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Abstract: In this paper, we propose a new generalized design methodology of intelligent robust fuzzy control systems based on quantum genetic 
algorithm (QGA) called quantum fuzzy controller that enhance robustness of fuzzy logic controllers. The QGA is adopted because of their 
capabilities of directed random search for global optimization to find the parameters of the shape and width of membership functions and rule set 
of the FLC to obtain the optimal fuzzy controller simultaneously. We test the optimal FLC with modified height defuzzification as a defuzzifier 
obtained by the quantum computing applied on the control of dynamic balance and motion of cart-pole balancing system. We also present the 
conventional proportional integral derivative (PID) controller for controlling the linear system of inverted pendulum and determine which 
control strategy deliver better performance with respect to pendulums angle and carts position. We compare the proposed technique with existing 
mamdani fuzzy controller which is designed through conventional genetic algorithm and PID controller. Simulation results reveal that QGA 
based controller performs better than PID controller and conventional GA based controller in terms of running speed and optimizing capability. 
 
Keywords: fuzzy logic controller; quantum computing; optimization; proportional integral derivative (PID) controller; cart-pole balancing 
problem 

I. INTRODUCTION 

The concept of Fuzzy Logic was introduced by Professor 
Lotfi A. Zadeh in 1965[1]. Fuzzy systems have been shown 
to be effective tools for performing and modeling complex 
systems. Recently, fuzzy rule-based systems have been 
applied to pattern classification problems [2], control [3]-
[4],prediction [5] and inference [6]. Specifically, they have 
been used for designing a robust controller that can yield 
satisfactory performance and deal with uncertainty and 
imprecision. 

There have been a substantial amount of different 
approaches proposed for a long time to facilitate and 
automate the design of fuzzy control rules and their 
associative membership functions shape and width. In the 
last few years a number of different approaches have been 
designed for finding optimal fuzzy rule base system using 
genetic algorithm as a base of the tuning and learning 
process. Genetic algorithms have demonstrated to be a 
powerful tool that facilitates the automatic design of fuzzy 
control rules and their associated membership functions 
knowledge base.  

The purpose of our study is to tune fuzzy rules and their 
associated membership functions shape and width learning 
process based on the use of quantum genetic algorithm. 
Learning cooperative linguistic fuzzy control rules alone are 
usually not enough for designing an optimal successful 
fuzzy logic controller since it is difficult to generate optimal 
fuzzy logic controller. On the other hand, membership 
functions shape and width of fuzzy control rule also an 

important factor for designing an optimal fuzzy logic 
controller. During the design of fuzzy controller we used 
modified center of gravity (MCOG) that concerns the 
information consequent MFs shapes (narrow/wide) and it 
improves the overall performance of fuzzy control system. 

The organization of this paper is as follows. Section 2 
present the brief overview of genetic fuzzy system and other 
related literatures. Section 3 describes the concept relevant 
to the FLC. Section 4 explains the problem of balancing the 
inverted pendulum in a greater detail. Section 5 provide the 
integrated FLC and QGA architecture and also show that 
how it can be used to solve highly nonlinear dynamic 
problems. We also introduce the basic principle of QGAs 
and discuss how they can be used to generate a satisfactory 
fuzzy rule base and select appropriate shape and width of 
MFs simultaneously for FLCs. Section 6 presents our 
simulation results and comparative analysis with existing 
approaches. Finally, Section 7 provides some concluding 
remarks and future directions. 

II. EVOLUTIONARY FUZZY SYSTEM: BRIEF 
OVERVIEW 

Many researchers have explored the use of GAs to tune 
FLC’s key factors. Fuzzy control rules and their associated 
MF is a key factor in the design of a FLC. These methods 
differ mostly in the order or the selection of the different MF 
shapes, width and distribution on the performance of a FLC. 
Moreover, differences between the previous approaches lie 
mainly in the type of coding and the way rule set and the 
shape and width of MFs are optimized. 
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C. karr et al. [7]-[9] use a GA binary encoding 
chromosome to represent the term sets MFs of all variables 
in a fuzzy logic rule.Karr uses a binary value to represent 
three parameters defining a membership value in each term 
set.  

Herrera et. al. [10] proposed a method for tuning fuzzy 
control rules used by the fuzzy logic control systems. They 
use a real encoding to represent the four-parameter 
characterization of a trapezoidal membership value in each 
term set. Each control rule is defined by the concatenation of 
the membership values used in the rule premise part and 
conclusions part. The population is the concatenation of all 
rules so represented.  

