration space [16].

In our approach we have considered array of size A[N][N]
instead of A[N1][N2] as considered in the above theorem. The
theorem gives us the upper limit for the tile size as Imax and
Jmax for which self-interference misses will be eliminated.
We have the freedom to choose either a square tile or a
rectangular tile with these constraints on tile size.

Our main intension is to utilize the cache size to the fullest
i.e. 100% cache usage with the selected tile.

One more limitation for tile selection that we have
considered is, the set of all possible tiles (square or

rectangular) for a given array size and cache size is given by,
{ T = < I , J > | I*J ≤ min(N2, CS) }

Where CS is the maximum number of array elements that
can fit in cache, I and J are respectively the size of the sub-
column and sub-row of tile T and 1≤I, J≤CS. [2]

Sometimes it may happen that, for T < I, J >, (multiple of
I) ≠ N or/and (multiple of J) ≠ N i.e. the selected tile does not
completely overlap or covers the entire array space. We are
finding tile that should cover up the array entirely. All the
goals stated above are fulfilled by finding GCD of array size,
cache size and cache line size.

The main idea behind our tile selection algorithm is
finding a tile that will eliminate self-interference misses, the
tile should use the cache fully to 100%, it should overlap the
entire array and finally it should avoid side effect of a loop
tiling.

Once we find the gcd of the three essential parameters in
tile size selection, we get a set of values that can be chosen as
tile on i and j axis for the array. We have to check these values
for the two constraints that we have imposed on tiles and then
we can select a square or rectangular tile as desired. Among
the total tile resulted from algorithm, we have to avoid the
small tile size and try for the larger tiles. This will give us less
choice for tiles but will avoid side effect. The actual algorithm
for which the results are tabulated in TABLE-I is given in
Figure 5 below.

Algorithm tileSizeSelection (CS, CLS, array_size)
{

CS= 2n CLS
= 2k
x = array_size / 2k
for i = k, n

for j = 1, x
{
if (array_size = j * 2i)

{
m = i d = j

}
j++

}
Imax = 2n-m
Jmax = 2m – 2k + 1
gcd = Algo_gcd (CLS, CS, array_size) tile =
Algo_factor (gcd)

}

Figure 5. Tile size selection algorithm

IV. RESULT ANALYSIS AND CONCLUSION

The result in the below table gives us the needed tile size
as per our choice i.e. square or rectangular tile.

Consider second column, where L1 cache size is 16k. The
corresponding row for Imax shows 32 and Jmax shows 385
and the last row shows three values 64, 32, 16. It means we
are free to choose a square tile of size 16×16, 32×32 likewise
we can choose rectangular tile of sizes 16×32, 16×64, 32×16,
32×64. But we can’t choose a square tile of size 64×64 or a
rectangular tile of size 64×32 or 64×16, this is mainly because
of the maximum limit Imax as 32. This limitation says that we
can’t choose a tile with I greater than 32, because beyond this
size the self-interference misses will occur.

The work done in this paper has a limited set of values for

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013,4-7

© 2010, IJARCS All Rights Reserved 7 CONFERENCE PAPER
National Level Conference on

 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”
on 2nd September 2012

Organized by
St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

testing because of the gcd computation of the three parameters
i.e. cache size, matrix size and cache line size. We have
considered cache line size as an essential parameter in the
experimentation with the implementation of the algorithm, so
we got very limited choices for tile. If we give a bit relaxation
by considering the gcd of cache size and matrix size only then
the set of values will have a larger set to choose for tile size.

Also, the choice for m and d based on the theorem has
made the choices for array size to be very specific in the
experimentation. If we considered 2n to be the cache size in
Kbytes and 2n as cache line size then some of the choices for
matrix size for which the theorem satisfies with some integer
values of m and d are as 640, 768, 896, 1280, 1536, 1792,
2560, 3584.

Table: 1 Possible Tile Sizes for Different Combination of CS, CLS and Array Size

Sr.
No.