More recently, Kim et. al.[11] proposed a method for 
designing an efficient fuzzy path planner, which satisfy 
multiple objectives simultaneously, for mobile robot on the 
basis of quantum inspired evolutionary algorithm. In their 
work they used a multi-objective quantum inspired 
evolutionary algorithm to find out optimal fuzzy control rule 
sets of a fuzzy control system.  

III. FUZZY LOGIC CONTROLLER 

One of the main purposes of using fuzzy logic controller 
(FLC) originally is to replace human operators in some 
control task. Fig. 1 shows the basic configuration of FLCs 
consist of four component elements: Fuzzification interface, 
a knowledge base, decision-making logic, and a 
defuzzification interface.  

 
Figure 1. Basic configuration of fuzzy logic controller (FLC) 

The first part is the fuzzifier, which converts crisp 
values, that is actual real world data such as temperature, 
cost, height etc. into fuzzy sets. Fuzzy inference is the actual 
process of mapping from a given input to an output using 
fuzzy logic.  

Like most FLCs [1], the FLC discussed here applies the 
concepts of fuzzy implication and the compositional rules of 
inference for approximate reasoning. Suppose that we need 
to design a multiple-input-multiple-output (MIMO) FLC 
having p inputs pp XxXx ∈∈ ,,.........11  and c outputs 

cc YyYy ∈∈ ,.....,11  with ith fuzzy rule of the form: 
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center of gravity (COG) defuzzifier takes output as the COG 

of the fuzzy output. The expression generally used for a 
discrete fuzzy set is as follows:   
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Where jθ denotes the center of gravity of the consequent 

label jC   of the rule jR , )( jom θ  is the firing strength of this 
rule, and p is the number of rules.  

Modified height defuzzifier: The modified height 
defuzzifer was used to handle the consequent uncertainty 
and improve the FLCs response. The expression generally 
used for a fuzzy set is as follows:  
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Where kδ is the spread measure of the kth consequent set. 
For Gaussian membership function kδ is the standard 
deviation whereas triangular MF kδ  is the length of its 
base. 

IV. THE CART-POLE BALANCING PROBLEM 

The cart pole balancing problem is a popular 
demonstration of using feedback control to stabilize an 
open-loop unstable system. The cart-pole task involves a 
balancing pole hinged to a cart that travels along a track as 
shown in fig. 2. The control objective is to apply a sequence 
of left or right forces of fixed magnitude to the wheeled cart 
so that the pole balances and wheel cart does not hit the end 
of the track. Here, the system state is specified by four real-
valued variables: x-the horizontal position of the cart; x∆ -
the velocity of the cart (Rate at which the error of position 
changes); θ- the angle of the pole/shaft with respect to the 
vertical line; θ∆ - the angular velocity of the pole/shaft. The 
force F, [-10, 10] newton’s applied to the cart and a zero 
magnitude force is not permitted. The dynamics of the cart-
pole system are modeled by the following non-linear 
differential equations: 
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Figure 2.  Cart-pole typed inverted pendulumsystem 

V. DESIGN OF TSK TYPE FLC USING QGA 

In this section we introduce the basic principle of 
quantum genetic algorithm (QGA) and the design process of 
TSK type-1 FLC using quantum genetic algorithm (QGA). 
The first step in designing an integrated FLC and QGA, as 
shown in Fig. 4, is to decide which parts of the KB are 
subject to be optimized by the QGA.  

A. Quantum Genetic Algorithm: 
QGA is a probability optimization method which is 

based on the concept of qubits and superposition of states of 
quantum mechanics. In a quantum computer the smallest 
unit of information stored is called a quantum bit or 
qubit[12] which may be in the ‘1’ state, ‘0’ state or in any 
super position of the two. Superposition of logical state can 
be expressed as “ 10 βα + ”. Another way of writing 
“superposition” is as a vector: 
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Where α  and β  are complex number that specify the 
probability amplitudes of the corresponding states. |α|2 gives 
the probability that the qubit will be found in “0” state and 
|β|2 gives the probability that the qubit will be found in “1” 
and they satisfy the normalization condition |α|2+|β|2 = 1. A 
qubit individual as a string of m Q-bits is defined as: 
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Where |αi|2 +|βi|2 =1, i = 1, 2, 3…..m.  
So a Q-bit individual of m bits can represent  states at 

a time [12].  

 
(a) Chromosome Encoding Schema 

 
(b) Representation of fuzzy set through C and σ 

 
(C) Chromosome Decoding Schema 

Figure 3.  Representation of QGA Chromosome 

QGA has a better characteristic of population diversity 
than others, since it can represent linear superposition of 
states probabilistically. But higher value of m needs higher 
computing time of the algorithm. For an optimization 
problem with fitness function , if we 
represent each real variable  by  k bits then the total 
number of Q-bits in an Q-bit individual m= k×n. So if we 
apply the evolutionary operators on huge number of bits 
then they will definitely take a significant amount of time to 
execute. The QGA uses the power of quantum computation 
to speed up of genetic procedure. The QGA uses single 
quantum procedure as an evaluation and selection 
procedure. 

B. Encoding And Decoding/Representation 
The most important questions for designing a TSK type-

1 FLC using QGA are how to encode the potential solution 
into chromosome and how to evaluate the potential solution. 
The chromosomes are coded in a manner that is suitable for 
using in QGA. Fig. 3 shows a chromosome in QGA coding, 
decoding, where each chromosome consists of, just a fuzzy 
rule set and associated membership function. 

Evaluate the chromosome: Evaluate the chromosome 
using the following cost function to be minimized is 

∑ −+= =
500

1 21 ))1()((t tFptpJ θ  

Where 1p and 2p are weights ( 01.0,1 21 == pp ).We 
used the cost function to evaluate the performance of each 
fuzzy system defined by the each chromosome of QGA. 

 
Figure 5. Quantum Genetic Tuning  Process  

 
The firing strength of a fuzzy rule is calculated by the 

mechanism which is used to implement the And operation in 



Kazuyuki Murase  et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 1-8 

© 2010, IJARCS All Rights Reserved                                                                                                                                          4 

the antecedent part of the rules. In this paper we propose the 
product to measure the degrees of each variable to its 
corresponding membership functions. The firing strength is 
then used to shape the output fuzzy set that represents the 
consequent part of the rule. Therefore, the firing strength of 
each rule can be defined as:   
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C. Quantum Genetic Tuning  Process: 
In order to design and optimize a fuzzy system QGA can 

be considered as an optimization tool due to its suitable 
properties. The automatic knowledge base acquisition can 
be considered as optimization or search process. In this case 
quantum genetic algorithm applied for the tuning of 
database (DB) and/or rule base (RB) of a fuzzy logic 
controller. 

In the proposed integrated architecture (as shown in 
Fig.4) the overall tuning process works in the following 
ways (Fig. 5):  

Step 1: Design Planning:  Identify the variables (inputs, 
states, outputs) of the cart pole balancing problem. Partition 
the input and output universe of discourses or the interval 
spanned by each of the variables into a number of fuzzy 
regions and assign a fuzzy MF i.e., linguistic label to each 
region.  

Step 2: Initialization: An initial population of candidate 
solutions is created, generally at random within the domain 
prescribed by the bounds on variables and each chromosome 
is encoded into a set of parameter matrix of fuzzy rules and 
their associated MFs of FLC.  

Step 3: Evaluation: Each potential solution (decoded 
chromosome) is evaluated and assigned a fitness value 
according to the solving performance of the problem. Sort 
the individuals according to their fitness values. Check the 
termination criterion. If satisfied then stops and returns the 
best fitted chromosome (set of fuzzy rules and shape/width 
of MF) otherwise go to step 4 

Step 4: Recombination: Apply discrete crossover and 
mutation operator to all chromosomes, to generate new 
chromosome as well as new generation and go to step 3. 

VI. SIMULATION RESULTS AND COMPARATIVE 
ANALYSIS  

In this section, we present the simulation results 
achieved by employing our proposed approach. We prove 
the stability of the fuzzy logic controller in time occurs with 
the tuning fuzzy control rule sets obtained by the proposed 
approach that we have proposed. 

 

(a) 

 
(b) 

 
(c) 

Figure 6. Tuned MFs using  QGA (a) Angle (ϴ) (b) Angular Velocity 
( θ∆ )  (c) Force F for control angle FLC 

A. Membership Function: 
One of the most important characteristic of fuzzy models 

is the quantizing of the input and output space of system 
variables (input, output) into fuzzy regions using fuzzy sets 
[13]. Dividing the input and output variables into 5 fuzzy 
sets and appropriate levels are assigned. Figure 6and Fig. 7 
show the membership functions for control angle FLC and 
control position FLC respectively.  