L1
Cache

size
(bytes)

Cache
Line
Size

(bytes)

Array
Size
(N)

Array
Eleme
nt Size
(bytes)

No. of
Elements in

Single Cache
Line

No. of
Elements
in Cache

No. of
Elements
in Array

n k m d Imax Jma
x

Possible
Tile Size

1 32k 64 1280 4 16 8192 1638400 15 6 8 5 128 193 16,8,4

2 16k 128 3584 2 64 8192 12845056 14 7 9 7 32 385 64,32,16

3 128k 256 1536 4 64 32768 2359296 17 8 9 3 256 257 64,32,16,8

4 64k 128 1792 4 32 16384 3211264 16 7 8 7 256 129 32,16,8

5 128k 128 1024 4 32 32768 1048576 17 7 10 1 128 897 32,16,8

V. REFERENCES

[1] Stephanie Coleman and Kathryn S. McKinley, Tile Size
Selection Using Cache Organization and Data Layout,
Conference on Programming Language Design and
Implementation. Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and
implementation.

[2] Jacqueline Chame and Sungdo Moon, A tile selection
algorithm for data locality and cache interference,
International Conference on Supercomputing. Proceedings of
the 13th international conference on Supercomputing.

[3] Xinda Lu, Jie Chen, "Eliminate Self-Interference Misses of
Cache through Modifying Data Layout of Arrays," hpc, vol.
1, pp.259, The Fourth International Conference on High-
Performance Computing in the Asia-Pacific Region-Volume
1, 2000.

[4] Michael E. Wolf. Improving Locality and Parallelism in
Nested Loops. PhD thesis, Dept. of Computer Science,
Stanford University, August 1992.

[5] Jacqueline Chame. Compiler Analysis of Cache Interference
and its Applications to Compiler Optimizations. PhD thesis,
Dept. of Computer Engineering, University of Southern
California, 1997.

[6] Stephanie Coleman and Kathryn S. McKinley. Tile size
selection using cache organization and data layout. In
Proceedings of the ACM SIGPLA N ‘95 Conference on
Programming Language Design and Implementation, pages
279- 290, La Jolla, California, June 1995.

[7] Karim Esseghir. Improving data locality for caches.
Master’s thesis, Dept. of Computer Science, Rice
University, September 1993.

[8] Christine Fricker, Olivier Temam, and William Jalby.
Influence of cross-interferences on blocked loops: A case
study with matrix-vector multiply. ACM ZYansaction on
Programming Languages and Systems, 17(4):561-575, July

1995.

[9] Somnath Ghosh, Margaret Martonosi, and Sharad Malik.
Cache miss equations: An analytical representation of cache
misses. In Proceedings of the 1997 ACM International
Conference on Supercomputing, Vienna, Austria, July 1997.

[10] Somnath Ghosh, Margaret Martonosi, and Sharad Malik.
Precise miss analysis for program transformations with
caches of arbitrary associativity. In Proceedings of the 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 228-
239, San Jose, California, October 1998.

[11] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf.
The cache performance and optimization of blocked
algorithms. In Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 63-74, Santa Clara,
California, April 1991.

[12] Oliver Temam, Christine Fricker, Elana Granston, and
William Jalby. Cache performance analysis. APPARC
deliverables PMEP, Leiden University, July 1993.

[13] Oliver Temam, Elana Granston, and William Jalby. To copy
or not to copy: A compile-time technique for assessing when
data copying should be used to eliminate cache conflicts. In
Proceedings of Supercomputing ‘99, pages 401-419,
Portland, Oregon, November 1993.

[14] Michael E. Wolf. Improving Locality and Parallelism in
Nested Loops. PhD thesis, Dept. of Computer Science,
Stanford University, August 1992.

[15] K. Esseghir. Improving data locality for caches. Master’s
thesis Dept. of Computer Science, Rice University,
Sepetember 1993

[16] J. Chen, Improving data localities through loop
transformation, Ph.D thesis Dept. of Computer Science and
Engineering, Shanghai Jiao TongUniversity, 1998.