B. Fuzzy Control Rules 
We have obtained the fuzzy control rules (shown in table 

I (A) and I (B)) from the best chromosomes of QGA after 
100 generations.  

C. Control Surface: 
The MFs and rules are design tools that give opportunity 

to model a control surface, a convenient way to examine a 
two input/one-output control strategy and controller 
properties. It is obvious that using these attributes one can 
more precisely fulfill a quality criterion in a full operational 
range. The control surface is defined with 25 rules as shown 
in Fig.8. 
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Table I (A). Fuzzy rule matrix for control angle FLC 

Force Angle 

NH NL ZE PL PH 

A
ng

ul
ar

  
ve

lo
ci

ty
 

NH 1NH 2NH 3NH 4NL 5ZE 

NL 6NH 7NH 8NL 9ZE 10PL 
ZE 11NH 12NL 13ZE 14NL 15NH 
PL 16NL 17ZE 18PL 19PH 20PH 
PH 21ZE 22PL 23PH 24NH 25PL 

Table I (B). Fuzzy rule matrix for control position FLC 

Force x 

NH NL ZE PL PH 

x∆  NH 1NH 2NL 3NL 4PL 5PH 

NL 6PL 7ZE 8ZE 9PH 10NH 

ZE 11ZE 12PH 13PL 14NL 15ZE 

PL 16NH 17NL 18PH 19ZE 20NL 

PH 21NL 22NH 23PL 24PH 25NL 

NH: Negative High, NL: Negative Low, ZE: Zero, PL: 
Positive Low and PH: Positive High 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7.Tuned MFs using  QGA (a) Position (x) (b)  Rate at 
which the error of position changes x∆ (c) Force F for control 

position FLC 

 

(a) 

 
(b) 

Figure 8. Control surface generated by applied FLC for (a) Angle (b) 
Position 

 
 

 
Figure 9.  Controller response during switching from swing-up to 

stabilization 

D. Trajectory:  
The designed controller is able to balancing the pole for 

several initial conditions and it has acceptable rise time and 
overshoot. We test the controller design with our proposed 
system with several initial conditions as shown in 
Fig.9.Figure 10 shows the controller response for controlling 
the cart’s position. 
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Figure 10. Impulse response for cart’s position 

In each generation, all chromosomes are evaluated by 
the FLC to generate the fitness error. Chromosomes are 
sorted according to the fitness error and the best one among 
all chromosomes is selected in each generation. Variation of 
maximum fitness value versus generation is shown in fig. 
11. 

 
Figure 11.  Maximum fitness function versus generation 

E. Comparative Assessments and Analysis of the 
Response: 

In this section we presented the proportional integral 
derivative (PID) controller and Mamdani controller based on 
conventional GA with five mfs for each input variables and 
output to the same problem. The QGA based controllers will 
be compared to the Conventional controller such as PID and 
GA based fuzzy controllers to see the performance of the 
controller in order to control an inverted pendulum system. 
Two tasks are involved in controlling the inverted pendulum 
system which is the pendulum’s angle and cart’s position. 
All the results of the controllers will be discussed in this 
section also. 

a. PID Controller: Conventional Controller: 
PID is a type of feedback controller whose output, a 

control variable (CV), is generally based on the error (e) 
between some user-defined set point (SP) and some 
measured process variable (PV). Each element of the PID 
controller refers to a particular action taken on the error. At 
first, we closely observe the pendulum response using one 
PID controller. Figure 12 and Fig. 13 shows the pendulum 
angle and cart position when using single PID controller. 

 

 
Figure 12. Impulse Response for pendulum Angle when using single PID 

controller 

 

Figure 13. Impulse Response for cart Position when using single PID 
controller 

From Figure 13, it can be seen that the cart moves in the 
negative direction with a constant velocity when an impulse 
force is applied to move it. So although the PID controller 
stabilizes the angle of the pendulum, this control method 
would not be feasible to be implemented on an actual 
physical system that was presented of cart's position and 
pendulum's angle as the outputs of the system. 

 

Figure 14.Schematic diagram of the inverted pendulum system with two 
PID controllers 

Since one PID controller could not stabilize (Fig. 12 and 
Fig. 13) both of the angle and the position of the pendulum 
and the cart, another PID controller is designed to the 
diagram as shown in Fig. 14. This designed controller used 
two PID controllers while adaptive controller used two 
fuzzy logic controllers. In this case, one PID controller used 
to control the pendulum angle and another PID controller 
used to control the pendulum position. The output responses 
of the system (angle and position) are shown in Fig. 15 and 
Fig. 16 respectively. We have shown that by using this 
double coupled PID controller approach, the system is 
successfully stabilized and all of the characteristics for the 
both responses of the system are met design criteria 
satisfactorily. 
 

 
Figure 15.  Impulse response for pendulum angle when using two PID 

controllers 

 

 

PID2 

Control Position 
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Figure 16. Impulse response for cart’s position when using two PID 
controllers 

From both (Angle and position) of impulse response 
characteristics, it can be stated that the fuzzy controller with 
quantum GA has the ability to response and stabilize quickly 
compared to conventional PID controller. The response 
obviously has more robustness than the PID controller. 

On the other hand, it was found that the PID controller is 
a good controller to control the single-input-single-output 
(SISO) system. However, the PID alone cannot be used 
successfully to control the cart's pendulum and pendulum's 
angle simultaneously. 

b. Mamdani Controller with conventional GA: 
We also analyse the performance of quantum GA based 

fuzzy controller against the Mamdani controller with 
conventional GA.The fuzzy logic control with quantum GA 
happens to be more robust and reliable than the fuzzy logic 
control with conventional GA in successfully swinging the 
pendulum to the stabilizing position. From Fig. 17 it is 
obvious that the performances of FLC with QGA are better 
than those in FLC with conventional GA. It not only takes 
less time to reach the stabilize position, but also it shows the 
smoother trajectories.  

 

 
Figure 17. Controller Response Comparison between FLC controller 

through Conventional GA and QGA 

c. Evaluating our work with adaptive approach: 

The inverted pendulum is a classical and contemporary 
open loop control problem. It is an inherently open loop 
unstable with highly non-linear dynamics and an under 
actuated mechanical system and used as a well-known test 
bed for the evaluation of new control algorithms. The 
control system for cart-pole inverted system is stabilized 
within a few seconds or time steps in several studies 
including [14]-[15]. The closer inspection of the study in 

[14] reveals that the system is stabilized within 46 time steps 
for the best case and 4461 for the worst cases from initial 
pole angles ±150 degrees and random cart positions ±2.4 
meters. For the same initial condition, the number of time 
steps required to stabilize the cart-pole system is 33 for best 
case and 3123 is for the worst case while using our proposed 
approach. The time steps required for cart and pole 
stabilization were computed over 20 simulations for each 
method.  

In order to evaluate our new QGA-based approach, we 
compare it against well-known reinforcement learning 
method called SANE (Symbiotic, Adaptive Neuro-
Evolution)[14]. SANE is evolutionary neural networks 
based cooperative model that has been applied to cart pole 
type inverted pendulum system with very promising results 
[14]. SANE algorithm works on the basis of group 
interaction-based evolutionary algorithm for improving the 
symbiotic GA. The group interaction based evolutionary 
algorithm is developed from a symbiotic evolution. In 
SANE each chromosome refers to a single neuron, and the 
neural networks formed are the results of the evolution of a 
population of these chromosomes through co-evolution and 
speciation.  

VII. CONCLUSIONS 

In this paper we have presented a new design method 
based on QGA for designing an optimal fuzzy controller to 
control real time cart pole inverted pendulum system for 
stabilization. The proposed architecture is able to tune 
comprehensible and reliable fuzzy rules and their optimal 
membership functions by a QGA learning adaptive method. 
Several experiments were conducted to verify the robustness 
of the fuzzy controller under several initial conditions. 
Based on these experiments, we have found that the 
proposed approach was robust and significantly better than 
fuzzy control system through conventional GA, SANE and 
conventional PID controller. The Simulation results show 
the proposed technique find an optimal or near optimal 
fuzzy control system.  

Suggestions for follow-up works that may come after 
this study are as follows: The research work is to be 
extended by embedding rules reduction technique in the 
proposed control architecture. In this case statistical least 
square method is used to determine the importance order of 
rules and cut the unimportant rules. This study also extended 
through the parallel implementation of the proposed 
algorithm that may be used to improve the convergence 
speed of the proposed method. Finally, although the 
controllers has been successfully stabilized the system, 
implementation of the algorithm into more complex real 
application is very important. Since FLC could stabilize the 
nonlinear system, it is expected that the FLC will work well 
if it is implemented into more complex real system. 
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